(完整版)长方体和正方体切拼练习题

合集下载

长方体和正方体全套练习题

长方体和正方体全套练习题

第二单元长方体(一)全套练习练习一长文体正方体的认识一、填空1、长方体有()个面,它们一般都是()形,也可能有()个面是正方形.2、长方体的上面和下面、前面和后面、左面和右面都叫做(),它们的面积().3、长方体的12条棱,每相对的()条棱算作一组,12条棱可以分成()组.4、正方体有()个面,每个面都是()形,面积都().5、一个正方体的棱长是6厘米,它的棱长总和是().6、一个长方体的长是1.5分米,宽是1.2分米,高是1分米,它的棱长和是()分米.7、一个长方体的棱长总和是80厘米,其中长是10厘米,宽是7厘米,高是()厘米.8、把两个棱长1厘米的正方体拼成一个长方体,这个长方体的棱长总和是()厘米.二、判断题1、长方体和正方体都有6个面,12条棱,8个顶点.()2、长方体的6个面不可能有正方形.()3、长方体的12条棱中,长、宽、高各有4条.()4、正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等.()5、长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等.()6、一个长方体长12厘米,宽8厘米,高7厘米,把它切成一个尽可能大的正方体,这个正方体的棱长是8厘米.()三、选择题1、下列物体中,形状不是长方体的是()①火柴盒②红砖③茶杯④木箱2、长方体的12条棱中,高有()条.①4 ②6 ③8 ④123、下列三个图形中,能拼成正方体的是()4、把一个棱长3分米的正方体切成两个相等的长方体,增加的两个面的总面积是()平方分米.①18 ②9 ③36 ④以上答案都不对练习二长文体正方体的棱长和、表面积1、有一根长52厘米的铁丝,恰好可以焊接成一个长6厘米,宽4厘米,高多少厘米的长方体?2、一个长方体的水池,长20厘米,宽10厘米,深2米,占地多少平方米?3、用96厘米长的铁丝焊接成一个正方体的框架,然后用纸给它的表面包裹起来,至少需要多少平方厘米的纸?4、一个长方体,长12厘米,宽和高都是8厘米,这个长方体的表面积是多少平方厘米?5、用两个棱长为5厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?6、一个长方体和一个正方体的棱长之和相等,已知长方体的长为5厘米,宽为3厘米,高为4厘米,求正方体的棱长。

完整版)长方体正方体经典题型汇总

完整版)长方体正方体经典题型汇总

完整版)长方体正方体经典题型汇总1.这个长方体的棱长总和是64分米。

2.这个长方体框架的高是15分米。

3.需要42厘米长的塑料带。

4.这个正方体的棱长是4厘米。

5.这个长方体的棱长总和是30分米。

6.这个长方体框架的高是20厘米。

7.这个正方体的棱长是28米÷4=7米。

8.这个长方体的棱长总和是21厘米。

9.每个正方体木块的棱长总和是40厘米。

1.至少需要36平方分米铁皮。

2.这张商标纸的面积是320平方厘米。

3.原来正方形铁皮的面积是625平方厘米。

4.这个长方体的表面积是162平方厘米。

5.粉刷水泥的面积是63平方米,需要252千克水泥。

6.至少需要480平方厘米铁皮,12节需要5760平方厘米铁皮。

7.20个这样的长方体需要400平方厘米的硬纸。

1.商标纸面积问题:一盒饼干长20厘米,宽15厘米,高30厘米。

要在它的四周贴上高6厘米的商标纸,求商标纸的面积。

解:首先计算长方体的表面积,即2(长×宽+长×高+宽×高),得到2(20×15+20×30+15×30)=2700平方厘米。

然后计算加上商标纸后的长方体的表面积,即2[(20+2×6)×(15+2×6)+(20+2×6)×(30+2×6)+(15+2×6)×(30+2×6)] =2×(32×27+32×42+27×42)=2×3024=6048平方厘米。

商标纸的面积即为加上商标纸后的表面积减去原表面积,即6048-2700=3348平方厘米。

2.侧面积问题:一个长方体侧面积是360平方厘米,高是9厘米,长是宽的3倍。

求它的表面积。

解:由题可得,长方体的宽为120/9=40厘米,长为3×40=120厘米。

因此,长方体的表面积为2(40×9+120×9+40×120)=2×(360+1080+4800)=2×6240=平方厘米。

长方体拼、切问题

长方体拼、切问题

长方体和正方体(拼、切问题)专题分析:解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。

二、精讲精练【例题1】有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?【思路导航】把正方体分成两个长方体后,增加了两个面,每个面的面积是24÷2=12平方厘米,而正方体有6个这样的面。

所以原正方体的表面积是12×6=72平方厘米。

练习1:1.把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?2.有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?3.有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?【例题2】有一个正方体,棱长是3分米。

如果按下图把它切成棱长是1分米的小正方体,这些小正方体的表面积的和是多少?想一想:在切的过程中,每切一切,就会增加两个3×3平方分米的面,你能用这种思路来计算所求问题吗?练习2:1。

用棱长是1厘米的小正方体摆成一个稍大一些的正方体,至少需要多少个小正方体?如果要摆一个棱长是6厘米的正方体,需要多少个小正方体?2.有一个长方体,长10厘米、宽6厘米、高4厘米,如果把它锯成棱长是1厘米的小正方体,一共能锯多少个?这些小正方体的表面积和是多少?3。

把24个棱长是1厘米的小正方体摆成一个长方体,这个长方体的表面积至少是多少平方厘米?【例题3】一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?【思路导航】把棱长为6厘米的正方体锯成棱长为2厘米的正方体,可以按下图中的线共锯6次,每锯一次就增加两个6×6=36平方厘米的面,锯6次共增加36×2×6=432平方厘米的面积。

最新北师大版小学五年级数学下册长方体和正方体切拼练习题(精品试卷).doc

最新北师大版小学五年级数学下册长方体和正方体切拼练习题(精品试卷).doc

长方体和正方体切拼练习题一、判断:(1)长方体有6个面,可能会有4个面面积相同。

()(2)棱长是6分米的正方体体积与表面积一样大。

()(3)1立方米铁的体积比1立方米的棉花体积大。

()(4)体积为1立方分米的纸盒放在桌面上,纸盒所占的面积一定是1平方分米。

()(5)正方体的棱长扩大2倍,体积扩大4倍。

()二、应用题:一个长方体,长12厘米,宽8厘米,高6厘米。

(1)如果从这个长方体上切下一个最大的正方体,这个正方体的体积应该是多少?(2)如果将这个长方体切成若干个大小一样的正方体(不许有剩余),最少能切多少块?(3)如果用若干个这样相同的长方体拼成一个更大的正方体,至少需要多少个长方体?三、练习1.把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是多少平方厘米,最小是多少?2.一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是多少平方分米?3.把一个长6厘米,宽5厘米,高4厘米的长方体木块锯成两个小长方体,表面积最少增加多少平方厘米?最多增加多少平方厘米?4.把1立方米的正方体木料,全锯成1立方厘米的小木块(损耗不在计算之内),把这些小木块一个紧挨一个地排成一行,这一行总共有多少米5.一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?6.把长5厘米、宽4厘米、高3厘米的两块相同的长方体拼成一个新长方体,有几种拼法,表面积分别是多少?7.把两块棱长5厘米的正方体的拼成一个长方体,这个长方体的表面积是多少平方厘米?(你能用几种方法解答)8.一个正方体的底面周长是16厘米,它的表面积是多少平方厘米,体积是多少立方厘米?9.至少要几个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是多少平方厘米,体积是多少立方厘米?10.一个长方体,如果高减少3厘米,就成为一个正方体。

人教版五年级下册长方体和正方体切拼练习题

人教版五年级下册长方体和正方体切拼练习题

长方体和正方体切拼练习题一、判断:(1)长方体有6个面,可能会有4个面面积相同。

()(2)棱长是6分米的正方体体积与表面积一样大。

()(3)1立方米铁的体积比1立方米的棉花体积大。

()(4)体积为1立方分米的纸盒放在桌面上,纸盒所占的面积一定是1平方分米。

()(5)正方体的棱长扩大2倍,体积扩大4倍。

()二、应用题:一个长方体,长12厘米,宽8厘米,高6厘米。

(1)如果从这个长方体上切下一个最大的正方体,这个正方体的体积应该是多少?(2)如果将这个长方体切成若干个大小一样的正方体(不许有剩余),最少能切多少块?(3)如果用若干个这样相同的长方体拼成一个更大的正方体,至少需要多少个长方体?三、练习1.把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是多少平方厘米,最小是多少?2.一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是多少平方分米?3.把一个长6厘米,宽5厘米,高4厘米的长方体木块锯成两个小长方体,表面积最少增加多少平方厘米?最多增加多少平方厘米?4.把1立方米的正方体木料,全锯成1立方厘米的小木块(损耗不在计算之内),把这些小木块一个紧挨一个地排成一行,这一行总共有多少米5.一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?6.把长5厘米、宽4厘米、高3厘米的两块相同的长方体拼成一个新长方体,有几种拼法,表面积分别是多少?7.把两块棱长5厘米的正方体的拼成一个长方体,这个长方体的表面积是多少平方厘米?(你能用几种方法解答)8.一个正方体的底面周长是16厘米,它的表面积是多少平方厘米,体积是多少立方厘米?9.至少要几个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是多少平方厘米,体积是多少立方厘米?10.一个长方体,如果高减少3厘米,就成为一个正方体。

长方体和正方体切拼练习题

长方体和正方体切拼练习题

长方体和正方体切拼练习题一、判断:(1)长方体有6个面,可能会有4个面面积相同。

( )(2)棱长是6分米的正方体体积与表面积一样大。

()(3)1立方米铁的体积比1立方米的棉花体积大。

()(4)体积为1立方分米的纸盒放在桌面上,纸盒所占的面积一定是1平方分米。

()(5)正方体的棱长扩大2倍,体积扩大4倍。

()二、应用题:例:一个长方体,长12厘米,宽8厘米,高6厘米。

(1)如果从这个长方体上切下一个最大的正方体,这个正方体的体积应该是? (2)如果将这个长方体切成若干个大小一样的正方体(不许有剩余),最少能切多少块?(3)如果用若干个这样相同的长方体拼成一个更大的正方体,至少需要多少个长方体?练习1。

把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是多少平方厘米,最小是多少?2.一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是多少平方分米?3。

把一个长6厘米,宽5厘米,高4厘米的长方体木块锯成两个小长方体,表面积最少增加多少平方厘米?最多增加多少平方厘米?4.把1立方米的正方体木料,全锯成1立方厘米的小木块(损耗不在计算之内),把这些小木块一个紧挨一个地排成一行,这一行总共有多少米5。

一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?6.把长5厘米、宽4厘米、高3厘米的两块相同的长方体拼成一个新长方体,有几种拼法,表面积分别是多少?7.把两块棱长5厘米的正方体的拼成一个长方体,这个长方体的表面积是多少平方厘米?(你能用几种方法解答)8.一个正方体的底面周长是16厘米,它的表面积是多少平方厘米,体积是多少立方厘米。

9.至少要几个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是多少平方厘米,体积是多少立方厘10.一个长方体,如果高减少3厘米,就成为一个正方体。

长方体和正方体切拼练习题2013

长方体和正方体切拼练习题2013

长方体和正方体切拼练习题班级姓名一、判断:(1)长方体有6个面,可能会有4个面面积相同。

()(2)棱长是6分米的正方体体积与表面积一样大。

()(3)1立方米铁的体积比1立方米的棉花体积大。

()(4)体积为1立方分米的纸盒放在桌面上,纸盒所占的面积一定是1平方分米。

()(5)正方体的棱长扩大2倍,体积扩大4倍。

()二、应用题:一个长方体,长12厘米,宽8厘米,高6厘米。

(1)如果从这个长方体上切下一个最大的正方体,这个正方体的体积应该是多少?(2)如果将这个长方体切成若干个大小一样的正方体(不许有剩余),最少能切多少块?(3)如果用若干个这样相同的长方体拼成一个更大的正方体,至少需要多少个长方体?练习1.把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是多少平方厘米,最小是多少?2.一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是多少平方分米?3.把一个长6厘米,宽5厘米,高4厘米的长方体木块锯成两个小长方体,表面积最少增加多少平方厘米?最多增加多少平方厘米?4.把1立方米的正方体木料,全锯成1立方厘米的小木块(损耗不在计算之内),把这些小木块一个紧挨一个地排成一行,这一行总共有多少米5.一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?6.把长5厘米、宽4厘米、高3厘米的两块相同的长方体拼成一个新长方体,有几种拼法,表面积分别是多少?7.把两块棱长5厘米的正方体的拼成一个长方体,这个长方体的表面积是多少平方厘米?(你能用几种方法解答)8.一个正方体的底面周长是16厘米,它的表面积是多少平方厘米,体积是多少立方厘米?9.至少要几个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是多少平方厘米,体积是多少立方厘米?10.一个长方体,如果高减少3厘米,就成为一个正方体。

长方体和正方体解决问题10练

长方体和正方体解决问题10练

长方体和正方体解决问题10练练习一1、把一个正方体和一个等底面积的长方体拼成一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。

原俩正方体的表面积是多少平方厘米?2、把两个完全一样的长方体木块拼成一个大长方体,这个大长方体的表面积比原来两个小长方体的表面积之和减少了46平方厘米,而长是原来长方体的2倍。

如果拼成的长方体的长是24厘米,那么它的体积是多少立方厘米?3、一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?4、把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积会减少多少平方分米?5、长方体不同的三个面的面积分别为10、15和6平方厘米。

这个长方体的体积是多少立方厘米?6、一个长方体、不同的三个面的面积分别为35、15和21平方厘米,且长宽高都是素数。

这个长方体的体积是多少立方厘米?练习二1、一个长方体,前面和上面的面积之和是209立方厘米,这个长方体的长、宽、高以厘米为单位的数都是质数。

这个长方体的体积是多少立方厘米?2、长方体不同的三个面的面积分别为25、18和8平方厘米。

这个长方体的体积是多少立方厘米?3、在一个长15分米,宽12分米的长方体水箱中,有10分米深的水,如果在水中沉入一个棱长为30厘米的正方体铁块,那么水箱中水深多少分米?4、有一个长方体容器,从里面量长5分米,宽4分米,高6分米,里面注入水,水深3分米。

如果把一块长2分米的正方体铁块浸入水中,水面上升了多少分米?5、有一个小金鱼缸,长4分米,宽3分米,水深2分米。

把一个小块假山石浸入水中后,水面上升了0.8分米。

这块假山石的体积是多少立方分米?6、在一个长20分米,宽15分米的长方体容器中,有20分米深的水。

现在在水中沉入一个棱长30厘米的正方体铁块,这时容器中水深多少分米?练习三1、将表面积分别为54、96和150平方厘米的三个铁质正方体熔成一个大正方体(不计损耗),求这个大正方体的体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长方体和正方体切拼练习题
1.把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是多少平方厘米,最小是多少?
2.一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是多少平方分米?
3.把一个长6厘米,宽5厘米,高4厘米的长方体木块锯成两个小长方体,表面积最少增加多少平方厘米?最多增加多少平方厘米?
4.把1立方米的正方体木料,全锯成1立方厘米的小木块(损耗不在计算之内),把这些小木块一个紧挨一个地排成一行,这一行总共有多少米?
5.一个正方体木块,表面积
是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?
6.把长5厘米、宽4厘米、高3厘米的两块相同的长方体拼成一个新长方体,有几种拼法,表面积分别是多少?
7.把两块棱长5厘米的正方体的拼成一个长方体,这个长方体的表面积是多少平方
厘米?(你能用几种方法解答)
8.一个正方体的底面周长是16厘米,它的表面积是多少平方厘米,体积是多少立方厘米。

9.至少要几个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是多少平方厘米,体积是多少立方厘米。

10.一个长方体,如果高减少3厘米,就成为一个正方体。

这时表面积比原来减少了
96平方厘米。

原来长方体的体积是多少立方厘米?
11.一个长2米的长方体钢材截成三段,表面积比原来增加2.4平方分米,这根钢材原来的体积是多少立方分米。

12.一个长方体,如果长减少2厘米,就成为一个正方体,
这时,正方体的表面积是96平方厘米,原来长方体的体积是多少。

13.将三个棱长是4厘米的正方体拼成一个长方体,这个长方体的体积是多少立方厘米,表面积是多少平方厘米。

14.一个长方体,如果高减少3厘米,就成为一个正方体。

这时表面积比原来减少了
96平方厘米。

原来长方体的体积是多少立方厘米。

15.一个棱长是3厘米的正方体木块,各面中心凿穿一孔面边长是1厘米的正方形柱孔,它余下的体积是多少立方厘米?
2.8立方分米=()立方厘米0.8升=()毫升720立方分米=()立方米51000毫升= ( )升32立方厘米=()立方分米
2.7立方米=()升1200毫升=()立方厘米
4.25立方米=()立方分米=()升
1.24立方米=()升
=()毫升
3.06升=()升()毫升
1.一个长方体,长4米,宽3米,高
2.4米,它的占地面积最大是多少平方米?表面
积是多少平方米?体积是多少立方米?
2.有一块棱长是80厘米的正方体的铁块,现在要把它溶铸成一个横截面积是20平方厘米的长方体,这个长方体的长是多少厘米?
3.一块正方体的石头,棱长是5分米,每立方米的石头大约重2.7千克,这块石头重有多少千克?
4.学校要砌一道长20米,宽
2.4分米、高2米的墙,每立方米需要砖525块,学校需要买多少块砖?
5.一个长方体的药水箱里装了60升的药水,已知药水箱里面长5分米,宽3分米,它的深是多少分米?
6.一个长方体油箱,长6分米,宽5分米,高4分米。

做这个油箱需要多少平方分米铁皮?每升油重0.85千克,这个油箱可装油多少千
克?
7.80根方木垛成一个长2米,宽2米,高1.5米的长方体,平均每根方木的体积
是多少立方米?合多少立方
分米?
8.一块长方形的铁皮,长30厘米,宽25厘米,如果从四个角各切掉边长5厘米的正方形,然后做成盒子,这个盒子
的容积有多少毫升?
9.一个水池长6米、宽5米、
高1.5米,池里所储的水是36立方米,问现在水面距池口多少米?
10.有一种无盖的玻璃鱼缸,长20厘米,宽15厘米,高10厘米,做这样一对鱼缸需要多少平方厘米的玻璃,能装水多少升。

11.一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。

现在要把这个房间的四壁和顶面粉刷水泥,粉
刷水泥的面积是多少平方米?如果每4平方米需要水泥1千克,一共要水泥多少千克?
12.挖一个长方体蓄水池,水池长18米,比宽多10米,深度比宽少2米。

现有24个工人参加挖池工作,如果平均每人每天挖3立方米,多少天才能挖完?
13.一个带盖的长方体木箱,体积是0.576立方米,它的长
是12分米,宽是8分米,做这样一个木箱至少要用木板多少平方米?
二.判断题(对的打“√”,错的打“×”)。

1.所有的长方体都有六个面。

………………………………()
2.长方体的表面中不可能有正方形。

………………………
()
3.长方体是特殊的正方体。

……………………………… ()
4.把两个一样的正方体拼成一个长方体后,体积和表面积都不变。

()5.一瓶白酒有500升。

………………………………………… ()
三.选择题(选择正确答案的序号)
1.我们在画长方体时一般只画出三个面,这是因为长方体()。

A.只有三个面 B.只能看到三个面 C.最多只能看到三个面
2.一个正方体的棱长总和是60厘米,它的表面积是()。

A.21600平方厘米B.1
50平方厘米C.125立方厘米
3.正方体的棱长扩大3倍,它的表面积扩大()。

A.3倍B.6
倍C.9倍
D.27倍
4.用一根长()铁丝正好可以做一个长6厘米、宽5厘米、高3厘米的长方体框架。

A.28厘米 B.126平方
厘米 C.56厘米 D.9 0立方厘米
5.边长是6分米的正方体,它的表面积与体积比较
()
A.一样大B.表面积
大 C.不好比较大
小 D.体积大
6.把一个长方体分成几个
小长方体后,体积()。

A.不变B.比原来大了 C.比原来小了
四.实践与应用(35%)1.做一个长方体的浴缸(无盖),长8分米,宽4分米,高6分米,至少需要多少平方分米的玻璃?如果每平方分米玻璃4元钱,至少需要多少钱买玻璃?2.一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。

现在要把这个房间的四壁和顶面粉刷水
泥,粉刷水泥的面积是多少
平方米?如果每平方米需要
水泥4千克,一共要水泥多少千克?
3.一块正方体的石头,棱长是5分米,每立方米的石头大约重 2.7千克,这块石头重有多少千克?
4.学校要砌一道长20米,宽0.24米、高2米的墙,
每立方米需要砖525块,学校需要买多少块砖?
5.一个长方体的药水箱里装了60升的药水,已知药水箱里面长5分米,宽3分米,它的深是多少分米?6.有一块棱长是80厘米的正方体的铁块,现在要把它溶铸成一个横截面积是2 0平方厘米的长方体,这个长方体的长是多少厘米?
思考题:
把两块棱长5厘米的正方体的拼成一个长方体,这个长方体的表面积是多少平方厘米?(你能用几种方法解答)。

相关文档
最新文档