高一函数图象变换规律(老师)
函数图像的几何变换

函数图像的几何变换一.1.考查函数图像是近年来高考的一个热点。
题型有二:一是给函数解析式,指出函数图像,多以选择题的形式出现;二是由函数,画出函数图像或者示意图,利用形数结合法解题,其中常用到几种常见函数的图像变化。
2. 高中常见的函数几何图象变换有4种:平移、对称、局部翻折、伸缩变换等。
平常做题时,尽量根据函数性质和几何变换,画出函数图像,以便数形结合、直观明了。
二.4种函数图像变换(一)平移变换1.上下平移,上加下减y=f(x)————y=f(x)+bb为正时,上移b个单位;b为负时,下移b的绝对值个单位。
2. 左右平移,左加右减y=f(x)—————y=f(x+a)a大于0时左移;a小于0时,右移a的绝对值个单位。
(二)对称变换:1. 关于x轴对称,由点(x,y)和点(x,-y)关于x轴对称得到。
y=f(x)——————y=-f(x)2. 关于y轴对称。
由点(x,y)和点(-x,y)关于y轴对称,而得到下列函数图像关于y轴对称。
y=f(x)——————y=f(-x)3. 关于原点对称由点(x,y)和点(-x,-y)关于坐标原点对称而得到。
y=f(x)———————y=-f(-x)4. 关于直线y=x对称点(x,y)和点(y,x)关于直线y=x对称,得到原函数和反函数的图像也关于上述直线对称。
(三)局部对称翻折1. 留右,右翻左。
自变量取绝对值型。
因自变量取绝对值是偶函数,x大于等于0时,x的绝对值等于x,所以保留y轴的右边图像不变,再将y轴右边的图像对称地翻到y轴左边。
y=f(x)——————y=f(|x|)2. 留上,下翻上型函数值外面取绝对值型,因为当函数值为正时,函数值不变,故留上;当函数值为负时,负数的绝对值是其相反数,故x轴下方的图像要翻到x轴上方。
y=f(x)——————y=|f(x)|(四)伸缩变换1. 函数值外面乘一个正常数A,纵向伸缩,横坐标不变,各点纵坐标变A倍。
y=f(x)——————y=Af(x)2. 纵不变,横变B分之一倍函数中的自变量x乘一个正常数B型。
函数移动规律公式

在数学中,函数的移动规律通常涉及到函数图像的平移。
函数图像的移动遵循以下几个基本的规律:1. 水平移动(左移和右移):如果函数\( f(x) \) 的图像向左移动\( a \) 个单位,新的函数表达式为\( f(x + a) \);如果图像向右移动\( a \) 个单位,新的函数表达式为\( f(x a) \)。
2. 垂直移动(上移和下移):如果函数\( f(x) \) 的图像向上移动\( a \) 个单位,新的函数表达式为\( f(x) + a \);如果图像向下移动\( a \) 个单位,新的函数表达式为\( f(x) a \)。
3. 斜率变化(拉伸和压缩):如果函数\( f(x) \) 的图像在\( x \) 方向上被拉伸或压缩,可以通过乘以一个非零常数\( a \) 来完成。
如果\( a > 1 \),图像会被拉伸;如果\( 0 < a < 1 \),图像会被压缩。
新的函数表达式为\( a \cdot f(x) \)。
4. 对称变换:关于y 轴对称:如果函数\( f(x) \) 的图像关于y 轴对称,新的函数表达式为\( f(x) \)。
关于x 轴对称:如果函数\( f(x) \) 的图像关于x 轴对称,新的函数表达式为\( f(x) \)。
关于原点对称:如果函数\( f(x) \) 的图像关于原点对称,新的函数表达式为\( f(x) \)。
5. 周期变换:如果函数\( f(x) \) 的图像具有周期性,可以通过乘以一个非零常数\( a \) 来改变周期。
新的函数表达式为\( f(x \cdot a) \)。
这些规律可以帮助我们理解和预测函数图像在各种变换下的移动和变化。
在实际应用中,这些规律对于解决函数图像相关的问题非常有用。
函数图像变换规律

函数图像变换规律
●自变量改变而导致图像的左右(横坐标)变化
1.自变量加则向左,减则向右平移,简记为“左加右减”;
2.自变量乘ω,则图像的每个点的横坐标变为原来的1/ω倍;
3.自变量加负号(即乘-1),则图像关于y轴对称,即每个点的横坐标变为原来的
1/-1倍;
4.自变量加上绝对值,则擦去左边,再做右边关于y轴对称;
●函数值改变而导致图像的上下(纵坐标)变化
1.函数值加则向上,减则向下平移;
2.函数值乘ω,则图像的每个点的纵坐标变为原来的ω倍;
3.函数值加负号(即乘-1),则图像关于x轴对称,即每个点的纵坐标变为原来的
-1倍;
4.函数值加上绝对值,则把x轴下方向上翻折。
●练习:
1)在函数y=log3(x2-2x)的自变量中减2,可得y=________________;
2)在函数y=log3(x2-2x)的函数值中减2,可得y=________________;
3)在函数y=log3(x2-2x)的自变量中加绝对值,可得y=________________;
4)在函数y=2sin(p/3-x)的自变量中加p/4,可得y=________________;
5)在函数y=1/x中的自变量中加负号,得y =______________;再在自变量中减2,得y=____________________;再在函数值中加1,得y =______________;。
高中数学函数图象的4种简单变换知识点总结(平移、对称、翻折、伸缩)

高中数学函数图象的简单变换知识点总结高中阶段,函数图象的简单变换有:平移变换、对称变换、翻折变换、伸缩变换。
一、函数图象的平移变换①左右平移变换:()y f x =与()y f x a =+()()00a a a a y f x y f x a ><=−−−−−−−−−−−→=+时,向左平移个单位时,向右平移个单位如:1y x =+的图象可由y x =的图象向右平移一个单位得到;1y x =-的图象可由y x =的图象向下平移一个单位得到。
②上下平移变换()()00a a a a y f x y f x a ><=−−−−−−−−−−−→=+时,向上平移个单位时,向下平移个单位如:1y x =+的图象可由y x =的图象向上平移一个单位得到。
1y x =-的图象可由y x =的图象向下平移一个单位得到。
【注】变换的口诀为:“上加下减,左加右减”。
二、函数图象的对称变换①()()y y f x y f x =−−−−−−−−−→=-作关于轴对称的图象②()()x y f x y f x =−−−−−−−−−→=-作关于轴对称的图象③()()y f x y f x =−−−−−−−−−→=--作关于原点对称的图象如:(i)()sin sin y x y x ϕ=→=+①0ϕ>时,把sin y x =的图象向左平移ϕ个单位得到;②0ϕ<时,把sin y x =的图象向右平移ϕ个单位得到;(ii)已知()2f x x x =-,则()()2g x f x x x =-=+的图象可由()2f x x x =-的图象做关于y 轴对称的图象得到;函数()h x ()2f x x x =-=-+的图象可由()2f x x x =-的图象作关于x 轴对称后的图象得到;函数()()u x f x =--=2x x --的图象可由()2f x x x =-的图象做关于坐标系原点对称的图象得到。
高一数学函数的图像变换 人教版

三、对称变换
1、y=f(x)的图象
关于y轴对称 关于x轴对称
关于原点对称 关于直线y=x对称
y=f(-x)的图象
2、y=f(x)的图象
y=-f(x)的图象
3、y=f(x)的图象
y=-f(-x)的图象
4、y=f(x)的图象
y=f-1(x)的图象
练习:
y=2x+2-2 得函数_________的图象。
下移2个单位
y=2x
上移2个单位
3、函数y=a|x|-1(a>0且a≠1)的图象必过点( C ) 1 A. (1,0) B. (0,1) C. (±1,1) D. (0, ) a 分析:y=ax y=ax-1 y=a|x|-1
4、函数y=a|x|-1(a>0且a≠1)的图象恒在y=1的上 (-∞,-1) ∪(1,+∞) 方,则x的取值范围是________ 分析:y=ax y=ax-1 y=a|x|-1
1、函数y=2x的图象分别向左、向下平移2个单位
y=2x
左移2个单位
y=2x+2
下移2个单位
y=2x+2-2
x-2+2 x y=2 位得函数y=2 的图象,则f(x)=___________
2、将函数y=f(x)的图象分别向左、向下平移2个单
y=f(x)
左移2个单位
y=2x-2+2 右移2个单位
y=2x+2
一、平移变换
1、左右平移:
y=f(x)的图象 a>0时,向左平移 a 个单位
a<0时,向右平移 a 个单位
x+1
y=f(x+a)的图象
例1:作出函数y=2
与y=2
第8讲 必修1第二章 函数的图像(教师版)

教学课题 第8讲人教版必修1第二章 函数的图像教学目标 知识目标:1、掌握描点作图;2、理解图像的变换规律;能力目标:通过函数的图像培养学生数形结合的能力,锻炼学生数学理性思维。
教学重点与难点重点:图像的平移和变换难点:对图像的平移和变换的基本技巧教学过程 课堂导学 知识点梳理1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象. 2.图象变换 (1)平移变换(2)对称变换①y =f (x )――――――――→关于x 轴对称y =-f (x ); ②y =f (x )―――――――――→关于y 轴对称y =f (-x ); ③y =f (x )―――――――――→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)――――――――→关于y =x 对称y =log a x (a >0且a ≠1). ⑤y =f (x )――――――――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|. ⑥y =f (x )――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |). (3)伸缩变换①y=f (x ) ――――――――――――――――――――→a>1,横坐标伸长为原来的a 倍,纵坐标不变0<a<1,横坐标缩短为原来的a 倍,纵坐标不变 y =f (ax ). ②y =f (x )――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变 y =af (x ).答案 C5.已知函数f (x )=⎩⎪⎨⎪⎧log 2x (x >0),2x (x ≤0),且关于x 的方程f (x )-a =0有两个实根,则实数a 的范围是 .答案 (0,1]解析 当x ≤0时,0<2x ≤1,所以由图象可知要使方程f (x )-a =0有两个实根,即函数y =f (x )与y =a 的图象有两个交点,所以由图象可知0<a ≤1. 考题分类【考点1】作函数图像★例1 作出下列函数的图象: (1)y =|lg x |; (2)y =x +2x -1;(3)y =x 2-2|x |-1.解 (1)y =|lg x |=⎩⎪⎨⎪⎧lg x ,x ≥1,-lg x ,0<x <1,作出图象如图1.(2)因y =1+3x -1,先作出y =3x 的图象,将其图象向右平移1个单位,再向上平移1个单位,即得y =x +2x -1的图象,如图2.(3)y =⎩⎪⎨⎪⎧x 2-2x -1 (x ≥0),x 2+2x -1 (x <0).图象如图3.引申探究作函数y =|x 2-2x -1|的图象.解 y =⎩⎨⎧x 2-2x -1 (x ≥1+2或x ≤1-2)-x 2+2x +1 (1-2<x <1+2)如下图点评 (1)常见的几种函数图象如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y =x +mx (m >0)的函数是图象变换的基础;(2)掌握平移变换、伸缩变换、对称变换规律,可以帮助我们简化作图过程.式训练1 作出下列函数的图象.(1)y =|x -2|·(x +1); (2)y =x +2x +3.解 (1)当x ≥2,即x -2≥0时,y =(x -2)(x +1)=x 2-x -2=(x -12)2-94;当x <2,即x -2<0时,y =-(x -2)(x +1)=-x 2+x +2=-(x -12)2+94.∴y =⎩⎨⎧(x -12)2-94,x ≥2,-(x -12)2+94,x <2.这是分段函数,每段函数的图象可根据二次函数图象作出(如图).(2)y =x +2x +3=1-1x +3,该函数图象可由函数y =-1x 向左平移3个单位,再向上平移1个单位得到,如下图所示. 【考点2】识图与辨图例2 (1)(2015·课标全国Ⅱ)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )(2)已知定义在区间[0,2]上的函数y=f(x)的图象如图所示,则y=-f(2-x)的图象为()式训练3 已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0.(1)求实数m 的值; (2)作出函数f (x )的图象;(3)根据图象指出f (x )的单调递减区间; (4)根据图象写出不等式f (x )>0的解集; (5)求当x ∈[1,5)时函数的值域.解 (1)∵f (4)=0,∴4|m -4|=0,即m =4. (2)f (x )=x |4-x |=⎩⎪⎨⎪⎧x (x -4)=(x -2)2-4,x ≥4,-x (x -4)=-(x -2)2+4,x <4. f (x )的图象如图所示. (3)f (x )的单调递减区间是[2,4].(4)由图象可知,f (x )>0的解集为{x |0<x <4或x >4}. (5)∵f (5)=5>4,∴由图象知,函数在[1,5)上的值域为[0,5). 典型例题分析3.高考中的函数图象及应用问题一、已知函数解析式确定函数图象典例 (2015·北京海淀区期中测试)函数f (x )=2x +sin x 的部分图象可能是( )思维点拨 从y =f (x )的图象可先得到y =-f (x )的图象,再得y =-f (x +1)的图象.解析 要想由y =f (x )的图象得到y =-f (x +1)的图象,需要先将y =f (x )的图象关于x 轴对称得到y =-f (x )的图象,然后再向左平移一个单位得到y =-f (x +1)的图象,根据上述步骤可知C 正确. 答案 C温馨提醒 (1)对图象的变换问题,从f (x )到f (ax +b ),可以先进行平移变换,也可以先进行伸缩变换,要注意变换过程中两者的区别.(2)图象变换也可利用特征点的变换进行确定. 三、函数图象的应用典例:(1)已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0)(2)设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________. 思维点拨 (1)画出函数f (x )的图象观察.(2)利用函数f (x ),g (x )图象的位置确定a 的范围. 解析 (1)将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察得到,f (x )为奇函数,递减区间是(-1,1). (2)如图,作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知:当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).答案 (1)C (2)[-1,+∞)温馨提醒 (1)本题求解利用了数形结合的思想,数形结合的思想包括“以形助数”或“以数辅形”两个方面,本题属于“以形助数”,是指把某些抽象的问题直观化、生动化,能够变抽象思A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2} 答案 C解析 令g (x )=y =log 2(x +1),作出函数g (x )的图象如图.由⎩⎪⎨⎪⎧ x +y =2,y =log 2(x +1), 得⎩⎪⎨⎪⎧x =1,y =1.∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}. 6.已知函数f (x )的图象如图所示,则函数g (x )=log 2f (x )的定义域是.答案 (2,8]解析 当f (x )>0时,函数g (x )=log 2f (x )有意义,由函数f (x )的图象知满足f (x )>0的x ∈(2,8].7.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为 . 答案 6解析 f (x )=min{2x ,x +2,10-x }(x ≥0)的图象如图.令x +2=10-x ,得x =4. 当x =4时,f (x )取最大值, f (4)=6.8.已知定义在R 上的函数f (x )=⎩⎪⎨⎪⎧lg|x |, x ≠0,1, x =0,关于x 的方程f (x )=c (c 为常数)恰有三个不同的实数根x 1,x 2,x 3,则x 1+x 2+x 3= . 答案 0解析 方程f (x )=c 有三个不同的实数根等价于y =f (x )与y =c 的图象有三个交点,画出函数f (x )的图象(图略),易知c =1,且方程f (x )=c 的一根为0,令lg|x |=1,解得x =-10或10,故方程f (x )=c 的另两根为-10和10,∴x 1+x 2+x 3=0.B 组 专项能力提升 (时间:15分钟)9.函数y =f (x )的图象如图所示,则函数y =log 12f (x )的图象大致是( )答案 C解析由函数y=f(x)的图象知,当x∈(0,2)时,f(x)≥1,所以log12f(x)≤0.又函数f(x)在(0,1)上是减函数,在(1,2)上是增函数,所以y=log12f(x)在(0,1)上是增函数,在(1,2)上是减函数.结合各选项知,选C.10.(2015·安徽)函数f(x)=ax+b(x+c)2的图象如图所示,则下列结论成立的是() A.a>0,b>0,c<0B.a<0,b>0,c>0C.a<0,b>0,c<0D.a<0,b<0,c<0答案 C。
函数图像的变换法则

( 0,1 )和( 0,1 ) ( 2,0 )和( 2, 2 )
三﹑对称变换
y
(-x,y) .
(-x,-y) .
(y,x) . .(x,y)
x
.(x,-y)
函数图象对称变换的规律:
1. y f ( x) y f ( x)
关于x轴对称
2. y f ( x) y f ( x)
函数图象变换的应用:
①作图﹑② 识图﹑ ③用图
(2)方程 f(x)-a=x 的根的个数等价于 y=f(x)与 y=x-a 的交点的个数,所以可以借助图像进行分析.
规范解答 解
2 x-2 -1, x∈-∞,1]∪[3,+∞ f(x)= 2 -x-2 +1, x∈1,3
作出图像如图所示.
[2 分]
(1)递增区间为[1,2],[3,+∞), 递减区间为(-∞,1],[2,3]. [4 分] (2)原方程变形为 |x2-4x+3|=x+a, 于是,设 y=x+a,在同一坐标系下再作出 y=x+a 的图 像.如图. 则当直线 y=x+a 过点(1,0)时,a=-1; [6 分]
a a
1 x
a
a ax a a a
x
ax a ax
1 y 1
a a a
x
a
x
x
a a
f (1 x)
所以,函数y=f(x)的图象关于点(1/2,1/2)对称
(2)由对称性知f(1-x)+f(x)=1,所以 f(-2)+ f(-1)+ f(0)+ f(1)+ f(2)+ f(3)=3。
对称变换是指两个函数图象之间的对称关系,而”满足 f(x)= f(2a-x)或f(a+x)= f(a-x)有y=f(x)关于直线x=a对称”是 指一个函数自身的性质属性,两者不可混为一谈.
高中数学教案:掌握函数的图像变换规律

高中数学教案:掌握函数的图像变换规律1. 引言在高中数学课程中,函数是一个核心概念。
了解和熟练运用函数的图像变换规律对于学生在解决实际问题、深入理解数学概念方面至关重要。
本篇教案将详细介绍函数的图像变换规律,并提供一些实际示例来帮助学生更好地掌握这一内容。
2. 基础知识回顾在开始讲解函数的图像变换规律之前,我们先来回顾一些基础知识。
请确保学生已经掌握以下概念: - 函数的定义 - 函数的定义域和值域 - 常见的基本函数及其图像(如线性函数、二次函数等)3. 图像平移与拉伸3.1 平移在讲解平移之前,我们先引入一些新的概念:平移向量。
平移向量可以描述一个点或者一幅图像从原位置沿着某个向量方向移动所产生的新位置。
对于一个将点(x, y)平移到(x+a, y+b)的平移,我们可以用以下式子表示:f(x) -> f(x-a) + b通过这个公式,我们可以让学生探索不同平移向量对于函数图像的影响,从而理解函数的平移规律。
3.2 拉伸与压缩接下来,讲解拉伸和压缩。
当我们将函数图像在横轴方向或者纵轴方向上进行拉伸或压缩时,函数的形状会发生相应变化。
这种变化可以用以下数学表示式来描述:f(x) -> a * f(k * x)其中,a表示纵向拉伸或压缩的倍数(a > 0),k表示横向拉伸或压缩的倍数(k > 0)。
4. 图像反射与翻转4.1 反射讲解完图像平移与拉伸后,我们引入反射的概念。
对于一个函数图像进行反射时,每个点关于某个坐标轴会产生对称点。
具体来说: - 关于x轴反射:原始函数 y = f(x) 的图像关于x轴反射后得到新函数 y = -f(x) - 关于y轴反射:原始函数 y = f(x) 的图像关于y轴反射后得到新函数 y = f(-x)4.2 翻转除了反射之外,我们还可以通过翻转来改变函数图像。
主要有两种翻转方式:- 水平翻转:将原始函数 y = f(x) 的图像向左或向右进行平移得到新函数 y = f(-x) - 垂直翻转:将原始函数 y = f(x) 的图像上下翻转得到新函数 y = -f(x)5. 综合练习和实践为了帮助学生更好地理解和应用函数的图像变换规律,我们提供一些综合练习和实践的题目,涵盖了平移、拉伸、反射和翻转等各种情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数图象变换规律
已知一个函数的图象,通过适当地变换,得到另一个与之相 关的函数的图象,这样的绘图方法叫做图象变换,在现阶段应掌 握两种图象变换;平移变换及某些特殊的对称变换。
一、平移变换。
(左+右-,上+下-)
(1)将函数y=f(x)的图象沿x 轴向左平移 m(m>0)个单位,得到函数y=f(x + m)的图象;
将函数y=f(x)的图象沿x 轴向左平移 m(m)0)个单位,得到函数y=f(x - m)的图象.
(2)将函数y=f(x)的图象沿y 轴向上平 移n(n>0)个单位,得到函数y=f(x) + n 的图象;
将函数y=f(x)的图象沿y 轴向下平 移n(n>0)个单位,得到函数y=f(x)- n 的图象;
二、对称变换。
(1)将函数y=f(x)的图象关于x 轴对称,得到函数y=-f(x)的图象。
(2)将函数y=f(x)的图象关于y 轴对称,得到函数y=f(-x)的图象。
(3)将函数y=f(x)的图象关于原点对称,得到函数y=-f(-x)的图象。
(4)将函数y=f(x)的图象关于直线y = x 对称,得到函数y=f -1(x)的图象。
(5)保留函数y=f(x)在x 轴上及x 轴上方的部分,把x 轴下方的部分关于x 轴对称到x 轴上方,(去掉 原来下方的部分),得到函数y=|f(x)|的图象。
(6)保留函数y= f(x)在y 轴上及y 轴右侧的部分,去掉y 轴左侧的部分,再将右侧图象对称到y 轴左 侧,得到函数y=f(|x |)的图象。
练习题
1.作出函数211x y x +=-的图象
2.作出函数||1()2
x y =-的图象。
3.将函数y=f(-x)的图象向右平移1个单位,再关于原点对称后,得到的函数解析式为 。
4.若函数y=f(x+2)是偶函数,则函数f(x)( )
(A)以x=2为对称轴 (B)以x=-2为对称轴 (C)以y 轴为对称轴 (D)不具有对称性
5.函数y =图像向 平移 个单位得到函数y =.
6.将曲线y=lgx 向左平移1个单位,再向下平移2个单位得到曲线C 。
如果曲线C '与C 关于原点对称,则曲线C '所对应的函数式 是______。
7.将函数y=f(2x+1)向______平移______个单位,得到函数y= f(2x-5)的图象。
8.将函数3y x a
=
+的图像向左平移2个单位得到曲线C,若曲线C 关于原点对称,则实数a 的值为( ) (A ) 1- (B) 2- (C) 1 (D) 2 9.若把函数()y f x =的图像作平移,可以使图像上的点()1,0P 变换成点(2,2)Q ,则平移后所得图像的函数解析式是( )
(A )()12y f x =-+ (B )()12y f x =--
(C )()12y f x =+- (D )()12y f x =++
函数图象变换规律答案
1.解:将函数解析式变形,得y== =2+
于是把函数y=的图象向右平移1个单位,得到函数y=的图象,再把
y=的图象向上平移2个单位,便可得到函数y=+2 的图象。
为作图
准确,可将渐近线平移,过点(1,2)作平行于x轴、y轴的两条直线;另外把
x=0代入解析式得y=-1<0。
即可画出函数y=的简图。
2. 解:令f(x)=()x,则f(|x|)=()|x|。
再令g(x)=()|x|,
则y=-g(x)=-()|x|,经过两次对称变换,便可得到函数y=-()|x|的图象。
图象变换有三要素:变换对象,变换结果,变换过程。
题型要求是知二求一。
3.y= - f(x+1)。
4.A 5.右,2
6.c:y=lg(x+1)-2;c':-y=lg(-x+1)-2,即y=-lg(1-x)+2
7.令g(x)=f(2x+1),则f(2x-5)=f[(2x-6)+1] =f[2(x-3)+1]=g(x-3)。
故向右平移3个单位。
8.B 9.A。