圆的单元检测附答案
人教版小学六年级数学第5单元《圆》单元测试卷(附参考答案)

人教版小学六年级数学第5单元《圆》单元测试卷一、填空题。
1.半径决定圆的(),圆心决定圆的()。
2.画一个周长是18.84 cm的圆,圆内最长的线段是()cm,所画出的圆的面积是()cm2。
3.淘气用一个圆规画一个直径是 6 厘米的圆,圆规针尖的位置是圆的(),圆规两脚之间的距离是()厘米,这个圆的周长是()厘米,面积是()平方厘米。
4.自行车的车轮溶动一周,所行的路程就是车轮的()。
5.一个圆的直径扩大到原来的 3 倍,它的周长扩大到原来的()倍,面积就扩大到原来的()倍。
6.有一个钟面,它的分针长3分米,时针长2分米。
从6时到9时,分针的针尖走过的路程是()分米;时针扫过的面积是()平方分米。
7.已知一个挂钟的时针长度是分针的3,转动一小时后,时针扫过的面积是分4针的()。
8.大圆的半径与小圆的直径相等,那么大小两个圆的周长比是(),它们的面积比是()。
9.画一个圆,圆规两脚间的距离是3cm,那么,这个圆的周长是(),面积是()。
10.一个圆的周长是12.56厘米,它的面积是()。
二、选择题。
1.把一个直径是2cm 的圆分割成两个半圆形后,每个半圆形的周长是( )cm。
A.6.28 B.3.14 C.4.14 D.5.142.圆的()是圆中最长的线段。
A.周长B.直径C.半径3.画圆时,圆规两脚间的距离是圆的()。
A.半径B.直径C.周长4.一个圆的直径由原来的 3 厘米增加到 7 厘米,周长增加了()厘米。
A.6.28 B.12.56 C.25.12 D.50.245.将一个圆形纸片沿着它的直径剪成两半,它的面积和周长()。
A.面积不变周长增加B.面积增加周长不变C.面积周长都不变D.面积周长都增加6.在一个长 5 cm ,宽 3 cm 的长方形中画一个最大的半圆,这个半圆的直径是()。
A.1.5 cm B.3 cm C.5 cm D.6 cm7.一个圆的直径与周长的比是()A.1:2πB.1:πC.2:π8.淘气和笑笑分别在本子上画了一个大圆和小圆,两个圆的圆周率()A.淘气的大B.笑笑的大C.一样大D.无法比较9.用圆规画一个周长是6.28cm的圆,这个圆的半径是()cm。
第一单元《圆》单元评估检测试卷 2022—2023北师大版六年级上册(含答案)

第一单元《圆》单元评估检测试卷2022—2023北师大版六年级上册(含答案)一、选择题1. 淘气画圆时,圆规两脚张开3厘米,3厘米就是圆的()。
A.半径 B.直径 C.周长 D.面积2. 圆周率是圆的周长和直径的比值,如果如图中线段AB表示一个圆的周长,那么这个圆的直径可能是()。
A.线段AB B.线段AC C.线段AD D.线段DE3. 一台拖拉机,后轮的直径是前轮的2倍,后轮转8圈,前轮转()圈。
A.4圈 B.8圈 C.12圈 D.16圈4. 下面各图中,正确画出直径的是()。
A. B. C. D.5. 在一个半径是50米的圆形鱼塘边上每隔3.14米栽一棵树,共栽树()棵。
A.100 B.50 C.101 D.51二、填空题6. 一个半圆的直径10分米,这个半圆的周长( )分米,面积是( )。
7. 如图有( )条对称轴,如果圆的半径是2cm,那么每个圆的周长是( )cm,长方形的周长是( )cm。
8. 在一个圆里,有( )条半径,半径的长度是直径的( )。
9. 一辆汽车的车轮直径为0.5米,汽车行驶1570米,车轮转了( )圈。
10. 圆、长方形和正方形都是( )图形,其中( )的对称轴最多,( )的对称轴最少。
11. 看图填空。
12. 在一个圆里,有( )条半径,这些半径的长度都( ),有( )条直径,这些直径的长度都( )。
13. 把一个圆分割成两个相等的半圆后,周长增加8cm,原来这个圆周长是( )cm,面积是( )cm2。
14. 一个时钟的时针长5cm,这个时针的尖端一昼夜走_________cm。
15. 如果圆的直径缩小至原来的14,那么周长缩小至原来的___________,面积缩小至原来的____________。
三、判断题16. 周长相等的两个圆,面积也一定相等._____(判断对错)17. 在一个正方形内画一个最大的圆,圆的直径等于正方形的边长。
( )18. 一个圆的半径增加3cm,这个圆的周长也增加3cm. ( )19. 一个圆的直径扩大为原来的2倍,它的面积就会扩大为原来的4倍. ( )20. 以一点为圆心可以画无数个圆. ( )四、其它计算21. 计算下面圆的周长直径是6cm.五、图形计算22. 求阴影部分的周长。
九年级上学期数学《圆》单元检测题含答案

A.5B. C.5 D.5
[答案]D
[解析]
试题解析:连接OA、OB、OP,
∵∠C=30°,∴∠APB=∠C=30°,∵PB=A B,∴∠PA B=∠APB=30°
A.π+1B.π+2C.2π+2D.4π+1
8.如图,△A B C是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△A BP中,PB=A B,则PA的长为()
A. 5B. C. 5 D. 5
9.如图是某公园的一角,∠AOB=90°,弧A B的半径OA长是6米,C是OA的中点,点D在弧A B上,C D∥OB,则图中休闲区(阴影部分)的面积是()
23.如图,点I是△A B C的内心,AI的延长线和△A B C的外接圆相交于点D,与B C相交于点E.
(1)求证:DI=D B;
(2)若AE=6Cm,ED=4Cm,求线段DI的长.
24.如图,已知扇形AOB的圆心角为直角,正方形OC DE内接于扇形AOB.点C、E、D分别在OA、OB、弧A B上,过点A作AF⊥DE交ED的延长线于F,如果正方形的边长为1,求阴影部分M、N的面积和.
点睛:本题考查了圆周角定理,圆周角的度数等于它所对的弧所对的圆心角度数的一半,圆的弦所对的圆周角分两种,一种是优弧所对的圆周角,一种是劣弧所对的圆周角,它们是互补的关系.
4.⊙O的半径r=5Cm,直线l到圆心O的距离D=4,则l与⊙O的位置关系是( )
A.相离B.相切C.相交D.重合
[答案]C
[解析]
3.正六边形内接于圆,它的边所对的圆周角是( )
人教版九年级上册数学《圆》单元测试(附答案)

【解析】
解:连接OC.∵C是弧AB的中点,∠AOB=100°,∴∠BOC= ∠AOB55°+25°=80°.故答案为80°.
16.已知扇形的圆心角为150°,它所对应的弧长20πcm,则此扇形的半径是cm,面积是cm2.
20.已知,AB是⊙O 直径,BC是⊙O的弦,⊙O的割线PDE垂直于AB于点F,交BC于点G,∠A=∠BCP.
(1)求证:PC是⊙O的切线;
(2)若点C在劣弧AD上运动,其条件不变,问应再具备什么条件可使结论BG2=BF·BO成立,(要求画出示意图并说明理由).
21.如图,已知AB是⊙O的直径,C是⊙O上一点,连接AC,过点C作直线CD⊥AB于点D,E是AB上一点,直线CE与⊙O交于点F,连结AF,与直线CD交于点G.
考点:弧长的计算.
6.如图,⊙O的直径长10,弦AB=8,M是弦AB上的动点,则OM的长的取值范围是()
A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5
【答案】A
【解析】
【详解】解: 的直径为10,半径为5,当 时, 最小,根据勾股定理可得 , 与 重合时, 最大,此时 ,所以线段的 的长的取值范围为 ,
A.弦CD一定是⊙O的直径
B.点O到AC、BC的距离相等
C.∠A与∠ABD互余
D.∠A与∠CBD互补
3. 如图,已知⊙O中∠AOB度数为100°,C是圆周上的一点,则∠ACB的度数为()
A. 130°B. 100°C. 80°D. 50°
4.如果⊙O1与⊙O2的圆心都在x轴上,⊙O1的圆心坐标为(7,0),半径为1,⊙O2的圆心坐标为(m,0),半径为2,则当2<m<4时,两圆的位置关系是().
A.相交B.相切C.相离D.内含
数学九年级上册《圆》单元综合检测含答案

C.圆上任意两点之间的线段长度不大于
D.圆上任意两点之间的部分可以大于
8.已知⊙O和直线l相交,圆心到直线l的距离为10cm,则⊙O的半径可能为().
A.10cmB.6cmC.12cmD.以上都不对
9.已知 的半径为 ,点 不在 内,则点 到圆心 的距离 满足()
详解】解:连接 , ,作 于点 ,
∵ 的半径为 ,则 的内接正八边形的中心角为: ,
∴ ,
∴ ,
∴ 正八边形 ,
故答案为 .
【点睛】本题考查了正多边形和圆的知识,题目中没有作出边心距求面积是解答本题的亮点,难度一般.
15.正多边形的一个中心角为 度,那么这个正多边形的一个内角等于________度.
三、解答题(本题共计 8 小题 ,共计60分 ,)
21.作一个圆,使它经过已知点 和 ,并且圆心在已知直线 上.
(1)当直线 和 相交时,可作几个?
(2)当直线 和 垂直但不经过 的中点时,可作出几个?
(3)你还能提出不同于(1),(2)的问题吗?
22.如图,过圆锥 顶点 和底面圆的圆心 的平面截圆锥得截面 ,其中 , 是圆锥底面圆 的直径,已知 , ,求截面 的面积.
5. 如图,A、B、C是⊙O上的三点,且∠ABC=70°,则∠AOC的度数是( )
A. 35°B. 140°C. 70°D. 70°或140°
6.在⊙O中, 所对的圆心角为60°,半径为5cm,则 的长为()
A. B. C. D.
7.关于半径为 的圆,下列说法正确的是()
A.若有一点到圆心的距离为 ,则该点在圆外
A. 个B. 个C. 个D. 个
3.正六边形半径为 ,则它的边长、边心距、面积分别为()
第三章《圆》单元测试(含答案)

单元测试(三)圆(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.已知⊙O的半径是5,直线l是⊙O的切线,则点O到直线l的距离是(C)A.2.5B.3C.5D.102.如图,在△ABC中,AB=BC=2,以AB为直径的⊙O与BC相切于点B,则AC等于(D)A. 2B. 3C.2 3D.2 23.如图,⊙O是△ABC的外接圆,连接OB,OC,若OB=BC,则∠BAC等于(C)A.60°B.45°C.30°D.20°4.下列说法正确的是(B)A.三点确定一个圆B.经过圆心的直线是圆的对称轴C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等5.如图,C,D是以线段AB为直径的⊙O上的两点,若CA=CD,且∠ACD=40°,则∠CAB =(B)A.10°B.20°C.30°D.40°6.如图,当圆形桥孔中的水面宽度AB为8米时,弧ACB恰为半圆.当水面上涨1米时,桥孔中的水面宽度A′B′为(D)A.15米B.4米C.217米D.215米7.如图,AB是⊙O的直径,P A切⊙O于点A,连接PO并延长交⊙O于点C,连接AC,AB =10,∠P=30°,则AC的长度是(A)A.5 3B.5 2C.5D.5 28.如图,AP为⊙O的切线,P为切点,若∠A=20°,C、D为圆周上的两点,且∠PDC=60°,则∠OBC等于(B)A.55°B.65°C.70°D.75°9.如图,在△ABC中,∠A=60°,BC=6,它的周长为16.若⊙O与BC,AC,AB三边分别切于点E,F,D,则DF的长为(A)A.2B.3C.4D.610.如图,将正六边形ABCDEF放置在平面直角坐标系内,A(-2,0),点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2 018次翻转之后,点C的坐标是(B)A .(4 038,0)B .(4 034,0)C .(4 038,3)D .(4 034,3)二、填空题(每小题3分,共15分)11.如图,在⊙O 中,已知∠AOB =120°,则∠ACB =60°.12.如图,在矩形ABCD 中,AB =3,AD =4,若以点A 为圆心,以4为半径作⊙A ,则点A ,点B ,点C ,点D 四点中在⊙A 外的是点C .13.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E =50°.14.如图,在△ABC 中,CA =CB ,∠ACB =90°,AB =22,点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF ,点C 恰好在弧EF 上,则图中阴影部分的面积为π2-1(结果保留π).15.如图,半圆O 的半径为2,E 是半圆上的一点,将E 点对折到直径AB 上(EE ′⊥AB ),当被折的圆弧与直径AB 至少有一个交点时,则折痕的长度取值范围是三、解答题(本大题共8个小题,满分75分)16.(8分)如图,以正六边形ABCDEF 的边AB 为边,在内部作正方形ABMN ,连接M C.求∠BCM 的大小.解:∵六边形ABCDEF 为正六边形,∴∠ABC =120°,AB =B C. ∵四边形ABMN 为正方形,∴∠ABM =90°,AB =BM . ∴∠MBC =120°-90°=30°,BM =B C. ∴∠BCM =∠BM C.∴∠BCM =12×(180°-30°)=75°.17.(9分)如图,在⊙O 中,AB ︵=AC ︵,∠ACB =60°,求证:∠AOB =∠BOC =∠AO C.证明:∵AB ︵=AC ︵, ∴AB =A C.∴△ABC 是等腰三角形. ∵∠ACB =60°, ∴△ABC 是等边三角形. ∴AB =BC =A C.∴∠AOB =∠BOC =∠AO C.18.(9分)如图,在平面直角坐标系中,已知点A (1,3)、B (3,3)、C (4,2). (1)请在图中作出经过点A 、B 、C 三点的⊙M ,并写出圆心M 的坐标; (2)若D (1,4),则直线BD 与⊙M 的位置关系是相切.解:如图所示,圆心M 的坐标为(2,1).19.(9分)如图,⊙O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交⊙O 于点E ,连接E C.若AB =8,CD =2,求EC 的长.解:∵OD ⊥AB ,AB =8,∴AC =BC =12AB =4.设⊙O 的半径为r ,则OC =r -2.在Rt △AOC 中,OA 2=AC 2+OC 2,即r 2=42+(r -2)2,解得r =5.∴AE =2r =10. 连接BE .∵AE 是⊙O 的直径,∴∠ABE =90°.在Rt △ABE 中,∵AE =10,AB =8,∴BE =AE 2-AB 2=102-82=6. 在Rt △BCE 中,∵BE =6,BC =4, ∴CE =BE 2+BC 2=62+42=213.20.(9分)如图,在△ABC 中,以AB 为直径的⊙O 分别与BC ,AC 相交于点D ,E ,BD =CD ,过点D 作⊙O 的切线DF 交边AC 于点F . (1)求证:DF ⊥AC ;(2)若⊙O 的半径为5,∠CDF =30°,求BD ︵的长.(结果保留π)解:(1)证明:连接O D.∵DF 是⊙O 的切线,D 为切点,∴OD ⊥DF .∴∠ODF =90°. ∵BD =CD ,OB =OA ,∴OD 是△ABC 的中位线. ∴OD ∥A C.∴∠CFD =∠ODF =90°. ∴DF ⊥A C.(2)∵∠CDF =30°,∠ODF =90°, ∴∠ODB =180°-∠CDF -∠ODF =60°. ∵OB =OD ,∴△OBD 是等边三角形. ∴∠BOD =60°.∴l BD ︵=60π×5180=53π.21.(10分)如图,AB 是⊙O 的直径,点P 是AB 下方的半圆上不与点A ,B 重合的一个动点,点C 为AP 中点,延长CO 交⊙O 于点D ,连接AD ,过点D 作⊙O 的切线交PB 的廷长线于点E ,连接CE .(1)求证:△DAC ≌△ECP ; (2)填空:①当∠DAP =45°时,四边形DEPC 为正方形;②在点P 运动过程中,若⊙O 的半径为5,∠DCE =30°,则AD证明:∵DE 为切线, ∴OD ⊥DE .∴∠CDE =90°. ∵点C 为AP 的中点,∴DC ⊥AP .∴∠DCA =∠DCP =90°. ∵AB 是⊙O 直径, ∴∠APB =90°.∴四边形DEPC 为矩形.∴DC =EP .在△DAC 和△ECP 中,⎩⎪⎨⎪⎧AC =CP ,∠ACD =∠CPE ,DC =EP ,∴△DAC ≌△ECP (SAS ).22.(10分)如图,在平面直角坐标系xOy 中,以点O 为圆心的圆分别交x 轴的正半轴于点M ,交y 轴的正半轴于点N .劣弧MN ︵的长为65π,直线y =-43x +4与x 轴,y 轴分别交于点A ,B.(1)求证:直线AB 与⊙O 相切;(2)求图中所示的阴影部分的面积.(结果保留π)解:(1)证明:作OD ⊥AB 于D.∵劣弧MN ︵的长为65π,∴90π·OM 180=6π5.解得OM =125.故⊙O 的半径为125.∵直线y =-43x +4与x 轴,y 轴分别交于点A ,B ,当y =0时,x =3;当x =0时,y =4,∴A (3,0),B (0,4).∴OA =3,OB =4.∴AB =32+42=5. ∵S △AOB =12AB ·OD =12OA ·OB ,∴OD =OA·OB AB =125.∴OD 为⊙O 的半径. ∴直线AB 与⊙O 相切.(2)S 阴影=S △AOB -S 扇形OMN =12×3×4-90π×(125)2360=6-3625π.23.(11分)问题背景:如图1,在四边形ACBD 中,∠ACB =∠ADB =90°,AD =BD ,探究线段AC ,BC ,CD 之间的数量关系.小吴同学探究此问题的思路:将△BCD 绕点D 逆时针旋转90°到△AED 处,点B ,C 分别落在点A ,E 处(如图2),易证点C ,A ,E 在同一条直线上,且△CDE 是等腰三角形,所以CE =2CD ,从而得出结论:AC +BC =2C D. 简单应用:(1)在图1中,若AC =2,BC =22,则CD =3;(2)如图3,AB 是⊙O 的直径,点C ,D 在⊙O 上,AD ︵=BD ︵,若AB =13,BC =12,求CD 的长;(3)如图4,∠ACB =∠ADB =90°,AD =BD ,若AC =m ,BC =n (m <n ),求CD 的长.(用含m ,n 的代数式表示)图1 图2 图3 图4解:(2)连接AC ,BD ,AD ,∵AB 是⊙O 直径, ∴∠ADB =∠ACB =90°. ∴AC =AB 2-BC 2=5. ∵AD ︵=BD ︵, ∴AD =B D.将△BCD 绕点D 顺时针旋转90°到△AED , ∴∠EAD =∠DB C. ∵∠DBC +∠DAC =180°, ∴∠EAD +∠DAC =180°. ∴E ,A ,C 三点共线. ∵BC =AE ,∴CE =AE +AC =BC +AC =17. ∵∠EDA =∠CDB ,∴∠EDA +∠ADC =∠CDB +∠ADC , 即∠EDC =∠ADB =90°.∵CD =ED ,∴△EDC 是等腰直角三角形. ∴CE =2C D. ∴CD =1722.(3)以AB 为直径作⊙O ,连接DO 并延长交⊙O 于点D 1,连接D 1A ,D 1B ,D 1C. 由(2)可知:AC +BC =2D 1C , ∴D 1C =2(m +n )2. 又∵D 1D 是⊙O 的直径, ∴∠DCD 1=90°. ∵AC =m ,BC =n ,∴由勾股定理可求得:AB 2=m 2+n 2. ∴D 1D 2=AB 2=m 2+n 2. ∵D 1C 2+CD 2=D 1D 2,∴CD 2=m 2+n 2-(m +n )22=(m -n )22.∵m<n,∴CD=2(n-m)2.。
九年级上册数学《圆》单元综合测试卷(附答案)

九年级上册数学《圆》单元测试卷(满分120分,考试用时120分钟)1.如图,⊙O是△A B C 外接圆,∠A =40°,则∠OB C =()A .30°B .40°C .50°D .60°2.如图,在△A B C 中,C os B ,sin C =35,A C =5,则△A B C 的面积是()A .212B .12C .14D .213.如图,O与正方形A B C D 的两边A B ,A D 相切,且D E与O相切于点E.若O的半径为5,且11AB ,则D E的长度为()A.5 B .6 C D .11 24.如图,在矩形A B C D 中,A B =8,A D =12,经过A ,D 两点的⊙O 与边B C 相切于点E ,则⊙O 的半径为( )A .4B .214C .5D .2545.如图,O为圆心,AB 是直径,C 是半圆上的点,D 是AC 上的点.若BOC 40∠=,则D ∠的大小为( )A .110 B .120C .130 D .140 6.边长为2的正方形内接于⊙O ,则⊙O 的半径是( ) A .1 BC .2D .7.如图,A B 是⊙O 的弦,A O 的延长线交过点B 的⊙O 的切线于点C ,如果∠C A B =30°,则OC 的长度为( )A .B .2C .D .48.在Rt △A B C 中,∠C =90°,A C =8C m ,A B =10C m ,以C 为圆心,以9C m 长为直径的⊙C 与直线A B 的位置关系为( )A .相交B .相离C .相切D .相离或相交9.如图,C D 为圆O 的直径,弦A B ⊥C D ,垂足为E ,C E=1,半径为25,则弦A B 的长为( )A .24B .14C .10D .710.如图,用不同颜色的马赛克片覆盖一个圆形的台面,估计15圆心角的扇形部分大约需要34片马赛克片.已知每箱装有125片马赛克片,那么应该购买多少箱马赛克片才能铺满整个台面( )A .56~箱B .67~箱C .78~箱D .89~箱11.如图所示,扇形纸扇完全打开后,弧B C 60cm =,弧D E 20cm =.外侧两竹条AB ,AC 都等于30cm ,贴纸的宽度BD ,CE 都等于20cm ,则贴纸的面积是( )A .2400cmB .2800cmC .21200cmD .21600cm12.如图,△A B C 的内切圆⊙O 与A B ,B C ,C A 分别相切于点D ,E ,F ,且A D =2,B C =5,则△A B C 的周长为( )A .16B .14C .12D .1013.如图,在平面直角坐标系中,直线l 的函数表达式为y =x ,点O 1的坐标为(1,0),以O 1为圆心,O 1O 为半径画圆,交直线l 于点P 1,交x 轴正半轴于点O 2,以O 2为圆心,O 2O 为半径画圆,交直线l 于点P 2,交x 轴正半轴于点O 3,以O 3为圆心,O 3O 为半径画圆,交直线l 于点P 3,交x 轴正半轴于点O 4;…按此做法进行下去,其中20172018P O 的长为_____.14.如图,点B ,C ,D 在⊙O 上,若∠B C D =130°,则∠B OD 的度数是________°.15.如图,边长为6的正六边形A B C D EF的中心与坐标原点O重合,A F∥x轴.将正六边形绕原点逆时针旋转n次,每次旋转60°,当n=2019时,顶点A 的坐标为_____.16.如图,A B 是⊙O的切线,B 为切点,A O的延长线交⊙O于C 点,连接B C ,如果∠A =30°,A B =2A C 的长等于______.17.如图,D 、E分别是⊙O两条半径OA 、OB 的中点,AC=CB.(1)求证:C D =C E.(2)若∠A OB =120°,OA =x,四边形OD C E的面积为y,求y与x的函数关系式.18.如图,点C 在以A B 为直径的半圆⊙O上,A C =B C .以B 为圆心,以B C 的长为半径画圆弧交A B 于点D .(1)求∠A B C 的度数;(2)若A B =2,求阴影部分的面积.19.如图,正方形A B C D 内接于⊙O,M为弧A D 中点,连接B M,C M.(1)求证:B M=C M;(2)当⊙O的半径为2时,求∠B OM的度数.20.如图,点O在边长为的正方形A B C D 的对角线A C 上,以O为圆心OA 为半径的⊙O交A B 于点E.(1)⊙O过点E的切线与B C 交于点F,当0<OA <6时,求∠B FE的度数;(2)设⊙O与A B 的延长线交于点M,⊙O过点M的切线交B C 的延长线于点N,当6<OA <12时,利用备用图作出图形,求∠B NM的度数.21.在△A B C 中,90︒∠=C ,以边A B 上一点O 为圆心,OA 为半径的圈与B C 相切于点D ,分别交A B ,A C 于点E ,F(I )如图①,连接A D ,若25CAD ︒∠=,求∠B 的大小;(Ⅱ)如图②,若点F 为AD 的中点,O 的半径为2,求A B 的长.22.如图,已知△A B C 中,以A B 为直径的半⊙O交A C 于D ,交B C 于E,B E=C E,∠C =70°,求∠D OE的度数.23.一个边长为4的等边三角形A B C 的高与⊙O的直径相等,如图放置,⊙O与B C 相切于点C ,⊙O 与A C 相交于点E,(1)求等边三角形的高;(2)求C E的长度;(3)若将等边三角形A B C 绕点C 顺时针旋转,旋转角为α(0°<α<360°),求α为多少时,等边三角形的边所在的直线与圆相切.24.如图,A B 是⊙O的直径,A B =12,弦C D ⊥A B 于点E,∠D A B =30°.(1)求扇形OA C 的面积;(2)求弦C D 的长.25.如图,A B 为半圆O的直径,A C 是⊙O的一条弦,D 为BC的中点,作D E⊥A C ,交A B 的延长线于点F,连接D A .(1)求证:EF为半圆O的切线;(2)若D A =D F=(结果保留根号和π)26.如图,已知半圆O 的直径DE 12cm =,在ABC 中,ACB 90∠=,ABC 30∠=,BC 12cm =,半圆O 以2cm /s 的速度从左向右运动,在运动过程中,点D 、E 始终在直线BC 上.设运动时间为()t s ,当t 0s =时,半圆O 在ABC 的左侧,OC 8cm =.()1当t 为何值时,ABC 的一边所在直线与半圆O 所在的圆相切?() 2当ABC 的一边所在直线与半圆O 所在的圆相切时,如果半圆O 与直线DE 围成的区域与ABC 三边围成的区域有重叠部分,求重叠部分的面积.参考答案1.如图,⊙O 是△A B C 外接圆,∠A =40°,则∠OB C =( )A .30°B .40°C .50°D .60°[答案]C [解析][分析]根据一条弧所对的圆周角等于它所对的圆心角的一半求得∠B OC ,再根据三角形的内角和定理以及等腰三角形的两个底角相等进行计算.[详解]连接OC ,如图,根据圆周角定理,得∠B OC =2∠A =80°∵OB =OC∴∠OB C =∠OC B ==50°. 1802BOC ︒-∠[点评]本题考查了圆周角定理:一条弧所对的圆周角是它所对的圆心角的一半;也考查了等腰三角形的性质以及三角形的内角和定理.2.如图,在△A B C 中,C os B =,sin C =,A C =5,则△A B C 的面积是( )A .B .12C .14D .21[答案]A[解析][分析]根据已知作出三角形的高线A D ,进而得出A D ,B D ,C D ,的长,即可得出三角形的面积.[详解]解:过点A 作A D ⊥B C ,∵△A B C 中,,sinC =,A C =5, ∴C osB ==, ∴∠B =45°,∵sinC ===, 235212352BD AB 35AD AC 5AD∴,∴B D =3,则△A B C 的面积是:×A D ×B C =×3×(3+4)=.故选:A .[点评]此题主要考查了解直角三角形的知识,作出A D ⊥B C ,进而得出相关线段的长度是解决问题的关键.3.如图,与正方形A B C D 的两边A B ,A D 相切,且D E与相切于点E.若的半径为5,且,则D E的长度为()A .5B .6CD .[答案]B[解析][分析]连接OE,OF,OG,根据切线性质证四边形A B C D 为正方形,根据正方形性质和切线长性质可得D E=D F.[详解]连接OE,OF,OG,1212212O O O 11AB=112∵A B ,A D ,D E 都与圆O 相切,∴D E ⊥OE ,OG ⊥A B ,OF ⊥A D ,D F=D E ,∵四边形A B C D 为正方形,∴A B =A D =11,∠A =90°,∴∠A =∠A GO=∠A FO=90°,∵OF=OG=5,∴四边形A FOG 为正方形,则D E=D F=11-5=6,故选:B[点评]考核知识点:切线和切线长定理.作辅助线,利用切线长性质求解是关键.4.如图,在矩形A B C D 中,A B =8,A D =12,经过A ,D 两点的⊙O 与边B C 相切于点E ,则⊙O 的半径为( )A .4B .C .5D . [答案]D [解析][分析]连结EO 并延长交A D 于F ,连接A O ,由切线的性质得OE ⊥B C ,再利用平行线的性质得到214254OF ⊥A D ,则根据垂径定理得到A F=D F= A D =6,由题意可证四边形A B EF 为矩形,则EF=A B =8,设⊙O 的半径为r ,则OA =r ,OF=8-r ,然后在Rt △A OF 中利用勾股定理得到(8-r )2+62=r 2,再解方程求出r 即可.[详解]如图,连结EO 并延长交A D 于F ,连接A O ,∵⊙O 与B C 边相切于点E ,∴OE ⊥B C ,∵四边形A B C D 为矩形,∴B C ∥A D ,∴OF ⊥A D ,∴A F=D F= A D =6,∵∠B =∠D A B =90°,OE ⊥B C ,∴四边形A B EF 为矩形,∴EF=A B =8,设⊙O 的半径为r ,则OA =r ,OF=8-r ,在Rt △A OF 中,∵OF 2+A F 2=OA 2,∴(8-r )2+62=r 2,1212解得r=, 故选D .[点评]本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了垂径定理和矩形的性质.解决本题的关键是构建直角三角形,利用勾股定理建立关于半径的方程.5.如图,为圆心,是直径,是半圆上的点,是上的点.若,则的大小为( )A .B .C .D .[答案]A [解析][分析]连接B D ,由A B 是直径可得∠A D B =90°,根据圆周角定理可知∠B D C =∠B OC ,进而可求出∠D 的度数.[详解]连接B D , ∵是直径,是上的点,254OAB C D AC BOC 40∠=D∠11012013014012AB D AC∴∠A D B =90°,∵∠B D C 与∠B OC 是弦B C 所对的圆周角和圆心角,∠B OC =40°,∴∠B D C =∠B OC =20°, ∴∠A D C =∠A D B +∠B D C =90°+20°=110°.故选A .[点评]本题考查了圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;直径所对的圆周角等于90°. 6.边长为2的正方形内接于⊙O ,则⊙O 的半径是( )A .1BC .2D .[答案]B[解析][分析]连接OB ,C O ,在Rt △B OC 中,根据勾股定理即可求解.[详解]解:连接OB ,OC ,则OC=OB ,∠B OC =90°, 在Rt △B OC 中, ∴⊙O故选:B .12OB ===[点评]此题主要考查了正多边形和圆,本题需仔细分析图形,利用勾股定理即可解决问题.7.如图,A B 是⊙O 的弦,A O 的延长线交过点B 的⊙O 的切线于点C ,如果∠C A B =30°,则OC 的长度为()A .B.2 C . D .4[答案]D [解析][分析]连接OB ,作OH ⊥A B 于H ,根据垂径定理求出A H ,根据余弦的定义求出OA ,根据切线的性质定理得到∠OB C =90°,根据直角三角形的性质计算即可.[详解]解:连接OB ,作OH ⊥A B 于H ,则A H=HB = 在Rt △A OH 中,OA ==2,12AH cos A =∠∠B OC =2∠A =60°,∵B C 是⊙O 的切线,∴∠OB C =90°,∴∠C =30°,∴OC =2OB =4,故选D .[点评]本题考查的是切线的性质、垂径定理、圆周角定理,掌握切线的性质定理:圆的切线垂直于经过切点的半径是解题的关键.8.在Rt △A B C 中,∠C =90°,A C =8C m ,A B =10C m ,以C 为圆心,以9C m 长为直径的⊙C 与直线A B 的位置关系为( )A .相交B .相离C .相切D .相离或相交[答案]B[解析][分析]此题首先应求得圆心到直线的距离D ,据直角三角形的面积公式即可求得;若D <r ,则直线与圆相交;若D =r ,则直线于圆相切;若D >r ,则直线与圆相离.[详解]解:∵A C =8C m ,A B =10C m , ∴,S △A B C =A C ×BC =×6×8=24, ∴A B 上的高为:24×2÷10=4.8,即圆心到直线的距离是4.8,∵r=4.5,1212∴4.8>4.5∴⊙C 与直线A B 相离,故选B .[点评]本题主要考查了直线与圆的位置关系,根据三角形的面积求出斜边上的高的长度是解答此题关键.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.9.如图,C D 为圆O的直径,弦A B ⊥C D ,垂足为E,C E=1,半径为25,则弦A B 的长为()A .24B .14C .10D .7[答案]B[解析][分析]连接OA ,根据垂径定理得到A E=EB ,根据勾股定理求出A E,得到答案.[详解]连接OA ,∵C D 为圆O的直径,弦A B ⊥C D ,∴A E=EB ,由题意得,OE=OC -C E=24,在Rt△A OE中,=7,∴A B =2A E=14,故选B .[点评]本题考查的是垂径定理和勾股定理的应用,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 10.如图,用不同颜色的马赛克片覆盖一个圆形的台面,估计圆心角的扇形部分大约需要片马赛克片.已知每箱装有片马赛克片,那么应该购买多少箱马赛克片才能铺满整个台面( )A .箱B .箱C .箱D .箱[答案]B [解析][分析]利用扇形面积公式即可计算.[详解]360÷15=24,所以覆盖一个圆形的台面需24×34=816片马赛克片,816÷125=6.53.故选B .[点评]本题看似是一个求扇形面积的题,但是不是,只要算出圆形中有几个15度的扇形即可求出此题. 11.如图所示,扇形纸扇完全打开后,弧B C ,弧D E .外侧两竹条,都等于,贴纸的宽度,都等于,则贴纸的面积是( )A .B .C .D .[答案]B 153412556~67~78~89~60cm =20cm =AB AC 30cm BD CE20cm 2400cm 2800cm 21200cm 21600cm[解析][分析]根据扇形的面积公式:S 扇形=lr ,即可求得扇形B A C 的面积和扇形D A E 的面积,根据贴纸的面积是:扇形B A C 的面积﹣扇形D A E 的面积即可求解.[详解]A D =AB ﹣B D =30﹣20=10C m .扇形B A C 的面积是:•A B =×60×30=900C m 2. 扇形D A E 的面积是:•A D =×20×10=100C m 2,∴贴纸的面积是:扇形B A C 的面积﹣扇形D A E 的面积=900﹣100=800C m 2.故选B .[点评]本题考查了扇形的面积的计算,关键是理解贴纸的面积是:扇形B A C 的面积﹣扇形D A E 的面积,把不规则的图形转化成规则图形的面积求解.12.如图,△A B C 的内切圆⊙O 与A B ,B C ,C A 分别相切于点D ,E ,F ,且A D =2,B C =5,则△A B C 的周长为( )A .16B .14C .12D .10[答案]B [解析][分析]根据切线长定理进行求解即可.[详解]∵△A B C 的内切圆⊙O 与A B ,B C ,C A 分别相切于点D ,E ,F ,∴A F =A D =2,B D =B E ,C E =C F ,1212BC 1212DE 12∵B E+C E =B C =5,∴B D +C F =B C =5,∴△A B C 的周长=2+2+5+5=14,故选B .[点评]本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.13.如图,在平面直角坐标系中,直线l 的函数表达式为y =x ,点O 1的坐标为(1,0),以O 1为圆心,O 1O 为半径画圆,交直线l 于点P 1,交x 轴正半轴于点O 2,以O 2为圆心,O 2O 为半径画圆,交直线l 于点P 2,交x 轴正半轴于点O 3,以O 3为圆心,O 3O 为半径画圆,交直线l 于点P 3,交x 轴正半轴于点O 4;…按此做法进行下去,其中的长为_____.[答案]22015π[解析][分析]连接P 1O 1,P 2O 2,P 3O 3,易求得P n O n 垂直于x 轴,可知为圆的周长,再找出圆半径的规律即可解题.[详解]解:连接P 1O 1,P 2O 2,P 3O 3…, 20172018PO 1n n P O 14∵P 1 是⊙O 1上的点,∴P 1O 1=OO 1,∵直线l 解析式为y =x ,∴∠P 1OO 1=45°,∴△P 1OO 1为等腰直角三角形,即P 1O 1⊥x 轴,同理,P n O n 垂直于x 轴,∴ 为圆的周长, ∵以O 1为圆心,O 1O 为半径画圆,交x 轴正半轴于点O 2,以O 2为圆心,O 2O 为半径画圆,交x 轴正半轴于点O 3,以此类推,∴OO 1=1=20,OO 2=2=21,OO 3=4=22,OO 4=8=23,…,∴OO n =,∴,∴,故答案为:22015π.[点评]本题考查了图形类规律探索、一次函数的性质、等腰直角三角形的性质以及弧长的计算,本题中准确找到圆半径的规律是解题的关键.1n n P O 1412n -12112224n n n n P O 201520172018P 2O π=14.如图,点B ,C ,D 在⊙O 上,若∠B C D =130°,则∠B OD 的度数是________°.[答案][解析][分析]首先圆上取一点A ,连接A B ,A D ,根据圆的内接四边形的性质,即可得∠B A D +∠B C D =180°,即可求得∠B A D 的度数,再根据圆周角的性质,即可求得答案.[详解]圆上取一点A ,连接A B ,A D ,∵点A ,B ,C ,D 在⊙O 上,∠B C D =130°,∴∠B A D =50°,∴∠B OD =100°.故答案为100°. [点评]此题考查圆周角定理,圆的内接四边形的性质,解题关键在于掌握其定义.15.如图,边长为6的正六边形A B C D EF 的中心与坐标原点O 重合,A F ∥x 轴.将正六边形绕原点逆时针旋转n 次,每次旋转60°,当n =2019时,顶点A 的坐标为_____.100[答案](3,[解析][分析]将正六边形A B C D EF 绕原点O 逆时针旋转2019次时,点A 所在的位置就是原D 点所在的位置.[详解]2019×60°÷360°=336…3,即与正六边形A B C D EF绕原点O 逆时针旋转3次时点A 的坐标是一样的. 当点A 按逆时针旋转180°时,与原D 点重合.连接OD ,过点D 作D H ⊥x 轴,垂足为H ;由已知ED =6,∠D OE =60°(正六边形的性质),∴△OED 是等边三角形,∴OD =D E =OE =6. ∵D H ⊥OE ,∴∠OD H =30°,OH =HE =3,HD =∵D 在第四象限,∴D (3,﹣,即旋转2019后点A 的坐标是(3,﹣.故答案为:(3,﹣.[点评]本题考查了正多边形和圆、旋转变换的性质,掌握正多边形的性质、旋转变换的性质是解题的关键. 16.如图,A B 是⊙O 的切线,B 为切点,A O 的延长线交⊙O 于C 点,连接B C ,如果∠A =30°,A B =2A C 的长等于______.[答案]6 [解析][分析]连接OB ,首先利用切线的性质可得∠A B O=90°,接下来在△A B O 中,利用正切与余弦的定义即可求出OB 与OA 的长;然后根据圆的半径相等,并结合线段之间的关系进行解答即可.[详解]连接OB ,如图所示.∵A B 是圆O 的切线,∴∠A B O =90°.∵∠A =30°,∴tA n A =,C os A =, ∴OB =2,OA =4,3OB AB =2AB OA =∴A C =4+2=6.故答案为6.[点评]本题是一道关于直线与圆的位置关系的题目,解答本题的关键是熟练掌握切线的性质与锐角三角函数的定义.17.如图,D 、E 分别是⊙O 两条半径OA 、OB 的中点, .(1)求证:C D =C E .(2)若∠A OB =120°,OA =x ,四边形OD C E 的面积为y ,求y 与x 的函数关系式.[答案](1)证明见解析;(2)y=x 2. [解析][分析](1)连接OC ,根据圆心角、弧、弦的关系定理得到∠C OA =∠C OB ,证明△C OD ≌△C OE ,根据全等三角形的性质证明;(2)连接A C ,根据全等三角形的判定定理得到△A OC 为等边三角形,根据正切的定义求出C D ,根据三角形的面积公式计算即可.[详解](1)证明:连接OC ,AC=CB4∵,∴∠C OA =∠C OB ,∵D 、E 分别是⊙O 两条半径OA 、OB 的中点,∴OD =OE ,在△C OD 和△C OE 中,,∴△C OD ≌△C OE (SA S )∴C D =C E ;(2)连接A C ,∵∠A OB =120°,∴∠A OC =60°,又OA =OC ,∴△A OC 为等边三角形,∵点D 是OA 的中点,∴C D ⊥OA ,OD =OA =x , 在Rt △C OD 中,C D =OD •t A n ∠C OD =, ∴四边形OD C E 的面积为y=×OD ×C D ×2. [点评]本题考查的是圆心角、弧、弦的关系定理,全等三角形的判定和性质,等边三角形的性质,掌握圆心角、弧、弦的关系定理,全等三角形的判定定理和性质定理是同角的关键.AC=CB OD OE COD COE OC OC ⎧⎪∠∠⎨⎪⎩===121221218.如图,点C 在以A B 为直径的半圆⊙O 上,A C =B C .以B 为圆心,以B C 的长为半径画圆弧交A B 于点D .(1)求∠A B C 的度数;(2)若A B =2,求阴影部分的面积.[答案](1)45°;(2).[解析][分析](1)根据圆周角定理得到∠A C B =90°,根据等腰三角形的性质即可得到结论;(2)根据阴影部分的面积=S △A B C -S 扇形D B C 即可得到结论.[详解](1)∵A B 为半圆⊙O 的直径,∴∠A C B =90°.∵A C =B C ,∴∠A B C =45°;(2)∵A C =B C ,∴∠A B C =45°,∴△A B C 是等腰直角三角形.∵A B =2,∴B C = A B,∴阴影部分的面积=S △A B C -S 扇形D B C =.[点评]本题考查了不规则图形面积的计算,圆周角定理,等腰直角三角形的性质,熟练掌握扇形的面积公式是解题的关键.19.如图,正方形A B C D 内接于⊙O ,M 为弧A D 中点,连接B M ,C M .(1)求证:B M =C M ;(2)当⊙O 的半径为2时,求∠B OM 的度数. 14π-221452360π⨯⨯14π=-[答案](1)答案见解析;(2)135°.[解析][分析](1)根据正方形的性质得到A B =C D ,根据圆心角、弧、弦的关系得到,得到,即可得到结论;(2)连接OA 、OB 、OM ,根据正方形的性质求出∠A OB 和∠A OM ,计算即可.[详解](1)∵四边形A B C D 是正方形,∴A B =C D ,∴.∵M 为的中点,∴,∴,∴B M =C M ;(2)连接OA 、OB 、OM .∵四边形A B C D 是正方形,∴∠A OB =90°.∵M 为弧A D 的中点,∴∠A OM =45°,∴∠B OM =∠A OB +∠A OM =135°.[点评]本题考查了正多边形的性质、圆心角、弧、弦的关系定理,掌握正方形的性质、圆心角、弧、弦的关系定理是解题的关键.20.如图,点O 在边长为的正方形A B C D 的对角线A C 上,以O 为圆心OA 为半径的⊙O 交A B 于AB CD =BM CM =AB CD =AD AM DM =BM CM =点E.(1)⊙O过点E的切线与B C 交于点F,当0<OA <6时,求∠B FE的度数;(2)设⊙O与A B 的延长线交于点M,⊙O过点M的切线交B C 的延长线于点N,当6<OA <12时,利用备用图作出图形,求∠B NM的度数.[答案](1)∠B FE=45°;(2)∠B NM=45°.[解析][分析](1)连结OE,根据圆的半径都相等可得OA =OE,再根据等边对等角可得∠EA O=∠A EO,接下来再根据正方形以及切线性质即可得到∠B EF=45°,至此,再根据三角形内角和是180°即可得到∠B FE 的度数了;(2)根据题意画出图形,连结OM,根据等边对等角的性质和正方形的性质可得∠OA M=∠A MO=45°,至此,再根据切线的性质以及三角形内角和定理进行求解即可;[详解](1)连接OE,如解图,∵四边形A B C D 为正方形,∴∠2=45°,∵OE=OA ,∴∠1=∠2=45°,∵EF为⊙O的切线,∴OE⊥EF,∴∠OEF=90°,∴∠B EF=45°,∵∠B =90°,∴∠B FE=45°;(2)连接OM,如解图,∵OM=OA ,∴∠OMA =∠OA M=45°,∵MN 为⊙O 的切线,∴OM ⊥MN,∴∠OMN=90°,∴∠B MN=45°,∵∠MB N=90°,∴∠B NM=45°.[点评]本题主要考查了切线的性质,等腰直角三角形的性质,正方形的性质.切线的性质:①过切点及圆心的线段垂直于该切线;②圆心到切点的距离等于圆的半径.21.在△A B C 中,,以边A B 上一点O 为圆心,OA 为半径的圈与B C 相切于点D ,分别交A B ,A C 于点E ,F(I )如图①,连接A D ,若,求∠B 的大小;(Ⅱ)如图②,若点F 为的中点,的半径为2,求A B 的长.90︒∠=C 25CAD ︒∠=ADO[答案](1)∠B =40°;(2)A B = 6.[解析][分析](1)连接OD ,由在△A B C 中, ∠C =90°,B C 是切线,易得A C ∥OD ,即可求得∠C A D =∠A D O ,继而求得答案;(2)首先连接OF,OD ,由A C ∥OD 得∠OF A =∠FOD ,由点F为弧A D 的中点,易得△A OF是等边三角形,继而求得答案.[详解]解:(1)如解图①,连接OD ,∵B C 切⊙O于点D ,∴∠OD B =90°,∵∠C =90°,∴A C ∥OD ,∴∠C A D =∠A D O,∵OA =OD ,∴∠D A O=∠A D O=∠C A D =25°,∴∠D OB =∠C A O=∠C A D +∠D A O=50°,∵∠OD B =90°,∴∠B =90°-∠D OB =90°-50°=40°;(2)如解图②,连接OF,OD ,∵A C ∥OD ,∴∠OFA =∠FOD ,∵点F为弧A D 的中点,∴∠A OF=∠FOD ,∴∠OFA =∠A OF,∴A F=OA ,∵OA =OF,∴△A OF为等边三角形,∴∠FA O=60°,则∠D OB =60°,∴∠B =30°,∵在Rt△OD B 中,OD =2,∴OB =4,∴A B =A O+OB =2+4=6.[点评]本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30°角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明△A OF为等边三角形是解(2)的关键.22.如图,已知△A B C 中,以A B 为直径的半⊙O交A C 于D ,交B C 于E,B E=C E,∠C =70°,求∠D OE的度数.[答案]∠D OE =40°.[解析][分析]连接A E,判断出A B =A C ,根据∠B =∠C =70°求出∠B A C =40°,再根据同弧所对的圆周角等于圆心角的一半,求出∠D OE的度数.[详解]连接A E,∵A B 是⊙O的直径,∴∠A EB =90°,∴A E⊥B C ,∵B E=C E,∴A B =A C ,∴∠B =∠C =70°,∠B A C =2∠C A E,∴∠B A C =40°,∴∠D OE=2∠C A E=∠B A C =40°.[点评]本题考查了等腰三角形的性质和圆周角定理,熟练掌握圆周角定理是解题的关键.同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半.23.一个边长为4的等边三角形A B C 的高与⊙O的直径相等,如图放置,⊙O与B C 相切于点C ,⊙O 与A C 相交于点E,(1)求等边三角形的高;(2)求C E 的长度;(3)若将等边三角形A B C 绕点C 顺时针旋转,旋转角为α(0°<α<360°),求α为多少时,等边三角形的边所在的直线与圆相切.[答案](1)(2)3;(3)α=60°或120°或180°或300°. [解析][分析](1)作A M⊥MC 于M,在直角三角形A C M中,利用勾股定理即可解题,(2)连接EF,在直角三角形C EF 中, 利用勾股定理即可解题,(3)画出图形即可解题.[详解]解:(1)如图,作A M ⊥MC 于M .∵△A B C 是等边三角形,∴∠MA C =∠MA B =30°,∴C M = A C =2, ∴A M =(2)∵C F 是⊙O 直径,∴C F =C M =EF ,则∠C EF =90°,∵∠EC F =90°﹣∠A C B =30°,12∴EF = C F∴C E=3.(3)由图象可知,α=60°或120°或180°或300°时,等边三角形的边所在的直线与圆相切.[点评]本题考查了直线和圆的位置关系,属于简单题,作辅助线和利用勾股定理求边长是解题关键. 24.如图,A B 是⊙O 的直径,A B =12,弦C D ⊥A B 于点E ,∠D A B =30°.(1)求扇形OA C 的面积;(2)求弦C D 的长.[答案](1)12π;(2)[解析][分析](1)根据垂径定理得到,根据圆周角定理求出∠C A B ,根据三角形内角和定理求出∠A OC ,根据扇形面积公式计算;(2)根据正弦的定义求出C E ,根据垂径定理计算即可.[详解](1)∵弦C D ⊥A B ,∴,12∴∠C A B =∠D A B =30°,∵OA =OC ,∴∠OC A =∠OA C =30°,∴∠A OC =120°,∴扇形OA C 的面积==12π;(2)由圆周角定理得,∠C OE =2∠C A B =60°,∴C E =OC ×sin ∠C OE =3,∵弦C D ⊥A B ,∴C D =2C E =6.[点评]本题考查了扇形面积计算,圆周角定理,垂径定理的应用,掌握扇形面积公式是解题的关键. 25.如图,A B 为半圆O 的直径,A C 是⊙O 的一条弦,D 为的中点,作D E ⊥A C ,交A B 的延长线于点F ,连接D A .(1)求证:EF 为半圆O 的切线;(2)若D A =D F =,求阴影区域的面积.(结果保留根号和π)[答案](1)证明见解析 (2)﹣6π [解析][分析](1)直接利用切线的判定方法结合圆心角定理分析得出OD ⊥EF ,即可得出答案; BC 2(2)直接利用得出S△A C D =S△C OD ,再利用S阴影=S△A ED ﹣S扇形C OD ,求出答案.[详解](1)证明:连接OD ,∵D 为弧B C 的中点,∴∠C A D =∠B A D ,∵OA =OD ,∴∠B A D =∠A D O,∴∠C A D =∠A D O,∵D E⊥A C ,∴∠E=90°,∴∠C A D +∠ED A =90°,即∠A D O+∠ED A =90°,∴OD ⊥EF,∴EF为半圆O的切线;(2)解:连接OC 与C D ,∵D A =D F,∴∠B A D =∠F,∴∠B A D =∠F=∠C A D ,又∵∠B A D +∠C A D +∠F=90°,∴∠F=30°,∠B A C =60°,∵OC =OA ,∴△A OC 为等边三角形,∴∠A OC =60°,∠C OB =120°,∵OD ⊥EF ,∠F =30°,∴∠D OF =60°,在Rt △OD F 中,D F =∴OD=D F •t A n30°=6,在Rt △A ED 中,D A =,∠C A D =30°,∴D E =D A •sin30°=EA =D A •C os30°=9,∵∠C OD=180°﹣∠A OC ﹣∠D OF =60°,由C O =D O ,∴△C OD 是等边三角形,∴∠OC D =60°,∴∠D C O =∠A OC =60°,∴C D ∥A B ,故S △A C D =S △C OD ,∴S 阴影=S △A ED ﹣S 扇形C OD ==.[点评]此题主要考查了切线的判定,圆周角定理,等边三角形的判定与性质,解直角三角形及扇形面积求法等知识,得出S △A C D =S △C OD 是解题关键.2160962360π⨯⨯⨯62π-26.如图,已知半圆的直径,在中,,,,半圆以的速度从左向右运动,在运动过程中,点、始终在直线上.设运动时间为,当时,半圆在的左侧,. 当为何值时,的一边所在直线与半圆所在的圆相切?当的一边所在直线与半圆所在的圆相切时,如果半圆与直线围成的区域与三边围成的区域有重叠部分,求重叠部分的面积.[答案](1)1s 或4s 或7s 或16s ;(2)或.[解析][分析](1)随着半圆的运动分四种情况:①当点E 与点C 重合时,A C 与半圆相切,②当点O 运动到点C 时,A B 与半圆相切,③当点O 运动到B C 的中点时,A C 再次与半圆相切,④当点O 运动到B 点的右侧时,A B 的延长线与半圆所在的圆相切.分别求得半圆的圆心移动的距离后,再求得运动的时间.(2)在1中的②,③中半圆与三角形有重合部分.在②图中重叠部分是圆心角为90°,半径为6C m 的扇形,故可根据扇形的面积公式求解.在③图中,所求重叠部分面积为=S △POB +S 扇形D OP .[详解]解:(1)①如图,当点E 与点C 重合时,A C ⊥OE ,OC =OE =6C m ,所以A C 与半圆O 所在的圆相切,此时点O 运动了2C m ,所求运动时间为:t ==1(s ); ②如图,当点O 运动到点C 时,过点O 作OF ⊥A B ,垂足为F .在Rt △FOB 中,∠FB O =30°,OB =12C m ,则OF =6C m ,即OF 等于半圆O 的半径,所以A B 与半圆O 所在的圆相切.此时点O 运动了8C m ,所求运动时间为:t ==4(s ); ③如图,当点O 运动到B C 的中点时,A C ⊥OD ,OC =OD =6C m ,所以A C 与半圆O 所在的圆相切.此时点O 运动了14C m ,所求运动时间为:t ==7(s ); O DE 12cm =ABC ACB 90∠=ABC 30∠=BC 12cm =O 2cm /s D E BC ()t s t 0s =O ABC OC 8cm =()1t ABC O () 2ABC O O DEABC 29πcm ()26πcm ()2282142④如图,当点O运动到B 点的右侧,且OB =12C m时,过点O作OQ⊥A B ,垂足为Q.在Rt△QOB 中,∠OB Q=30°,则OQ=6C m,即OQ等于半圆O所在的圆的半径,所以直线A B 与半圆O所在的圆相切.此时点O运动了32C m,所求运动时间为:t==16(s).综上所述:t=1s或4s或7s或16s.(2)当△A B C 的一边所在的直线与半圆O所在的圆相切时,半圆O与直径D E围成的区域与△A B C 三边围成的区域有重叠部分的只有如图②与③所示的两种情形.①如图②,设OA 与半圆O的交点为M,易知重叠部分是圆心角为90°,半径为6C m的扇形,所求重叠部分面积为:S扇形EOM=π×62=9π(C m2);②如图③,设A B 与半圆O的交点为P,连接OP,过点O作OH⊥A B ,垂足为H.则PH=B H.在Rt△OB H中,∠OB H=30°,OB =6C m,则OH=3C m,B H,B P,S△POB=××C m2),又因为∠D OP=2∠D B P=60°,所以S扇形D OP==6π(C m2),所求重叠部分面积为:S△POB+S扇形D OP(C m2).综上所述:重叠面积为或.[点评]本题利用了直线与圆相切的概念,扇形的面积公式,直角三角形的面积公式,锐角三角函数的概念求解.32214122606360π⨯29πcm()26πcm()。
人教版数学九年级上册《圆》单元综合检测(附答案)

人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分)1.在同圆或等圆中,如果弧AB的长度=弧CD的长度,则下列说法正确的个数是()弧AB的度数等于弧CD的度数;所对的圆心角等于弧CD所对的圆心角;弧AB和弧CD是等弧;弧AB所对的弦的弦心距等于弧CD所对的弦的弦心距.A. 1个B. 2个C. 3个D. 4个2.、是直线上的两个不同的点,且,的半径为,下列叙述正确的是()A. 点在外B. 点在外C. 直线与一定相切D. 若,则直线与相交3. 如图,已知⊙O的半径为5,点O到弦AB的距离为2,则⊙O上到弦AB所在直线的距离为3的点有()A. 1个B. 2个C. 3个D. 4个4.如图,在中,已知,是圆周上的一点,则为()A. B. C. D.5.如图,正六边形内接于圆,圆的半径为,则这个正六边形的边心距和的长分别为()A. 、B. 、C. 、D. 、6.高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以为圆心的圆的一部分,路面米,净高米,则此圆的半径A. 米B. 米C. 米D. 米7.已知和三点、、,的半径为,,,,经过这三点中的一点任意作直线总是与相交,这个点是()A. B. C. D. 或8.如图,,是的直径,的半径为,,以为圆心,以为半径作,则与围成的新月形的面积为()平方单位.A. B. C. D.9.如图,已知:是的直径,、是上的三等分点,,则是()A. B. C. D.10.如图,点,,在上,点在圆外,则下列结论正确的是()A. ∠C>∠DB. ∠C<∠DC. ∠C=∠DD. ∠C=2∠D二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分)11.在,,,,点是的外心,现在以为圆心,分别以、、为半径作,则点与的位置关系分别是________.12.如下图,在以为圆心的两个同心圆中,大圆的弦交小圆于和两点,,,则长为________.13.已知:如图,为半的直径,、、为半圆弧上的点,,,则的度数为________度.14.如图,边长为的正方形的顶点、在一个半径为的圆上,顶点、在圆内,将正方形沿圆的内壁逆时针方向作无滑动的滚动.当点第一次落在圆上时,点运动的路径长为________.15.已知中,,,,直线过点且与平行,若以为轴将旋转一周,则所得的几何体的表面积为________.(不求近似值)16.如图,已知是的直径,为弦,度.过圆心作交于点,连接,则________度.17.如图,的边位于直线上,,,,若由现在的位置向右无滑动地旋转,当第次落在直线上时,点所经过的路线的长为________(结果用含有的式子表示)18.如图,圆柱底面半径为,高为,点、分别是圆柱两底面圆周上的点,且、在同一母线上,用一棉线从顺着圆柱侧面绕圈到,求棉线最短为________.19.以矩形的顶点为圆心作,要使、、三点中至少有一点在内,且至少有一点在外,如果,,则的半径的取值范围为________.20.如图,在中,是弦,,,那么圆心到的距离是________,弦的长是________.三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分)21.一圆柱形排水管的截面如图所示,已知排水管的半径为,水面宽为.由于天气干燥,水管水面下降,此时排水管水面宽变为,求水面下降的高度.22.如图,在中,弦、于点,且.求证:.23.如图,在中,,,求分别以、、为圆心,以为半径画弧,三条弧与边所围成的阴影部分的面积.24.已知:如图,的外接圆,弦的长为,,求圆心到的距离.25.如图,已知为的直径,是弦,于,于,.求证:;求证:;若,,设,求值及阴影部分的面积.26.如图,内接于,,,.求的度数;将沿折叠为,将沿折叠为,延长和相交于点;求证:四边形是正方形;若,,求的长.参考答案一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分)1.在同圆或等圆中,如果弧AB的长度=弧CD的长度,则下列说法正确的个数是()弧AB的度数等于弧CD的度数;所对的圆心角等于弧CD所对的圆心角;弧AB和弧CD是等弧;弧AB所对的弦的弦心距等于弧CD所对的弦的弦心距.A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】由在同圆或等圆中,的长度=的长度,根据弧长公式得到它们所对的圆心角相等,再根据在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等,即可对选项进行判断.【详解】∵在同圆或等圆中,的长度=的长度,∴弧AB和弧CD所对的圆心角相等,∴的度数等于的度数;∴和是等弧;∴所对的弦的弦心距等于所对的弦的弦心距.故选D.【点睛】本题考查了在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等.在圆中经常利用此结论把圆心角、弧、弦之间进行转化.2.、是直线上的两个不同的点,且,的半径为,下列叙述正确的是()A. 点在外B. 点在外C. 直线与一定相切D. 若,则直线与相交【答案】D【解析】【分析】由P、Q是直线l上的两个不同的点,且OP=5,⊙O的半径为5,可得点P在⊙O上,直线l与⊙O相切或相交;若OQ=5,则直线l与⊙O相交.【详解】∵OP=5,⊙O的半径为5,∴点P在⊙O上,故A错误;∵P是直线l上的点,∴直线l与⊙O相切或相交;∴若相切,则OQ>5,且点Q在⊙O外;若相交,则点Q可能在⊙O上,⊙O外,⊙O内;故B、C错误.∴若OQ=5,则直线l与⊙O相交;故D正确.故选D.【点睛】此题考查了直线与圆的位置关系,注意掌握分类讨论思想的应用是解题关键.3. 如图,已知⊙O的半径为5,点O到弦AB的距离为2,则⊙O上到弦AB所在直线的距离为3的点有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】考点:垂径定理;勾股定理.分析:根据垂径定理计算.解答:解:如图OD=OA=OB=5,OE⊥AB,OE=3,∴DE=OD-OE=5-3=2cm,∴点D是圆上到AB距离为2cm的点,∵OE=3cm>2cm,∴在OD上截取OH=1cm,过点H作GF∥AB,交圆于点G,F两点,则有HE⊥AB,HE=OE-OH=2cm,即GF到AB的距离为2cm,∴点G,F也是圆上到AB距离为2cm的点.故选C.点评:本题利用了垂径定理求解,注意圆上的点到AB距离为2cm的点不唯一,有三个.4.如图,在中,已知,是圆周上的一点,则为()A. B. C. D.【答案】B【解析】【分析】首先根据题画出图形,然后在优弧上取点D,连接AD,BD,根据圆周角的性质,即可求得∠ADB的度数,又由圆的内接四边形的性质,即可求得∠ACB的度数.【详解】如图:在优弧上取点D,连接AD,BD,∵∠AOB=100°,∴∠ADB=∠AOB=55°,∵四边形ADBC是⊙O的内接四边形,∴∠ADB+∠ACB=180°,∴∠ACB=125°.故选B.【点睛】此题考查了圆周角定理与圆的内接四边形的性质,根据题意作出图形,掌握数形结合思想的应用及圆周角定理是解题关键.5.如图,正六边形内接于圆,圆的半径为,则这个正六边形的边心距和的长分别为()A. 、B. 、C. 、D. 、【答案】D【解析】试题解析:连接OC,OD,∵正六边形ABCDEF是圆的内接多边形,∴∠COD=60°,∵OC=OD,OM⊥CD,∴∠COM=30°,∵OC=6,∴OM=6cos30°=3,∴=2π故选D.考点:1.正多边形和圆;2.弧长的计算.6.高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以为圆心的圆的一部分,路面米,净高米,则此圆的半径A. 米B. 米C. 米D. 米【答案】B【解析】【分析】根据垂径定理可知AD的长,设半径为r,利用勾股定理列方程求出r的值即可.【详解】∵CD⊥AB,∴由垂径定理得AD=6米,设圆的半径为r,则OD2+AD2=OA2,即(9-r)2+62=r2,解得r=米.故选B.【点睛】考查了垂径定理、勾股定理.根据题意构造一个由半径、半弦、弦心距组成的直角三角形进行计算是解题关键.7.已知和三点、、,的半径为,,,,经过这三点中的一点任意作直线总是与相交,这个点是()A. B. C. D. 或【答案】A【解析】【分析】根据⊙O的半径为3,OP=2,OQ=3,OR=4,可以知道点P在圆内,点Q在圆上,点R在圆外,因而这三点中P的一点任意作直线总是与⊙O相交.【详解】∵的半径为,,,,∴Q点在圆上;R点在圆外;P点在圆内,∴经过P点任意作直线总是与⊙O相交.故选A.【点睛】本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d,则当d=R时,点在圆上;当d>R 时,点在圆外;当d<R时,点在圆内.准确判断P、Q、R三点与⊙O的位置关系是解决本题的关键.8.如图,,是的直径,的半径为,,以为圆心,以为半径作,则与围成的新月形的面积为()平方单位.A. B. C. D.【答案】B【解析】【分析】新月形ACED的面积是圆O半圆的面积-弓形CED的面积,弓形CED的面积又=扇形BCD面积-三角形BCD 的面积,然后依面积公式计算即可.【详解】∵OC=OB=R,,∴BC=R,)∴新月形ACED的面积=S半圆-(S扇形BCD-S△BCD=-(-)=R2.故选B.【点睛】本题的关键是看出:新月形ACED的面积是圆O半圆的面积-弓形CED的面积,然后逐一求面积即可.9.如图,已知:是的直径,、是上的三等分点,,则是()A. B. C. D.【答案】C【解析】【分析】先求出∠BOE=120°,再运用“等弧对等角”即可解.【详解】∵∠AOE=60°,∴∠BOE=180°-∠AOE=120°,∴的度数是120°,∵C、D是上的三等分点,∴弧CD与弧ED的度数都是40度,∴∠COE=80°,故选:C.【点睛】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.熟练掌握圆周角定理是解题关键.10.如图,点,,在上,点在圆外,则下列结论正确的是()A. ∠C>∠DB. ∠C<∠DC. ∠C=∠DD. ∠C=2∠D【答案】A【解析】【分析】根据三角形外角的性质得到∠BEC>∠BDC,根据圆周角定理得到∠BAC=∠BEC,得到答案【详解】如图:连接AE,∵∠BEA是△ADE的外角,∴∠BEA>∠D,∵∠C=∠BEA,∴∠C>∠D,故A选项正确,则B、C、错误,∵不确定D点的位置,∴∠C不一定等于2∠D,故D选项错误,故选A.【点睛】本题考查的是圆周角定理和三角形的外角的性质的应用,掌握同弧所对的圆周角相等和三角形的一个外角大于与它不相邻的任何一个内角是解题的关键.二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分)11.在,,,,点是的外心,现在以为圆心,分别以、、为半径作,则点与的位置关系分别是________.【答案】圆外,圆上,圆内【解析】【分析】由点是的外心,可知O为△ABC的外接圆的圆心,因为∠C=90°,由圆周角定理可知AB为外接圆的直径,根据勾股定理可求出AB的长,根据直角三角形斜边中线等于斜边一半可知OC的长度,根据半径的长判断点C的位置即可.【详解】∵,点是的外心,∴AB为⊙O的直径,且O为AB中点,∵,,∴AB==5,∴OC=2.5,∵2.5>2;2.5=2.5; 2.5<3,∴以、、为半径作,则点与的位置关系分别是圆外、圆上、圆内.故答案为:圆外、圆上、圆内【点睛】本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d,则当d=R时,点在圆上;当d>R 时,点在圆外;当d<R时,点在圆内.根据圆周角定理确定O点的位置是解题关键.12.如下图,在以为圆心的两个同心圆中,大圆的弦交小圆于和两点,,,则长为________.【答案】【解析】【分析】如图:作OE⊥AB于E,根据垂径定理可知CE=CD,AE=AB,根据AC=AE-CE求出AC的长即可.【详解】如图:作OE⊥AB于E,∴根据垂径定理得:CE=CD=3,AE=AB=5,∴AC=AE-CE=2.故答案为:2【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧,熟练掌握垂径定理是解题关键.13.已知:如图,为半的直径,、、为半圆弧上的点,,,则的度数为________度.【答案】【解析】【分析】根据同圆中,等弧所对的圆心角相等可知∠BOC的度数,即可求出∠AOC的度数.【详解】∵,∠BOE=55°,∴∠COD=∠DOE=∠BOE=55°,∴∠BOC=165°,∴∠AOC=180°-165°=15°,故答案为:15【点睛】本题考查圆周角定理,在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等.在圆中经常利用此结论把圆心角、弧、弦之间进行转化.14.如图,边长为的正方形的顶点、在一个半径为的圆上,顶点、在圆内,将正方形沿圆的内壁逆时针方向作无滑动的滚动.当点第一次落在圆上时,点运动的路径长为________.【答案】【解析】【分析】设圆心为O,连接AO,BO,AC,AE,易证三角形AOB是等边三角形,确定∠GFE=∠EAC=30°,再利用弧长公式计算即可.【详解】如图所示:设圆心为O,连接AO,BO,AC,AE,∵AB=,AO=BO=,∴AB=AO=BO,∴△AOB是等边三角形,∴∠AOB=∠OAB=60°同理:△FAO是等边三角形,∠FAB=2∠OAB=120°,∠DAF=120°-90°=30°,即旋转角为30°,∴∠EAC=30°,∠GFE=∠FAD=120°-90°=30°,∵AD=AB=,∴AC=2,∴当点C第一次落在圆上时,点C运动的路径长为=()π;故答案为:()π【点睛】本题考查了正方形的性质、旋转的性质、等边三角形的判定和性质、勾股定理的运用以及弧长公式的运用,题目的综合性较强,解题的关键是正确的求出旋转角的度数.15.已知中,,,,直线过点且与平行,若以为轴将旋转一周,则所得的几何体的表面积为________.(不求近似值)【答案】【解析】【分析】根据,,,可求出△ABC的其余边长,表面积为一个圆锥的侧面积+一个圆的底面积+圆柱的侧面积,按照公式计算即可.【详解】∵Rt△ABC中,∠C=90°,∠A=30°,AB=10,∴BC=5,AC=5,∴所得几何体的表面积为:π×5×10+π×52+2π×5×5=75π+50.故答案为75π+50.【点睛】考查圆锥的计算;画出相关图形,判断出表面积的组成是解决本题的关键.16.如图,已知是的直径,为弦,度.过圆心作交于点,连接,则________度.【答案】【解析】【分析】先根据直角三角形两锐角互余求出∠BOD,再根据圆周角定理∠DCB=∠BOD即可得答案.【详解】∵OD⊥BC交弧BC于点D,∠ABC=30°,∴∠BOD=90°-∠ABC=90°-30°=60°,∴∠DCB=∠BOD=30°.故答案为:30【点睛】本题主要考查圆周角定理,在同圆或等圆中同弧所对的圆周角的度数是圆心角的一半,熟练掌握圆周角定理是解题关键.17.如图,的边位于直线上,,,,若由现在的位置向右无滑动地旋转,当第次落在直线上时,点所经过的路线的长为________(结果用含有的式子表示)【答案】【解析】【分析】根据含30度的直角三角形三边的关系得到BC=1,AB=2BC=2,∠ABC=60°;点A先以B点为旋转中心,顺时针旋转120°到A1,再以点C1为旋转中心,顺时针旋转90°到A2,然后根据弧长公式计算两段弧长,从而得到点A第3次落在直线上时,点A所经过的路线的长.【详解】∵Rt△ABC中,AC=,∠ACB=90°,∠A=30°,∴BC=1,AB=2BC=2,∠ABC=60°;∵Rt△ABC由现在的位置向右无滑动的翻转,且点A第3次落在直线l上时,有3个的长,2个的长, ∴点A经过的路线长=×3+×2=(4+)π.故答案为:(4+)π.【点睛】本题考查了旋转的性质与弧长的计算,解题的关键是熟练的掌握旋转的性质与弧长的计算方法. 18.如图,圆柱底面半径为,高为,点、分别是圆柱两底面圆周上的点,且、在同一母线上,用一棉线从顺着圆柱侧面绕圈到,求棉线最短为________.【答案】【解析】【分析】将圆柱体展开,然后利用两点之间线段最短解答即可.【详解】圆柱体的展开图如图所示:用一棉线从A顺着圆柱侧面绕3圈到B的运动最短路线是:AC→CD→DB;即在圆柱体的展开图长方形中,将长方形平均分成3个小长方形,A沿着3个长方形的对角线运动到B的路线最短;∵圆柱底面半径为2cm,∴长方形的宽即是圆柱体的底面周长:2π×2=4πcm;又∵圆柱高为9πcm,∴小长方形的一条边长是3πcm;根据勾股定理求得AC=CD=DB=5πcm;∴AC+CD+DB=15πcm;故答案为:15π.【点睛】本题主要考查了圆柱的计算、平面展开--路径最短问题.圆柱的侧面展开图是一个长方形,此长方形的宽等于圆柱底面周长,长方形的长等于圆柱的高.本题就是把圆柱的侧面展开成长方形,“化曲面为平面”,用勾股定理解决.19.以矩形的顶点为圆心作,要使、、三点中至少有一点在内,且至少有一点在外,如果,,则的半径的取值范围为________.【答案】【解析】【分析】先求出矩形对角线的长,然后由B、C、D与⊙A的位置,确定⊙A的半径的取值范围.【详解】根据题意画出图形如下所示:∵AB=CD=5,AD=BC=12,∴AC=BD==13.∵B、C、D中至少有一个点在⊙A内,且至少有一个点在⊙A外,∴点B在⊙A内,点C在⊙A外.∴5<r<13.故答案是:5<r<13.【点睛】本题考查的是点与圆的位置关系,要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来进行判断.当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.20.如图,在中,是弦,,,那么圆心到的距离是________,弦的长是________.【答案】(1). (2).【解析】【分析】过O作OC⊥AB交AB于C点,根据垂径定理可知OC垂直平分AB,根据OA=OB,∠AOB=120°可求出∠OAB=30°,根据30°角所对直角边等于斜边一半即可求得圆心到的距离;根据勾股定理求出AC的长即可求出AB的长.【详解】过O作OC⊥AB交AB于C点,如图所示:由垂径定理可知,OC垂直平分AB,∵OA=OB,∠AOB=120°∴∠OAB=30°∴OC=OA=cm∴由勾股定理可得:AC= =cm∴AB=2AC=5cm.故答案为:;5;【点睛】本题考查垂径定理,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握垂径定理是解题关键.三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分)21.一圆柱形排水管的截面如图所示,已知排水管的半径为,水面宽为.由于天气干燥,水管水面下降,此时排水管水面宽变为,求水面下降的高度.【答案】水面下降了米.【解析】【分析】如图:过点O作ON⊥CD于N,交AB于M,先根据垂径定理求得AM、CN,然后根据勾股定理求出OM、ON的长,即可得出结论【详解】如图,下降后的水面宽CD为6m,连接OA,OC,过点O作ON⊥CD于N,交AB于M.∴∠ONC=90°.∵AB∥CD,∴∠OMA=∠ONC=90°.∵AB=8m,CD=6m,∴AM=AB=4,CN=CD=3,在Rt△OAM中,∵OA=5,∴OM==3.同理可得ON=4,∴MN=ON-OM=1(米).答:水面下降了1米.【点睛】本题考查的是垂径定理的应用以及勾股定理的应用,熟知垂直于弦的直径平分弦,并且平分这条弦所对的两条弧是解答此题的关键.22.如图,在中,弦、于点,且.求证:.【答案】见解析【解析】【分析】根据,可证明,进而证明AC=BD,通过证明即可证明结论.【详解】∵,∴,,∴在与中,∵,∴,∴.【点睛】本题考查的是圆心角、弧、弦的关系及全等三角形的判定与性质,熟练掌握,圆心角、弧、弦的关系是解题关键.23.如图,在中,,,求分别以、、为圆心,以为半径画弧,三条弧与边所围成的阴影部分的面积.【答案】.【解析】【分析】由于三条弧所对的圆心角的和为180°,根据扇形的面积公式可计算出三个扇形的面积和,而三条弧与边AB 所围成的阴影部分的面积=S△ABC-三个扇形的面积和,再利用三角形的面积公式计算出△ABC的面积,然后代入即可得到答案.【详解】∵∠C=90°,CA=CB=2,∴AC=1,S△ABC==2,∵三条弧所对的圆心角的和为180°,三个扇形的面积和==,∴三条弧与边AB所围成的阴影部分的面积=S△ABC-三个扇形的面积和=2-,【点睛】本题考查扇形面积,熟练掌握面积公式并明确三条弧所对的圆心角的和为180°是解题关键.24.已知:如图,的外接圆,弦的长为,,求圆心到的距离.【答案】圆心到的距离为.【解析】【分析】连接,,过点作于点,根据圆周角定理可知∠BOC=60°,进而证明△OBC是等边三角形,根据垂径定理可知CD的长度,利用勾股定理求出OD的长即【详解】连接,,过点作于点,∵,∴.∵,∴是等边三角形,∴,∵OD⊥BC,∴CD=BC=2,∴=,即圆心到的距离为.【点睛】本题考查圆周角定理及垂径定理,在同圆中,同弧所对的圆周角的度数等于圆心角的一半,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握定理是解题关键.25.如图,已知为的直径,是弦,于,于,.求证:;求证:;若,,设,求值及阴影部分的面积.【答案】(1)见解析;(2)见解析;(3)x=5,.【解析】【分析】(1)根据直径所对的圆周角是90°可知∠ACB=∠AFO=90°,由平行线判定定理即可证明OF//BC;(2)由可知∠CBE=∠FOA,利用,,即可证明;(3)在Rt△OCE中,利用勾股定理列方程即可求出x的值,根据OC=2OE可知∠OCE=30°,即可求出∠COD的度数,利用扇形面积及三角形面积公式求出阴影面积即可.【详解】证明:∵为的直径,∴又∵∴证明:∵∴∠CBE=∠FOA∵,,∴解:连接.设,∵∴.在中,,根据勾股定理可得:解得:,即,∵OC=5+5=10,∴OC=2OE,∴∠OCE=30°,∴,∴扇形的面积是:的面积是:∴阴影部分的面积是:.【点睛】本题考查圆周角定理、垂径定理及扇形面积,熟练掌握定理和公式是解题关键.26.如图,内接于,,,.求的度数;将沿折叠为,将沿折叠为,延长和相交于点;求证:四边形是正方形;若,,求的长.【答案】(1);(2)见解析;(3).【解析】【分析】(1)连接和,由OE=BC,可知OE=BE,进而可知∠OBE=45°,同理可证∠OCE=45°,即可证明∠BOC=90°,根据圆周角定理即可求得∠BAC的度数;(2)由折叠性质可知AG=AD=AF,∠AGH=∠AFH=90°,∠DAC=∠CAF,∠BAD=∠BAG,由∠BAD+∠DAC=45°,可证明∠GAF=90°,即可证明四边形AFHG 是正方形;(3)由折叠性质可知,;由(2)可知∠BHC=90°,设AD长为x,利用勾股定理列方程求出x的值即可得解.【详解】(1)连接和;∵,∴;∵,∴,∴;∵,∴;由折叠可知,,,,,∴;∴;∴四边形是正方形;解:由得,,,,;设的长为,则,.在中,,∴;解得,,(不合题意,舍去);∴.【点睛】本题主要考查圆周角定理及折叠性质,在同圆中,同弧所对的圆周角的度数等于圆心角的一半;折叠后的图形与原图形全等,熟练掌握折叠的性质是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】B
【解析】
【分析】
先根据正方形的边长,求得CB1=OB1=AC-AB1= -1,进而得到 ,再根据S△AB1C1= ,以及扇形的面积公式即可得出图中阴影部分的面积.
【详解】
连结DC1,
∵∠CAC1=∠DCA=∠COB1=∠DOC1=45°,
∴∠AC1B1=45°,
∵∠ADC=90°,
【答案】D
【解析】
【分析】
先根据扇形的面积公式计算出扇形的圆心角,再利用周长公式计算出底面圆的周长,得出半径.再构建直角三角形,解直角三角形即可.
【详解】
72π=
解得n=180°,
∴扇形的弧长= =12πcm.
围成一个圆锥后如图所示:
因为扇形弧长=圆锥底面周长
即12π=2πr
解得r=6cm,即OB=6cm
【详解】
如图,令直线y= x+ 与x轴交于点C,与y轴交于点D,作OH⊥CD于H,
当x=0时,y= ,则D(0, ),
当y=0时, x+ =0,解得x=-2,则C(-2,0),
∴ ,
∵ OH•CD= OC•OD,
∴OH= .
连接OA,如图,
∵PA为⊙O的切线,
∴OA⊥PA,
∴ ,
当OP的值最小时,PA的值最小,
∴∠B=85°-60°=25°,∠CDO=95°,
∴∠AOC=2∠B=50°,
∴∠C=180°-95°-50°=35°
故选D.
点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.
10.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则图中阴影部分的面积是( )
9.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是( )
A.25°B.27.5°C.30°D.35°
【答案】D
【解析】
分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.
详解:∵∠A=60°,∠ADC=85°,
∴CD是△APB的中位线,
∴AB=2CD= ,
∵OH⊥AB,
∴BH=AH= ,
∵OA=OB,∠AOB=120°,
∴∠AOH=∠BOH=60°,
在Rt△AOH中,sin∠AOH= ,
∴AO= ,
∴扇形AOB的面积为: ,
故选:A.
【点睛】
本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
6.下列命题中,是假命题的是
A.任意多边形的外角和为
B.在 和 中,若 , , ,则 ≌
C.在一个三角形中,任意两边之差小于第三边
D.同弧所对的圆周角和圆心角相等
【答案】D
【解析】
【分析】
根据相关的知识点逐个分析.
【详解】
解:A.任意多边形的外角和为 ,是真命题;
B.在 和 中,若 , , ,则 ≌ ,根据HL,是真命题;
下列说法中错误的是( )
A.勒洛三角形是轴对称图形
B.图1中,点A到 上任意一点的距离都相等
C.图2中,勒洛三角形上任意一点到等边三角形DEF的中心 的距离都相等
D.图2中,勒洛三角形的周长与圆的周长相等
【答案】C
【解析】
【分析】
根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴.鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE的扇形的重叠,根据其特点可以进行判断选项的正误.
C.在一个三角形中,任意两边之差小于第三边,是真命题;
D.同弧所对的圆周角等于圆心角的一半,本选项是假命题.
故选D.
【点睛】
本题考核知识点:判断命题的真假.解题关键点:熟记相关性质或定义.
7.如图, , ,以 为直径作半圆,圆心为点 ;以点 为圆心, 为半径作 ,过点 作 的平行线交两弧于点 、 ,则图中阴影部分的面积是()
A. B.2 C. D.
【答案】A
【解析】
连接OC,
∵OA=OC,∠A=30°,
∴∠OCA=∠A=30°,
∴∠COB=∠A+∠ACO=60°,
∵PC是⊙O切线,
∴∠PCO=90°,∠P=30°,
∵PC=3,
∴OC=PC•tan30°= ,
故选A
3.如图,在平行四边形ABCD中,BD⊥AD,以BD为直径作圆,交于AB于E,交CD于F,若BD=12,AD:AB=1:2,则图中阴影部分的面积为( )
A.圆形铁片的半径是4cmB.四边形AOBC为正方形
C.弧AB的长度为4πcmD.扇形OAB的面积是4πcm2
【答案】C
【解析】
【分析】
【详解】
解:由题意得:BC,AC分别是⊙O的切线,B,A为切点,
∴OA⊥CA,OB⊥BC,
又∵∠C=90°,OA=OB,
∴四边形AOBC是正方形,
∴OA=AC=4,故A,B正确;
∴A,D,C1在一条直线上,
∵四边形ABCD是正方形,
∴AC= ,∠OCB1=45°,
∴CB1=OB1
∵AB1=1,
∴CB1=OB1=AC﹣AB1= ﹣1,
∴ ,
∵ ,
∴图中阴影部分的面积= .
故选B.
【点睛】
本题考查了旋转的性质,正方形性质、勾股定理以及扇形面积的计算等知识点的综合应用,主要考查学生运用性质进行计算的能力.解题时注意:旋转前、后的图形全等.
A.12 B. πC. D. π
【答案】C
【解析】
【分析】
易得AD长,利用相应的三角函数可求得∠ABD的度数,进而求得∠EOD的度数,那么一个阴影部分的面积=S△ABD-S扇形DOE-S△BOE,算出后乘2即可.
【详解】
连接OE,OF.
∵BD=12,AD:AB=1:2,
∴AD=4 ,AB=8 ,∠ABD=30°,
【详解】
鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;
点A到 上任意一点的距离都是DE,故正确;
勒洛三角形上任意一点到等边三角形DEF的中心 的距离都不相等, 到顶点的距离是到边的中点的距离的2倍,故错误;
鲁列斯曲边三角形的周长=3× ,圆的周长= ,故说法正确.
故选C.
∴S△ABD= ×4 ×12=24 ,S扇形=
∵两个阴影的面积相等,
∴阴影面积= .
故选:C
【点睛】
本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积.
4.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是()
∴ 的长度为: =2π,故C错误;
S扇形OAB= =4π,故D正确.
故选C.
【点睛】
本题考查切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算.
5.如图,在平面直角坐标系中,点P是以C(﹣ , )为圆心,1为半径的⊙C上的一个动点,已知A(﹣1,0),B(1,0),连接PA,PB,则PA2+PB2的最小值是( )
根据勾股定理得OC= cm,
故选D.
【点睛】
本题综合考查了弧长公式,扇形弧长=用它围成的圆锥底面周长,及勾股定理等知识,所以学生学过的知识一定要结合起来.
13.在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线 上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为
A.3B.2C. D.
【答案】D
【解析】
【分析】
先根据题意,画出图形,令直线y= x+ 与x轴交于点C,与y轴交于点D,作OH⊥CD于H,作OH⊥CD于H;
然后根据坐标轴上点的坐标特点,由一次函数解析式,求得C、D两点的坐标值;
再在Rt△POC中,利用勾股定理可计算出CD的长,并利用面积法可计算出OH的值;
最后连接OA,利用切线的性质得OA⊥PA,在Rt△POH中,利用勾股定理,得到 ,并利用垂线段最短求得PA的最小值即可.
∴∠BOC=90°,
∴∠BPC= ∠BOC=45°.
故选B.
点睛:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.
12.如图,用半径为 ,面积 的扇形无重叠地围成一个圆锥,则这个圆锥的高为()
A.12cmB.6cmC.6√2 cmD.6 cm
∵OP2=x2+y2,
∴PA2+PB2=2OP2+2,
当点P处于OC与圆的交点上时,OP取得最值,
∴OP的最小值为CO﹣CP=3﹣1=2,
∴PA2+PB2最小值为2×22+2=10.
故选:C.
【点睛】
本题考查了圆的综合,解答本题的关键是设出点P坐标,将所求代数式的值转化为求解OP的最小值,难度较大.
A. B. C. D.
【答案】A
【解析】
【分析】
如图,连接CE.图中S阴影=S扇形BCE−S扇形BOD−S△OCE.根据已知条件易求得OB=OC=OD=4,BC=CE=8,∠ECB=60°,OE=4 ,所以由扇形面积公式、如图,连接CE.
∵AC⊥BC,AC=BC=8,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB,
A.6B.8C.10D.12
【答案】C
【解析】
【分析】