数据分析师笔试题目.doc
大数据分析师招聘笔试题与参考答案(某大型集团公司)2025年

2025年招聘大数据分析师笔试题与参考答案(某大型集团公司)(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、大数据分析中常用的数据挖掘技术不包括以下哪一项?A. 分类与预测B. 关联规则挖掘C. 数据清洗与预处理D. 虚拟现实技术展示2、在大数据环境下,处理和分析海量数据的软件工具通常不包括以下哪一种?A. HadoopB. SparkC. MySQLD. Oracle3、在进行数据分析之前,通常需要对数据进行预处理。
以下哪个步骤不属于数据预处理的范畴?A. 数据清洗B. 数据转换C. 数据聚合D. 数据挖掘Hadoop的核心组件?A. HDFS(Hadoop Distributed File System)B. MapReduceC. SparkD. Hive5、以下哪种工具在大数据分析中常用于数据挖掘和预测分析?A. PythonB. HTMLC. CSSD. Java6、在大数据分析中,处理和分析结构化的数据通常指的是什么?A. 纯粹的文字信息B. 包含数字的表格数据C. 图像和视频等非文本信息D. 社交媒体上的评论和帖子等文本数据7、在进行数据分析之前,通常需要对数据进行预处理。
以下哪个步骤不属于数据预处理的范畴?A. 数据清洗B. 数据转换C. 数据聚合D. 数据可视化的核心组件之一?A. SparkB. FlinkC. HBaseD. Kafka9、在进行数据分析时,以下哪个步骤不是必须的?A. 定义问题B. 收集数据C. 数据清洗D. 数据可视化 10、在进行数据分析时,以下哪个工具不是常用的数据分析工具?A. ExcelB. PythonC. RD. SQL二、多项选择题(本大题有10小题,每小题4分,共40分)1、在进行数据分析之前,通常需要进行以下哪些步骤?A. 定义目标B. 数据收集C. 数据清洗D. 数据转换2、大数据分析中,以下哪些工具是常用的?A. ExcelB. SQLC. PythonD. R3、在进行数据分析之前,以下哪些步骤是必要的准备工作?A. 定义目标B. 数据收集C. 数据清洗D. 数据转换E. 数据可视化4、在大数据分析中,以下哪些因素可能会影响分析结果的准确性?A. 数据质量B. 分析工具的先进性C. 数据量D. 分析人员的经验5、(多项选择题)关于大数据分析的描述,以下哪些说法是正确的?A. 大数据分析只关注数据的数量,而不关注数据的质量。
数据分析笔试题目及答案解析

数据分析笔试题目及答案解析数据分析笔试题目及答案解析——第1题——1. 从含有N个元素的总体中抽取n个元素作为样本,使得总体中的每一个元素都有相同的机会(概率)被抽中,这样的抽样方式称为?A. 简单随机抽样B. 分层抽样C. 系统抽样D. 整群抽样答案:A——第2题——2. 一组数据,均值中位数众数,则这组数据A. 左偏B. 右偏C. 钟形D. 对称答案:B「题目解析」分布形状由众数决定,均值大于众数的化,说明峰值在左边,尾巴在右边,所以右偏。
偏态是看尾巴在哪边。
——第3题——3. 对一个特定情形的估计来说,置信水平越低,所对应的置信区间?A. 越小B. 越大C. 不变D. 无法判断答案:A「题目解析」根据公式,Z减小,置信区间减小。
——第4题——4.关于logistic回归算法,以下说法不正确的是?A. logistic回归是当前业界比较常用的算法,用于估计某种事物的可能性B. logistic回归的目标变量可以是离散变量也可以是连续变量C. logistic回归的结果并非数学定义中的概率值D. logistic回归的自变量可以是离散变量也可以是连续变量答案:B「题目解析」逻辑回归是二分类的分类模型,故目标变量是离散变量,B错;logisitc回归的结果为“可能性”,并非数学定义中的概率值,不可以直接当做概率值来用,C对。
——第5题——5.下列关于正态分布,不正确的是?A. 正态分布具有集中性和对称性B. 期望是正态分布的位置参数,描述正态分布的集中趋势位置C. 正态分布是期望为0,标准差为1的分布D. 正态分布的期望、中位数、众数相同答案:C「题目解析」N(0,1)是标准正态分布。
——第6题——6. 以下关于关系的叙述中,正确的是?A. 表中某一列的数据类型可以同时是字符串,也可以是数字B. 关系是一个由行与列组成的、能够表达数据及数据之间联系的二维表C. 表中某一列的值可以取空值null,所谓空值是指安全可靠或零D. 表中必须有一列作为主关键字,用来惟一标识一行E. 以上答案都不对答案:B「题目解析」B. 关系是一张二维表,表的每一行对应一个元组,每一列对应一个域,由于域可以相同,所以必须对每列起一个名字,来加以区分,这个名字称为属性。
数据分析笔试题及答案

数据分析笔试题及答案一、选择题(每题2分,共10分)1. 数据分析中,以下哪个指标不是描述性统计指标?A. 平均数B. 中位数C. 标准差D. 相关系数答案:D2. 在进行数据清洗时,以下哪项操作不是必要的?A. 处理缺失值B. 去除异常值C. 转换数据类型D. 增加数据量答案:D3. 以下哪个工具不是数据分析常用的软件?A. ExcelB. RC. PythonD. Photoshop答案:D4. 假设检验中,P值小于显著性水平α,我们通常认为:A. 拒绝原假设B. 接受原假设C. 无法判断D. 结果不可靠答案:A5. 以下哪个不是时间序列分析的特点?A. 趋势性B. 季节性C. 随机性D. 稳定性答案:D二、简答题(每题5分,共15分)1. 请简述数据可视化的重要性。
答案:数据可视化是数据分析中的重要环节,它能够帮助分析者直观地理解数据的分布、趋势和模式。
通过图表、图形等形式,可以更清晰地展示数据之间的关系,便于发现数据中的规律和异常点,从而为决策提供支持。
2. 描述数据挖掘中的“关联规则”是什么,并给出一个例子。
答案:关联规则是数据挖掘中用来发现变量之间有趣关系的一种方法,特别是变量之间的频繁模式、关联、相关性。
例如,在超市购物篮分析中,关联规则可能揭示“购买了牛奶的顾客中有80%也购买了面包”。
3. 解释什么是“数据的维度”以及它在数据分析中的作用。
答案:数据的维度指的是数据集中可以独立变化的属性或特征。
在数据分析中,维度可以帮助我们从不同角度观察和理解数据,进行多维度的分析和比较,从而获得更全面的数据洞察。
三、计算题(每题10分,共20分)1. 给定一组数据:2, 3, 4, 5, 6, 7, 8, 9, 10,请计算这组数据的平均数和标准差。
答案:平均数 = (2+3+4+5+6+7+8+9+10) / 9 = 5.5标准差 = sqrt(((2-5.5)^2 + (3-5.5)^2 + ... + (10-5.5)^2) / 9) ≈ 2.87232. 如果一家公司在过去5年的年销售额分别为100万、150万、200万、250万和300万,请计算该公司年销售额的复合年增长率(CAGR)。
大数据分析师招聘笔试题与参考答案

招聘大数据分析师笔试题与参考答案(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、大数据分析师在进行数据分析时,以下哪个工具通常用于数据清洗和预处理?A、SQLB、TableauC、PythonD、Hadoop2、在大数据分析中,以下哪个算法通常用于聚类分析?A、决策树B、K-meansC、支持向量机D、神经网络3、在数据分析中,当我们需要从数据集中随机选取一部分样本进行分析时,这通常被称为:A. 数据清洗B. 数据采样C. 数据建模D. 数据可视化4、假设你正在使用Python的pandas库来处理一个DataFrame对象df,其中包含一列名为’Age’。
如果想要筛选出年龄大于等于18且小于60的所有记录,以下哪段代码是正确的?A. df[(df['Age'] > 18) and (df['Age'] < 60)]B. df[df['Age'] >= 18 & df['Age'] < 60]C. df[(df['Age'] >= 18) & (df['Age'] < 60)]D. df[df['Age'].between(18, 60)]5、题干:在数据挖掘中,以下哪个算法通常用于分类任务?A. K-means聚类B. Apriori算法C. 决策树D. KNN算法6、题干:以下哪个指标通常用于衡量数据集的分布均匀性?A. 偏度B. 方差C. 标准差D. 熵7、在数据分析中,当我们提到数据的“离群值”(Outliers)时,它指的是什么?A. 数据集中的最大值和最小值B. 与大多数数据有显著差异的数据点C. 丢失或缺失的数据D. 不符合预期模式的数据8、在大数据项目实施过程中,哪一项活动通常不属于数据分析师的核心职责?A. 清洗和预处理原始数据B. 设计数据库结构C. 应用统计模型进行预测D. 解释模型输出以指导业务决策9、以下哪项不是大数据分析中常用的数据存储技术?A. Hadoop HDFSB. NoSQL数据库C. 关系型数据库D. 关键字存储 10、在数据分析中,以下哪个术语通常用来描述数据集的规模大小?A. 数据量B. 数据质量C. 数据维度D. 数据粒度二、多项选择题(本大题有10小题,每小题4分,共40分)1、下列哪些技能对于大数据分析师来说至关重要?A. 数据挖掘技术B. SQL数据库查询语言C. 数据可视化工具使用(如Tableau)D. 熟悉数据隐私保护法E. 了解硬件工程原理2、在处理大数据时,以下哪些方法可以用来减少计算资源的消耗?A. 数据压缩B. 数据采样C. 增加冗余字段D. 使用分布式计算框架E. 提高数据的维度3、以下哪些工具或技术是大数据分析中常用的数据处理和分析工具?()A. HadoopB. PythonC. SQLD. R语言E. Excel4、在大数据分析中,以下哪些是常用的数据可视化工具?()A. TableauB. Power BIC. MatplotlibD. D3.jsE. Google Charts5、在处理大数据时,以下哪些技术可以用来解决数据存储和计算中的挑战?A. Hadoop MapReduceB. SQL数据库C. NoSQL数据库D. SparkE. Excel6、下列哪些是数据预处理步骤的一部分?A. 数据清洗B. 数据集成C. 数据转换D. 数据挖掘E. 数据可视化7、以下哪些技术或工具是大数据分析师在数据预处理阶段常用的?()A. ETL工具(如Apache Nifi、Talend)B. 数据清洗和转换工具(如Pandas、OpenRefine)C. 数据库管理系统(如MySQL、Oracle)D. 数据可视化工具(如Tableau、Power BI)8、以下哪些方法可以帮助大数据分析师提高数据挖掘的准确性和效率?()A. 特征选择和工程B. 使用先进的机器学习算法C. 数据降维D. 交叉验证9、以下哪些工具或技术是大数据分析师在工作中常用的?()A. HadoopB. SparkC. SQLD. PythonE. Tableau 10、以下关于数据清洗的说法,正确的是?()A. 数据清洗是数据分析的重要步骤之一。
大数据分析师招聘笔试题及解答(某大型央企)

招聘大数据分析师笔试题及解答(某大型央企)(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、以下哪项不是大数据分析中的常见数据类型?A、结构化数据B、半结构化数据C、非结构化数据D、文本数据2、在数据预处理阶段,以下哪种方法不是用于处理缺失值的常见技术?A、均值填充B、中位数填充C、众数填充D、时间序列插值3、以下哪种算法最适合用于处理大规模数据集的分类问题?A、线性回归B、决策树C、K-均值聚类D、支持向量机(SVM)4、在进行数据分析时,发现数据集中存在大量缺失值,最合适的处理方法是?A、直接删除包含缺失值的数据行B、使用一个全局常数值来填充缺失值C、利用预测模型估计并填充缺失值D、根据业务逻辑使用相关统计量(如平均数、中位数)进行填充5、以下哪种数据类型最适合表示用户年龄?A. 整数(int)B. 字符串(str)C. 浮点数(float)D. 日期时间(datetime)6、在处理大数据时,以下哪种技术可以有效提高数据处理的效率?A. 数据分区(Partitioning)B. 数据去重(De-duplication)C. 数据索引(Indexing)D. 数据压缩(Compression)7、在数据预处理阶段,对于数据集中缺失值的处理,以下哪种方法不合适?A、直接删除含有缺失值的数据行B、使用均值、中位数或者众数填充缺失值C、利用算法预测缺失值D、在没有充分依据的情况下,假设缺失值为零8、在进行大数据分析时,以下哪个工具最适合用来进行实时数据流处理?A、Hadoop MapReduceB、Apache Spark StreamingC、SQL ServerD、Tableau9、在Hadoop生态系统中,下列哪个组件负责处理大规模数据集的分布式存储和计算?A. HDFS(Hadoop Distributed File System)B. MapReduceC. YARN(Yet Another Resource Negotiator)D. Hive二、多项选择题(本大题有10小题,每小题4分,共40分)1、在进行大数据分析时,以下哪些是常用的数据预处理步骤?(多选)A. 数据清洗B. 特征选择C. 模型评估D. 数据转换E. 异常值检测2、下列关于Hadoop生态系统组件的说法正确的是?(多选)A. HDFS是一个分布式文件系统,支持大规模数据存储。
【优质】数据分析师常见的7道笔试题目及答案-word范文模板 (4页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==数据分析师常见的7道笔试题目及答案导读:探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于已有假设的证实或证伪。
以下是由小编J.L为您整理推荐的实用的应聘笔试题目和经验,欢迎参考阅读。
1、海量日志数据,提取出某日访问百度次数最多的那个IP。
首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。
注意到IP是32位的,最多有个2^32个IP。
同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。
然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。
或者如下阐述:算法思想:分而治之+Hash1.IP地址最多有2^32=4G种取值情况,所以不能完全加载到内存中处理;2.可以考虑采用“分而治之”的思想,按照IP地址的Hash(IP)24值,把海量IP日志分别存储到1024个小文件中。
这样,每个小文件最多包含4MB个IP地址;3.对于每一个小文件,可以构建一个IP为key,出现次数为value的Hash map,同时记录当前出现次数最多的那个IP地址;4.可以得到1024个小文件中的出现次数最多的IP,再依据常规的排序算法得到总体上出现次数最多的IP;2、搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。
假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。
一个查询串的重复度越高,说明查询它的用户越多,也就是越热门。
),请你统计最热门的10个查询串,要求使用的内存不能超过1G。
典型的Top K算法,还是在这篇文章里头有所阐述,文中,给出的最终算法是:第一步、先对这批海量数据预处理,在O(N)的时间内用Hash表完成统计(之前写成了排序,特此订正。
(完整word版)数据分析笔试题分析(word文档良心出品)

从互联网巨头数据挖掘类招聘笔试题目看我们还差多少知识1 从阿里数据分析师笔试看职业要求以下试题是来自阿里巴巴招募实习生的一次笔试题,从笔试题的几个要求我们一起来看看数据分析的职业要求。
一、异常值是指什么?请列举1种识别连续型变量异常值的方法?异常值(Outlier)是指样本中的个别值,其数值明显偏离所属样本的其余观测值。
在数理统计里一般是指一组观测值中与平均值的偏差超过两倍标准差的测定值。
Grubbs’ test(是以Frank E. Grubbs命名的),又叫maximum normed residual test,是一种用于单变量数据集异常值识别的统计检测,它假定数据集来自正态分布的总体。
未知总体标准差σ,在五种检验法中,优劣次序为:t检验法、格拉布斯检验法、峰度检验法、狄克逊检验法、偏度检验法。
点评:考察的内容是统计学基础功底。
二、什么是聚类分析?聚类算法有哪几种?请选择一种详细描述其计算原理和步骤。
聚类分析(cluster analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术。
聚类分析也叫分类分析(classification analysis)或数值分类(numerical taxonomy)。
聚类与分类的不同在于,聚类所要求划分的类是未知的。
聚类分析计算方法主要有:层次的方法(hierarchical method)、划分方法(partitioning method)、基于密度的方法(density-based method)、基于网格的方法(grid-based method)、基于模型的方法(model-based method)等。
其中,前两种算法是利用统计学定义的距离进行度量。
k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。
大数据分析师招聘笔试题及解答(某大型央企)2025年

2025年招聘大数据分析师笔试题及解答(某大型央企)(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、大数据分析的核心技术不包括以下哪项?A、数据挖掘B、机器学习C、自然语言处理D、数据可视化2、在数据仓库中,以下哪个组件用于存储和管理大量的数据?A、数据立方体B、元数据仓库C、数据湖D、事实表3、在数据预处理阶段,为了处理缺失值,下列哪种方法不是通常采用的方法?A. 删除含有缺失值的记录B. 用特定值填充(如均值、中位数)C. 使用预测模型来估算缺失值D. 将缺失值标记为一个独立的类别4、假设你正在分析一个关于客户购买行为的数据集,该数据集包含了客户的年龄信息。
如果要将连续的年龄变量转换为分类变量,下面哪个区间划分方式可能是最合理的?A. 0-18, 19-30, 31-50, 51-70, 70+B. 0-20, 21-40, 41-60, 61-80, 81+C. 0-10, 11-20, 21-30, 31-40, 41-50, 51-60, 61-70, 71-80, 81-90, 91-100, 100+D. 0-15, 16-25, 26-35, 36-45, 46-55, 56-65, 66-75, 76-85, 86-95, 96-105, 105+5、某大型央企的数据仓库中存储了员工的基本信息、工作表现和绩效考核数据。
以下关于数据仓库的数据模型,哪一项描述是正确的?A、数据仓库是实时数据库,用于处理在线事务处理(OLTP)操作B、数据仓库是一个关系型数据库,用于存储历史数据,支持在线分析处理(OLAP)C、数据仓库是一个面向对象的数据库,主要用于存储复杂的数据结构D、数据仓库是一个文件系统,主要用于存储非结构化数据6、在数据分析中,以下哪种统计方法通常用于描述数据集中各个变量之间的线性关系强度?A、卡方检验B、方差分析(ANOVA)C、相关系数D、主成分分析(PCA)7、在数据仓库中,以下哪个阶段主要负责数据的集成和合并?A. 数据抽取阶段B. 数据清洗阶段C. 数据转换阶段D. 数据加载阶段8、在数据分析过程中,以下哪个指标通常用来评估数据集的完整性和一致性?A. 数据准确性B. 数据一致性C. 数据有效性D. 数据唯一性9、大数据分析师在处理数据时,以下哪种数据清洗方法适用于去除重复记录?A. 数据去重B. 数据排序C. 数据转换D. 数据采样 10、在数据可视化中,以下哪种图表最适合展示不同类别数据之间的比较?A. 雷达图B. 柱状图C. 折线图D. 散点图二、多项选择题(本大题有10小题,每小题4分,共40分)1、题号:1、题目:以下哪些工具或技术是大数据分析师在数据分析过程中常用的?()A、HadoopB、PythonC、R语言D、SQLE、Excel2、题号:2、题目:大数据分析过程中,以下哪些步骤是数据清洗的常见内容?()A、去除重复数据B、处理缺失值C、数据类型转换D、异常值处理E、数据标准化3、以下哪些工具和技术常用于大数据分析?()A、HadoopB、SparkC、MySQLD、PythonE、R语言4、在大数据分析中,以下哪些概念是数据挖掘过程中常见的?()A、关联规则挖掘B、聚类分析C、分类D、预测分析E、数据可视化5、以下哪些是大数据分析中的常见数据处理步骤?()A、数据清洗B、数据集成C、数据探索D、数据可视化6、以下哪些是大数据分析中常用的数据挖掘技术?()A、聚类分析B、关联规则挖掘C、分类算法D、预测模型7、以下哪些是大数据分析中常用的数据挖掘技术?()A. 关联规则挖掘B. 分类与预测C. 聚类分析D. 数据可视化E. 时间序列分析8、以下哪些是大数据分析中常用的数据处理技术?()A. 数据清洗B. 数据集成C. 数据存储D. 数据归一化E. 数据挖掘9、大数据分析师在进行数据挖掘时,以下哪些是常用的数据挖掘技术?()A. 关联规则挖掘B. 聚类分析C. 分类算法D. 时序分析E. 机器学习 10、以下关于大数据平台架构的描述中,正确的是哪些?()A. 大数据平台通常采用分布式架构B. 分布式文件系统如Hadoop的HDFS是大数据平台的核心组成部分C. 大数据平台中的数据处理引擎如Spark和Flink可以实现流处理和批处理D. 大数据平台通常包括数据存储、数据采集、数据处理、数据分析和数据可视化等模块E. 大数据平台中的数据采集模块负责从各种数据源收集数据三、判断题(本大题有10小题,每小题2分,共20分)1、大数据分析的核心任务是通过对海量数据的挖掘,提取有价值的信息和知识,进而支持企业的决策过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网易数据分析专员笔试题目一、基础题1、中国现在有多少亿网民?2、百度花多少亿美元收购了91无线?3、app store排名的规则和影响因素4、豆瓣fm推荐算法5、列举5个数据分析的博客或网站二、计算题1、关于简单移动平均和加权移动平均计算2、两行数计算相关系数。
(2位小数,还不让用计算器,反正我没算)3、计算三个距离,欧几里德,曼哈顿,闵可夫斯基距离三、简答题1、离散的指标,优缺点2、插补缺失值方法,优缺点及适用环境3、数据仓库解决方案,优缺点4、分类算法,优缺点5、协同推荐系统和基于聚类系统的区别四、分析题关于网易邮箱用户流失的定义,挑选指标。
然后要构建一个预警模型。
五、算法题记不得了,没做。
反正是决策树和神经网络相关。
1、你处理过的最大的数据量?你是如何处理他们的?处理的结果。
2、告诉我二个分析或者计算机科学相关项目?你是如何对其结果进行衡量的?3、什么是:提升值、关键绩效指标、强壮性、模型按合度、实验设计、2/8原则?4、什么是:协同过滤、n-grams, map reduce、余弦距离?5、如何让一个网络爬虫速度更快、抽取更好的信息以及更好总结数据从而得到一干净的数据库?6、如何设计一个解决抄袭的方案?7、如何检验一个个人支付账户都多个人使用?8、点击流数据应该是实时处理?为什么?哪部分应该实时处理?9、你认为哪个更好:是好的数据还是好模型?同时你是如何定义“好”?存在所有情况下通用的模型吗?有你没有知道一些模型的定义并不是那么好?10、什么是概率合并(AKA模糊融合)?使用SQL处理还是其它语言方便?对于处理半结构化的数据你会选择使用哪种语言?11、你是如何处理缺少数据的?你推荐使用什么样的处理技术?12、你最喜欢的编程语言是什么?为什么?13、对于你喜欢的统计软件告诉你喜欢的与不喜欢的3个理由。
14、SAS, R, Python, Perl语言的区别是?15、什么是大数据的诅咒?16、你参与过数据库与数据模型的设计吗?17、你是否参与过仪表盘的设计及指标选择?你对于商业智能和报表工具有什么想法?18、你喜欢TD数据库的什么特征?19、如何你打算发100万的营销活动邮件。
你怎么去优化发送?你怎么优化反应率?能把这二个优化份开吗?20、如果有几个客户查询ORACLE数据库的效率很低。
为什么?你做什么可以提高速度10倍以上,同时可以更好处理大数量输出?21、如何把非结构化的数据转换成结构化的数据?这是否真的有必要做这样的转换?把数据存成平面文本文件是否比存成关系数据库更好?22、什么是哈希表碰撞攻击?怎么避免?发生的频率是多少?23、如何判别mapreduce过程有好的负载均衡?什么是负载均衡?24、请举例说明mapreduce是如何工作的?在什么应用场景下工作的很好?云的安全问题有哪些?25、(在内存满足的情况下)你认为是100个小的哈希表好还是一个大的哈希表,对于内在或者运行速度来说?对于数据库分析的评价?26、为什么朴素贝叶斯差?你如何使用朴素贝叶斯来改进爬虫检验算法?27、你处理过白名单吗?主要的规则?(在欺诈或者爬行检验的情况下)28、什么是星型模型?什么是查询表?29、你可以使用excel建立逻辑回归模型吗?如何可以,说明一下建立过程?30、在SQL, Perl, C++, Python等编程过程上,待为了提升速度优化过相关代码或者算法吗?如何及提升多少?31、使用5天完成90%的精度的解决方案还是花10天完成100%的精度的解决方案?取决于什么内容?32、定义:QA(质量保障)、六西格玛、实验设计。
好的与坏的实验设计能否举个案例?33、普通线性回归模型的缺陷是什么?你知道的其它回归模型吗?34、你认为叶数小于50的决策树是否比大的好?为什么?35、保险精算是否是统计学的一个分支?如果不是,为何如何?36、给出一个不符合高斯分布与不符合对数正态分布的数据案例。
给出一个分布非常混乱的数案例。
37、为什么说均方误差不是一个衡量模型的好指标?你建议用哪个指标替代?38、你如何证明你带来的算法改进是真的有效的与不做任何改变相比?你对A/B测试熟吗?39、什么是敏感性分析?拥有更低的敏感性(也就是说更好的强壮性)和低的预测能力还是正好相反好?你如何使用交叉验证?你对于在数据集中插入噪声数据从而来检验模型的敏感性的想法如何看?40、对于一下逻辑回归、决策树、神经网络。
在过去15年中这些技术做了哪些大的改进?41、除了主成分分析外你还使用其它数据降维技术吗?你怎么想逐步回归?你熟悉的逐步回归技术有哪些?什么时候完整的数据要比降维的数据或者样本好?42、你如何建议一个非参数置信区间?43、你熟悉极值理论、蒙特卡罗逻辑或者其它数理统计方法以正确的评估一个稀疏事件的发生概率?44、什么是归因分析?如何识别归因与相关系数?举例。
45、如何定义与衡量一个指标的预测能力?46、如何为欺诈检验得分技术发现最好的规则集?你如何处理规则冗余、规则发现和二者的本质问题?一个规则集的近似解决方案是否可行?如何寻找一个可行的近似方案?你如何决定这个解决方案足够好从而可以停止寻找另一个更好的?47、如何创建一个关键字分类?48、什么是僵尸网络?如何进行检测?49、你有使用过API接口的经验吗?什么样的API?是谷歌还是亚马逊还是软件即时服务?50、什么时候自己编号代码比使用数据科学者开发好的软件包更好?51、可视化使用什么工具?在作图方面,你如何评价Tableau?R?SAS?在一个图中有效展现五个维度?52、什么是概念验证?53、你主要与什么样的客户共事:内部、外部、销售部门/财务部门/市场部门/IT部门的人?有咨询经验吗?与供应商打过交道,包括供应商选择与测试。
54、你熟悉软件生命周期吗?及IT项目的生命周期,从收入需求到项目维护?55、什么是cron任务?56、你是一个独身的编码人员?还是一个开发人员?或者是一个设计人员?57、是假阳性好还是假阴性好?58、你熟悉价格优化、价格弹性、存货管理、竞争智能吗?分别给案例。
59、Zillow’s算法是如何工作的?60、如何检验为了不好的目的还进行的虚假评论或者虚假的FB帐户?61、你如何创建一个新的匿名数字帐户?62、你有没有想过自己创业?是什么样的想法?63、你认为帐号与密码输入的登录框会消失吗?它将会被什么替代?64、你用过时间序列模型吗?时滞的相关性?相关图?光谱分析?信号处理与过滤技术?在什么样的场景下?65、哪位数据科学有你最佩服?从哪开始?66、你是怎么开始对数据科学感兴趣的?67、什么是效率曲线?他们的缺陷是什么,你如何克服这些缺陷?68、什么是推荐引擎?它是如何工作的?69、什么是精密测试?如何及什么时候模拟可以帮忙我们不使用精密测试?70、你认为怎么才能成为一个好的数据科学家?71、你认为数据科学家是一个艺术家还是科学家?72、什么是一个好的、快速的聚类算法的的计算复杂度?什么好的聚类算法?你怎么决定一个聚类的聚数?73、给出一些在数据科学中“最佳实践的案例”。
74、什么让一个图形使人产生误解、很难去读懂或者解释?一个有用的图形的特征?75、你知道使用在统计或者计算科学中的“经验法则”吗?或者在商业分析中。
76、你觉得下一个20年最好的5个预测方法是?77、你怎么马上就知道在一篇文章中(比如报纸)发表的统计数字是错误,或者是用作支撑作者的论点,而不是仅仅在罗列某个事物的信息?例如,对于每月官方定期在媒体公开发布的失业统计数据,你有什么感想?怎样可以让这些数据更加准确?从阿里数据分析师笔试看职业要求以下试题是来自阿里巴巴招募实习生的一次笔试题,从笔试题的几个要求我们一起来看看数据分析的职业要求。
一、异常值是指什么?请列举1种识别连续型变量异常值的方法?异常值(Outlier)是指样本中的个别值,其数值明显偏离所属样本的其余观测值。
在数理统计里一般是指一组观测值中与平均值的偏差超过两倍标准差的测定值。
Grubbs’ test(是以Frank E. Grubbs命名的),又叫maximum normed residual test,是一种用于单变量数据集异常值识别的统计检测,它假定数据集来自正态分布的总体。
未知总体标准差σ,在五种检验法中,优劣次序为:t检验法、格拉布斯检验法、峰度检验法、狄克逊检验法、偏度检验法。
点评:考察的内容是统计学基础功底。
二、什么是聚类分析?聚类算法有哪几种?请选择一种详细描述其计算原理和步骤。
聚类分析(cluster analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术。
聚类分析也叫分类分析(classification analysis)或数值分类(numerical taxonomy)。
聚类与分类的不同在于,聚类所要求划分的类是未知的。
聚类分析计算方法主要有:层次的方法(hierarchical method)、划分方法(partitioning method)、基于密度的方法(density-based method)、基于网格的方法(grid-based method)、基于模型的方法(model-based method)等。
其中,前两种算法是利用统计学定义的距离进行度量。
k-means 算法的工作过程说明如下:首先从n个数据对象任意选择k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。
一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
其流程如下:(1)从n个数据对象任意选择k 个对象作为初始聚类中心;(2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;(3)重新计算每个(有变化)聚类的均值(中心对象);(4)循环(2)、(3)直到每个聚类不再发生变化为止(标准测量函数收敛)。
优点:本算法确定的K 个划分到达平方误差最小。
当聚类是密集的,且类与类之间区别明显时,效果较好。
对于处理大数据集,这个算法是相对可伸缩和高效的,计算的复杂度为O(NKt),其中N是数据对象的数目,t是迭代的次数。
一般来说,K<<N,t<<N 。
缺点:1. K 是事先给定的,但非常难以选定;2. 初始聚类中心的选择对聚类结果有较大的影响。
点评:考察的内容是常用数据分析方法,做数据分析一定要理解数据分析算法、应用场景、使用过程、以及优缺点。