函数图象的三种变换(可编辑修改word版)
函数图像变换(整理)

函数的图象变换函数图象的基本变换:(1)平移;(2)对称;(3)伸缩。
由函数y = f (x)可得到如下函数的图象1. 平移:(1)y = f (x + m) (m>0):把函数y =f (x)的图象向左平移m 的单位(如m<0则向右平移-m 个单位)。
(2)y = f (x) + m (m>0):把函数y =f (x)的图象向上平移m 的单位(如m<0则向下平移-m 个单位)。
2. 对称:✧ 关于直线对称(Ⅰ) (1)函数y = f (-x)与y = f (x)的图象关于y 轴对称。
(2)函数y = -f (x)与y = f (x)的图象关于x 轴对称。
(3)函数y = f (2a -x)与y = f (x)的图象关于直线x = a 对称。
(4)函数y = 2b -f (x)与y = f (x)的图象关于直线y = b 对称。
(5)函数)x (f y 1-=与y = f (x)的图象关于直线y = x 对称。
(6)函数)x (f y 1--=-与y = f (x)的图象关于直线y = -x 对称。
(Ⅱ)(7)函数y = f (|x|)的图象则是将y = f (x)的y 轴右侧的图象保留,并将y =f (x)右侧的图象沿y 轴翻折至左侧。
(留正去负,正左翻(关于y 轴对称));(8)函数y = |f (x)|的图象则是将y = f (x)在x 轴上侧的图象保留,并将y = f (x)在x 轴下侧的图象沿x 轴翻折至上侧。
(留正去负,负上翻;)一般地:函数y = f (a+mx)与y = f (b -mx)的图象关于直线m2a b x -=对称。
✧ 关于点对称(1) 函数y = - f (-x)与y = f (x)的图象关于原点对称。
(2) 函数y = 2b -f (2a -x)与y = f (x)的图象关于点(a,b)对称。
3. 伸缩(1) 函数y = f (mx) (m>0)的图象可将y = f (x)图象上各点的纵坐标不变,横坐标缩小到原来的m 1倍得到。
分式函数图象(可编辑修改word版)

分式函数在我们的学习中常见到复杂的分式结构的函数式,通常采取“分离”的方法转化成两种主要类型:(1)一次分式型 f (x ) =ax + b cx + d (ad ≠ cb ) ;(2)倒数结构型 f (x ) = ax + b 。
x下面画出两种类型函数的示意图,以便从中看出函数的性质。
一、一次分式型 f (x ) = ax + b(ad ≠ cb )cx + d d a d a图象是以直线 x = - , y = c c (恰为系数之比)为渐近线的双曲线,对称中心(- 2x -1, ) , 通c c常用代点法确定两支双曲线的位置。
例如: y = y3x + 5的图象如图所示:2 3O- 5 - 1 35y = 23x二、倒数结构型 f (x ) = ax + bx(1) a > 0 且b < 0 时,示意图如下:y- -b- b aaOx此时 f (x ) 为奇函数,分段递增, 当 x > 0(或x < 0) 时, y ∈ R(2) a > 0, b > 0 时,示意图如下:y2 aby = ax可看成以直线 y = ax 与 y 轴为渐近线的双曲线, 两个顶点 A 、B 可由不等式中的均值定理确定, 此时 f (x ) 的单调性、奇偶性、定义域与值域、 对称性可从图中看出结论。
Ob xaB注意:当 a < 0, b > 0 时或 a < 0, b < 0 时,可转化为上述两种。
函数图象的四大变换

y y
x
x
x
x
A
B
C
D
解析:由f(x)g(x)是偶函数否定A、D, 当x→±∞时,f(x)g(x) →-∞,故选C.
2、画函数图象,由图象求解析式
例2 已知函数y=f (x)是在R上以2为周期的奇函数,在区 间[0,1)上的图象如下图所示,并已知该区间上图象是 一个二次函数的图象的一部分,点(1,1)是其顶点.试作出 y=f (x)在区间[-2,2]上的图象,并求该区间上的解析式.
. .
-1
-1
-1
.
1
2
.
X
-2
. . . . .
1 -1 1 -1
2
2
X
C
D
分析:根据y=F(x)= xf `(x)的图象,得F(1)= f `(1)=0, F(-1)= - f `(- 1)=0, ∴ f `(1)= f `(- 1)=0, ∴ x=1和x= - 1是f (x)的极值点.故选C. Y 提问:本例除了从图形获取有效信息: 2 .1 f `(1)= f `(- 1)=0之外, .-2 -1. .1 还能获取什么有效信息? -1. [注:如1<x<2时,xf `(x)>0,∴ f `(x) >0,
(1)f(x-1)=(x-1)2 (2)f(x+1)=(x+1)2 (3)f(x)+1=x2+1 (4)f(x) -1=x2-1
y=f(x+1) 1 -1 O y=f(x)-1-1 1 y=f(x-1)
x
函数图象的平移变换:
左右平移 (a>0) 上下平移 (a>0)
y=f(x) y=f(x) y=f(x) y=f(x)
函数图像的变换法则

( 0,1 )和( 0,1 ) ( 2,0 )和( 2, 2 )
三﹑对称变换
y
(-x,y) .
(-x,-y) .
(y,x) . .(x,y)
x
.(x,-y)
函数图象对称变换的规律:
1. y f ( x) y f ( x)
关于x轴对称
2. y f ( x) y f ( x)
函数图象变换的应用:
①作图﹑② 识图﹑ ③用图
(2)方程 f(x)-a=x 的根的个数等价于 y=f(x)与 y=x-a 的交点的个数,所以可以借助图像进行分析.
规范解答 解
2 x-2 -1, x∈-∞,1]∪[3,+∞ f(x)= 2 -x-2 +1, x∈1,3
作出图像如图所示.
[2 分]
(1)递增区间为[1,2],[3,+∞), 递减区间为(-∞,1],[2,3]. [4 分] (2)原方程变形为 |x2-4x+3|=x+a, 于是,设 y=x+a,在同一坐标系下再作出 y=x+a 的图 像.如图. 则当直线 y=x+a 过点(1,0)时,a=-1; [6 分]
a a
1 x
a
a ax a a a
x
ax a ax
1 y 1
a a a
x
a
x
x
a a
f (1 x)
所以,函数y=f(x)的图象关于点(1/2,1/2)对称
(2)由对称性知f(1-x)+f(x)=1,所以 f(-2)+ f(-1)+ f(0)+ f(1)+ f(2)+ f(3)=3。
对称变换是指两个函数图象之间的对称关系,而”满足 f(x)= f(2a-x)或f(a+x)= f(a-x)有y=f(x)关于直线x=a对称”是 指一个函数自身的性质属性,两者不可混为一谈.
函数图像的变换(周期,平移,对称)

函数的变换(平移,对称,翻折,周期)【自主梳理】1.() (0)y f x a a =+>的图象可由()y f x =的图象向 平移单位而得到.() (0)y f x a a =->的图象可由()y f x =的图象向 平移单位而得到. 2.() (0)y f x b b =+>的图象可由()y f x =的图象向 平移单位而得到.() (0)y f x b b =->的图象可由()y f x =的图象向 平移单位而得到. 3.() (0)y Af x A =>的图象可由()y f x =图象上所有点的纵坐标变为 ,不变而得到.4.() (0)y f ax a =>的图象可由()y f x =图象上所有点的横坐标变为 ,不变而得到. 【自我检测】1.若()f x 的图象过(0,1)点,则(1)f x +的图象过点 . 2.函数2xy =的图象向右平移2个单位所得函数解析式为 . 3.将函数lg()y x =-的图象 可得函数lg(1)y x =-+的图象.4.函数xy x a =-+的图象的对称中心为(1,1)--,则a = . 5.将函数1cos 2y x =图象的横坐标缩短到原来的21倍,纵坐标扩大为原来的2倍,所得函数解析式为 . 6.为了得到函数3lg10x y +=的图象,只需把函数lg y x =的图象上所有的点向左平移 个单位长度,再向 平移个单位长度. 二、课堂活动: 【例1】填空题:(1)设函数()y f x =图象进行平移变换得到曲线C ,这时()y f x =图象上一点(2,1)A -变为曲线C 上点(3,3)A '-,则曲线C 的函数解析式为.(2)如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是.(3)要得到函数sin(2)3y x π=-的图象,只需将函数cos2y x =的图象. (4)若函数()2sin y x θ=+的图象按向量(,2)6π平移后,它的一条对称轴是4x π=,则θ的一个可能的值是.【例2】作出下列函数的图象.(1)12x y -= (2)211x y x +=-【例3】(1)函数()24log 12y x x =-+的图象经过怎样的变换可得到函数2log y x =的图象?(2)函数21cos cos 12y x x x =+⋅+的图象可由sin y x =的图象经过怎样的平移和伸缩变换得到?【自主梳理】1.(1)函数()y f x =-与()y f x =的图像关于 对称; (2)函数()y f x =-与()y f x =的图像关于对称;(3)函数()y f x =--与()y f x =的图像关于 对称. 2.奇函数的图像关于对称,偶函数图像关于对称.3.若对于函数()y f x =定义域内的任意x 都有()()f a x f b x +=-,则()y f x =的图像关于直线 对称. 4.对0a >且1a ≠,函数xy a =和函数log a y x =的图象关于直线对称.5.要得到()y f x =的图像,可将()y f x =的图像在x 轴下方的部分以为轴翻折到x 轴上方,其余部分不变.6.要得到()y f x =的图像,可将()y f x =,[)0,x ∈+∞的部分作出,再利用偶函数的图像关于的对称性,作出(),0x ∈-∞时的图像.3.函数y e =-的图象与函数 的图象关于坐标原点对称.4.将函数1()2x f x +=的图象向右平移一个单位得曲线C ,曲线C '与曲线C 关于直线y x =对称,则C '的解析式为 .5.设函数()y f x =的定义域为R ,则函数(1)y f x =-与(1)y f x =-的图像的关系为关 于 对称. 6.若函数()f x 对一切实数x 都有(2)(2)f x f x +=-,且方程()0f x =恰好有四个不同实根,求这些实根之和为 . 二、课堂活动:(1(2)对于定义在R 上的函数()f x ,有下列命题,其中正确的序号为.①若函数()f x 是奇函数,则(1)f x -的图象关于点(1,0)A 对称;②若对x R ∈,有(1)(1)f x f x +=-,则()y f x =的图象关于直线1x =对称;③若函数(1)f x -的图象关于直线1x =对称,则函数()f x 是偶函数;④函数(1)y f x =+与函数(1)y f x =-的图象关于直线1x =对称.(3)将曲线lg y x =向左平移1个单位,再向下平移2个单位得到曲线C .如果曲线C '与C 关于原点对称,则曲线C '所对应的函数式是.【例2】作出下列函数的图象:(1)12log ()y x =-;(2)12xy ⎛⎫=- ⎪⎝⎭;(3)2log y x =;(4)21y x =-.【例3】(1)将函数12log y x =的图象沿x 轴向右平移1个单位,得图象C ,图象C '与C 关于原点对称,图象C ''与C '关于直线y x =对称,求C ''对应的函数解析式; (2)已知函数()y f x =的定义域为R ,并且满足(2)(2)f x f x +=-.①证明函数()y f x =的图象关于直线2x =对称;②若()f x 又是偶函数,且[]0,2x ∈时,()21f x x =-,求[]4,0x ∈-时()f x 的表达式.一.周期函数的定义:设函数y=f(x)的定义域为D ,若存在常数T ≠0,使得对一切x ∈D ,且x+T ∈D 时都有f(x+T)=f(x),则称y=f(x)为D 上的周期函数,非零常数T 叫这个函数的周期。
函数图像变换公式大全

函数图像变换公式大全(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--蕾博士函数图像变换公式大全一、点的变换.设),(00y x P ,则它(1)关于x 轴对称的点为),(00y x -;(2)关于y 轴对称的点为),(00y x -;(3)关于原点对称的点为),(00y x --;(4)关于直线x y =对称的点为),(00x y ;(5)关于直线x y -=对称的点为),(00x y --;(6)关于直线b y =对称的点为)2,(00y b x -;(7)关于直线a x =对称的点为),2(00y x a -;(8)关于直线a x y +=对称的点为),(00a x a y +-;(9)关于直线a x y +-=对称的点为),(00x a a y -+-;(10)关于点),(b a 对称的点为)2,2(00y b x a --;(11)按向量),(b a 平移得到的点为),(00b y a x ++.二、曲线的变换.曲线0),(=y x F 按下列变换后所得的方程:(1)按向量),(b a 平移,得到0),(=--b y a x F ;(2)关于x 轴对称,得到0),(=-y x F ;(3)关于y 轴对称,得到0),(=-y x F ;(4)关于原点对称,得到0),(=--y x F ;(5)关于直线a x =对称,得到0),2(=-y x a F ;(6)关于直线b y =对称,得到0)2,(=-y b x F ;(7)关于点),(b a 对称,得到0)2,2(=--y b x a F ;(8)关于直线x y =对称,得到0),(=x y F ;(9)关于直线a x y +=对称,得到0),(=+-a x a y F ;(10)关于直线a x y +-=对称,得到0),(=-+-y a a x F ;(11)纵坐标不变横坐标变为原来的a 倍,得到方程0),(=y ax F ; (12)横坐标不变纵坐标变为原来的b 倍,得到方程0),(=by x F三、两个函数的图象对称性1:左右平移:)(a x f y ±=(0>a )的图像可由)(x f y =的图像向左(+)或向右(—)平移a 个单位而得到;)(a mx f y ±=(0,0>>a m )的图像可由)(mx f y =的图像向左(+)或向右(—)平移ma 个单位而得到; 2.上下平移:)(0)(>±=b b x f y 的图像可由)(x f y =的图像向上(+)或向下(—)平移b 个单位而得到;3. )(x f y -=的图像与)(x f y =的图像关于y 轴对称;换句话说:)(x f y =与)(x g y =若满足)()(x g x f -=,即它们关于0=x 对称。
函数图像的变换规律

函数图像的变换规律函数图像的变换是数学中的重要概念,它描述了函数在坐标平面上的图像如何发生移动、伸缩和翻转等变化。
这些变换规律不仅在数学中有广泛应用,也在物理、经济等其他领域有着重要的意义。
本文将从平移、伸缩和翻转三个方面介绍函数图像的变换规律,并通过实例加以说明。
一、平移变换平移变换是指函数图像在坐标平面上沿着横轴或纵轴方向移动的操作。
对于一般的函数y=f(x),如果将x坐标增加或减少一个常数a,那么对应的函数图像将向左平移a个单位;类似地,如果将y坐标增加或减少一个常数b,函数图像将向上或向下平移b个单位。
例如,考虑函数y=x^2的图像。
如果将x坐标增加2个单位,那么函数图像将向左平移2个单位;如果将y坐标减少3个单位,函数图像将向下平移3个单位。
这种平移变换可以用以下公式描述:平移后的函数图像:y=f(x-a)或y-a=f(x)二、伸缩变换伸缩变换是指函数图像在坐标平面上沿着横轴或纵轴方向发生扩张或压缩的操作。
对于一般的函数y=f(x),如果将x坐标乘以一个常数m,那么对应的函数图像将在横轴方向上缩放为原来的1/m倍;类似地,如果将y坐标乘以一个常数n,函数图像将在纵轴方向上缩放为原来的1/n倍。
例如,考虑函数y=sin(x)的图像。
如果将x坐标乘以2,那么函数图像在横轴方向上缩放为原来的1/2倍;如果将y坐标乘以3,函数图像在纵轴方向上扩张为原来的3倍。
这种伸缩变换可以用以下公式描述:伸缩后的函数图像:y=f(mx)或y=1/n*f(x)三、翻转变换翻转变换是指函数图像在坐标平面上关于某一直线对称的操作。
对于一般的函数y=f(x),如果将x关于直线x=a进行对称,那么对应的函数图像将在直线x=a处翻转;类似地,如果将y关于直线y=b进行对称,函数图像将在直线y=b处翻转。
例如,考虑函数y=1/x的图像。
如果将x关于直线x=1进行对称,那么函数图像将在直线x=1处翻转;如果将y关于直线y=2进行对称,函数图像将在直线y=2处翻转。
函数图像的变换Microsoft Word 文档

函数图像的变换的基本方
法
1、平移变换:
(1)将函数y=f(x)的图象向左平移a个单位得
函数y=f(x+a)的图象;(2)将函数y=f(x)的图象向右平移a个单位得
函数y=f(x-a)的图象;(3)将函数y=f(x)的图象向上平移b个单位得
函数y=f(x)+b的图象;(4)将函数y=f(x)的图象向下平移b个单位得
函数y=f(x)-b的图象;简记为“左加(+)右减(-),上加(+)下减(-)”
2、对称变换
(1)函数y=f(x)与函数y=f(-x)的图象关于
x=0直线即y轴对称;(2)函数y=f(x)与函数y=-f(x)的图象关于直
线Y=0即X轴对称;(3)函数y=f(x)与函数y=-f(-x)的图象关于
原点对称;
3、翻折变换
(1)函数y=︱f(x)︱的图象可以将函数y=f(x)
的图象位于X轴下方的
部分沿X轴翻折到X轴
上方,去掉原X轴下方
部分,并保留y=f(x)上
方部分的图象即可得
到;
(2)函数y=f(︱x︱)的图象可以将函数y=f(x)
的图象Y轴右边的部分
翻折到Y轴左边替代原
来Y轴左边部分并保留
y=f(x)在Y轴右边部分
图象即可得到;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数图象的三种变换函数的图象变换是高考中的考查热点之一,常见变换有以下 3 种:一、平移变换例1 设f(x)=x2,在同一坐标系中画出:(1)y=f(x),y=f(x+1)和y=f(x-1)的图象,并观察三个函数图象的关系;(2)y=f(x),y=f(x)+1 和y=f(x)-1 的图象,并观察三个函数图象的关系.解(1)如图(2)如图点评观察图象得:y=f(x+1)的图象可由y=f(x)的图象向左平移 1 个单位长度得到;y=f(x-1)的图象可由y=f(x)的图象向右平移1 个单位长度得到;y=f(x)+1 的图象可由y=f(x)的图象向上平移1 个单位长度得到;y=f(x)-1 的图象可由y=f(x)的图象向下平移1 个单位长度得到.小结:二、对称变换例2 设f(x)=x+1,在同一坐标系中画出y=f(x)和y=f(-x)的图象,并观察两个函数图象的关系.解画出y=f(x)=x+1 与y=f(-x)=-x+1 的图象如图所示.由图象可得函数y=x+1 与y=-x+1 的图象关于y 轴对称.点评函数y=f(x)的图象与y=f(-x)的图象关于y 轴对称;函数y=f(x)的图象与y=-f(x)的图象关于x 轴对称;函数y=f(x)的图象与y=-f(-x)的图象关于原点对称.三、翻折变换例 3 设f(x)=x+1,在不同的坐标系中画出y=f(x)和y=|f(x)|的图象,并观察两个函数将x 轴下方图象翻折上去并作其关于y 轴对称的图象 图象的关系.解 y =f (x )的图象如图 1 所示,y =|f (x )|的图象如图 2 所示.点评 要得到 y =|f (x )|的图象,把 y =f (x )的图象中 x 轴下方图象翻折到 x 轴上方,其余部分不变.例 4 设 f (x )=x +1,在不同的坐标系中画出 y =f (x )和 y =f (|x |)的图象,并观察两个函数图象的关系.解 如下图所示.点评 要得到 y =f (|x |)的图象,先把 y =f (x )图象在 y 轴左方的部分去掉,然后把 y 轴右边的对称图象补到左方即可.小结:y = f (x ) −−保−留x −轴上−方图−象−→ y =|f (x )|. y = f (x ) −−−保留−y 轴右−侧−图象−−→ y=f (|x |).如图:四 函数图象自身的对称性1. 函数 y = f (x ) 的图象关于直 x =a +b 对称⇔ f (a + x ) = f (b - x ) ⇔ f (a + b - x ) = f (x )2 2. 函数 y =f (x ) 的图象关于点(a , b ) 对称⇔ 2b - f (x ) = f (2a - x )⇔ f (x ) = 2b - f (2a - x ) ⇔ f (a + x ) + f (a - x ) = 2b3.若 f (x ) = - f (-x ) ,则 f (x ) 的图象关于原点对称,若 f (x ) = f (-x ),则 f (x ) 的图象关于 y 轴对称。
基础训练1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)当 x ∈(0,+∞)时,函数 y =|f (x )|与 y =f (|x |)的图象相同.( × ) yy=f(|x|)a obc xy y=|f(x)| a ob c x y y=f(x) a o b c x(2)函数 y =f (x )与 y =-f (x )的图象关于原点对称. ( × )(3)若函数 y =f (x )满足 f (1+x )=f (1-x ),则函数 f (x )的图象关于直线 x =1 对称. ( √ )(4)将函数 y =f (-x )的图象向右平移 1 个单位得到函数 y =f (-x -1)的图象. ( × ) 2. 如图所示的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度 h 和时间 t 之间的关系,其中不正确的有( )A .1 个B .2 个C .3 个D .4 个解析 对于一个选择题而言,求出每一幅图中水面的高度 h 和时间 t 之间的函数关系式既无必要也不可能,因此可结合相应的两幅图作定性分析,即充分利用数形结合.对于第一幅图,不难得知水面高度的增加应是均匀的,因此不正确;对于第二幅图,随着时间的增加,越往上,增加同一个高度,需要的水越多,因此趋势愈加平缓,因此正确;同理可分析第三幅图、第四幅图都是正确的. 故只有第一幅图不正确,因此选 A.答案 A点评 本题考查函数的对应关系.由容器的形状识别函数模型,是典型的数形结合问题, “只想不算”有利于克服死记硬背,更突出了思维能力的考查.近两年的高考越来越注重对理性思维能力的考查.3. 向高为 H 的水瓶中注水,注满为止.如果注水量 V 与水深 h 的函数关系的图象如图所示, 那么水瓶的形状是( )H V 0 解析 取水深 h = 2 ,此时注水量 V ′> 2 ,即水深至一半时,实际注水量大于水瓶总水 量的一半. V 0 V 0 A 中 V ′< 2 ,C 、D 中 V ′= 2,故排除 A 、C 、D ,选 B. 1 4.函数 y =1- - 的图象是( ).x 1-1 1 解析 将 y = x 的图象向右平移 1 个单位,再向上平移一个单位,即可得到函数 y =1- - x1 的图象.答案 B 5. 已知图①中的图象对应的函数为 y =f (x ),则图②的图象对应的函数为().A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (|x |) 解析 y =f (-|x |)=Error!答案 C 6. 直线 y =1 与曲线 y = x 2 - x + a 有四个交点,则 a 的取值范围是 .如图所示, y = x 2 - x + a 是偶函数a - 1 < 1 < a ⇒ 1 < a < 54 47. 已知 f (x ) 是偶函数,则 f (x + 2) 的图像关于 对称;已知 f (x + 2) 是偶函数,则函数 f (x ) 的图像关于对称.8. 已知 y =f (x )的图象如图所示,则 y =f (1-x )的图象为 ( )解析: A [因为 f (1-x )=f (-(x -1)),故 y =f (1-x )的图象可以由 y =f (x )的图象按照如下变换得到:先将 y =f (x )的图象关于 y 轴翻折,得 y =f (-x )的图象,然后将 y =f (-x )的图象向右平移一个单位, 即得 y =f (-x +1)的图象.]9. 分别画出下列函数的图象:x +2 (1)y =x2-2|x |-1;(2)y = . (3)(1) y x -1 x - 2 (x + 1) (1) y =Error!.图象如图③.3 3 (2) 因 y =1+ - ,先作出 y = 的图象,将其图象向右平移 1 个单位,再向上平移 1 个单位, x 1 xx +2 即得 y = - 的图象,如图④. x 110. 若函数 y =f (x )的图象如图所示,则函数 y =-f (x +1)的图象大致为 .思维启迪 从 y =f (x )的图象可先得到 y =-f (x )的图象,再得到 y =-f (x +1)的图象.解析 要想由 y =f (x )的图象得到 y =-f (x +1)的图象,需要先将 y =f (x )的图象关于 x 轴对称得到 y =-f (x )的图象,然后再向左平移一个单位得到 y =-f (x +1)的图象,根据上述步骤可知③正确. 答案 ③11. 已知函数 f (x )=|x 2-4x +3|.(1)求函数 f (x )的单调区间,并指出其增减性;(2)求集合 M ={m |使方程 f (x )=m 有四个不相等的实根}.解 f (x )=Error!=作出函数图象如图.(1)函数的增区间为[1,2],[3,+∞);函数的减区间为(-∞,1],[2,3]. (2)在同一坐标系中作出 y =f (x )和 y =m 的图象,使两函数图象有四个不同的交点(如图). 由图知 0<m <1,∴M ={m |0<m <1}. 1 12. 已知函数 f (x )的图象与函数 h (x )=x +x+2 的图象关于点 A (0,1)对称.求 f (x )的解析式;(2) 解析: (1)设 f (x )图象上任一点 P (x ,y ),则点 P 关于(0,1)点的对称点 P ′(-x,2-y )在 h (x )1 1的图象上,即 2-y =-x -x +2,∴y =f (x )=x +x(x ≠0). 13. 已知函数 y =f (x )的图象关于原点对称,且 x >0 时,f (x )=x 2-2x +3,试求 f (x )在 R 上的表达式,并画出它的图象,根据图象写出它的单调区间.解:∵f (x )的图象关于原点对称,∴f (-x )=-f (x ),∴当 x =0 时,f (x )=0.又当 x >0 时, f (x )=x 2-2x +3,∴当 x <0 时,f (x )=-x 2-2x -3.∴函数的解析式为 f (x )=Error!作出函数的图象如图.根据图象可以得函数的增区间为(-∞,-1),(1,+∞);函数的减区间为(-1,0),(0,1).。