代谢 生物氧化途径 生物固氮 肽聚糖合成

合集下载

5.9 微生物的合成代谢(一)

5.9 微生物的合成代谢(一)

•合成代谢(anabolism)•就是微生物将简单的无机物或者有机的小分子物质在细胞内的各种酶促反应合成蛋白质、核酸、多糖及脂质等高分子化合物,并进一步组装成具有完整细胞结构与功能的一些列代谢过程。

一、生物合成原则Principles Governing Biosynthesis 从下列五个方面进行讲述原则1.生物由小分子逐步合成大分子乃至细胞Inorganic molecules 细胞cell细菌、真菌、原生动物 细胞器Organelles 细胞膜、细胞核、线粒体、鞭毛超分子体系Supramolecular systems 膜、肽聚糖、酶复合物大分子聚合物Macromolecules 多糖、蛋白质、脂类、核酸单体化合物Monomers单糖、氨基酸、脂肪酸、核苷酸 前体代谢物Precursor metabolites 12种碳源 无机分子CO 2、NH 3、H 2O 、PO 43-PEP carboxykinase Pyruvate carboxylasePyruvatekinase Hexokinase Glucose 6-phosphatasePhospho-fructokinase Fructose 1,6-bisphosphate原则2. 很多酶是双功能原则3. 合成代谢消耗能量•合成代谢是耗能反应,需要与ATP或其他高能化合物的水解相耦合原则4.合成代谢与分解代谢反应在空间上分离•合成代谢与分解代谢定位在不同的细胞区室•保证合成代谢与分解代谢途径能独立地同时地进行。

原则5.分解代谢和合成代谢通常使用不同的辅因子•通常分解代谢的氧化过程会产生NADH2,相反,在合成代谢过程中需要一个电子供体时,往往需要NADPH2。

分类依据合成反应类型举例产物分子量前体代谢物的合成12种单体化合物的合成氨基酸、单糖、单核苷酸大分子聚合物的合成蛋白质、多糖、核酸产物性质初级代谢产物蛋白质、多糖、核酸、脂类次级代谢产物抗生素、激素、毒素、色素代谢特异性生物共有合成反应初级代谢产物的合成微生物特有合成反应肽聚糖合成、生物固氮、次级代谢二、微生物合成反应类型5.9 微生物的合成代谢(一)•合成代谢(anabolism)•合成代谢三要素:能量还原力即NADPH2或NADH2化能自养细菌:1.氢酶催化H2形成NAD(P)H22.电子逆转在光合微生物藻类与蓝细菌:在反应中心Ⅱ中发生光解形成还原力光合细菌:电子还原NAD(P) 形成NAD(P)H2前体代谢物葡萄糖-1-磷酸 葡萄糖-6-磷酸 磷酸二羟丙酮 甘油酸-3-磷酸 磷酸烯醇式丙酮酸 丙酮酸 核糖-5-磷酸 赤藓糖-4-磷酸 乙酰辅酶A 草酰乙酸 α-酮戊二酸 琥珀酰辅酶A 氨基酸 核糖 维生素 NH 3 NO 3- 有机氮 蛋白质 核酸 自养微生物 异养微生物 多糖 脂肪 单糖 脂肪酸 辅因子 有机物 CO 2分解代谢和合成代谢过程中的 重要中间代谢产物 EMP HMP TCA复习思考题1.细菌细胞内的生物合成有那些基本原则?2.微生物合成反应有哪些类型?3.合成代谢的三要素是什么?4.12种前体代谢物是什么?分别来自哪些途径?。

第十五单元——第五章微生物代谢(二)

第十五单元——第五章微生物代谢(二)
第六章
微生物的代谢
二、糖的合成代谢 1. 糖合成的能量来源
包括:化能异养型、化能自养和光能营养微生物的生 物氧化和产能
(1)化能异养型微生物的生物氧化和产能 糖的分解代谢所产生的能量都可以用于糖的生物合 成,本节第一部分已经介绍过。 此外,某些化能异养微生 物(如Closterdium sporogenes 生孢梭菌)能利用一些氨基 酸同时当作碳源、氮源和能源。
嗜盐菌紫膜的光合作用特点:
无O2条件下进行;
不产O2; 最简单的光合磷酸化反应; 无叶绿素和细菌叶绿素,光合色素是紫膜上的 视紫红质。
生物合成三要素(简单小分子, ATP,NADPH) 如何获得?
氧化磷酸化:好氧菌,兼性厌氧菌 底物水平磷酸化:厌氧菌,兼性厌氧菌 光合磷酸化:光合微生物 HMP:化能异养型 耗ATP逆电子链传递:化能自养型, 紫色和绿色光合细菌 光合作用(非循环光合磷酸化):蓝细菌 异养型:从环境中吸取 自养型:同化CO2
红色部分(红膜)
嗜盐菌 细胞膜 主要含细胞色素和黄素蛋白等用于氧化磷酸化的呼吸链载体
紫色部分(紫膜) 在膜上呈斑片状(直径约0.5 mm)独立分布,其总面积约占 细胞膜的一半,主要由细菌视紫红质组成。
实验发现,在波长为550-600 nm的光照下,嗜盐菌ATP的合成速率 最高,而这一波长范围恰好与细菌视紫红质的吸收光谱相一致。
(1)自养微生物的CO2固定
1)Calvin循环(Calvin cycle)
循环中特有酶:磷酸核酮糖激酶和核酮糖羧化酶。循环分三个阶段 : ①羧化反应 (核酮糖-1,5-二磷酸通过核酮糖羧化酶将CO2固定,转变为 2个甘油酸-3-磷酸,重复3次,产生6个C3化合物 ) ②还原反应(甘油酸-3-磷酸被还原成甘油醛-3-磷酸 ) ③CO2受体的再生 (1个甘油醛-3-磷酸逆EMP途径生成葡萄糖,其余5 个再生出3个核酮糖-1,5-二磷酸分子,以便重新接受CO2分子 )。

微生物学 第三节 微生物独特合成代谢举例PPT课件

微生物学 第三节 微生物独特合成代谢举例PPT课件

细菌萜醇(bactoprenol):又称类脂载体;运载“Park”核 苷 酸 进 入 细 胞 膜 , 连 接 N- 乙 酰 葡 糖 胺 和 甘 氨 酸 五 肽 “桥”,最后将肽聚糖单体送入细胞膜外的细胞壁生长 点处。
结构式:
CH3
CH3
CH3
CH3C=CHCH2(CH2C=CHCH2)9CH2C=CHCH2―OH
功能:除肽聚糖合成外还参与微生物多种细胞外多糖和脂 多糖的生物合成,
如:细菌的磷壁酸、脂多糖,
细菌和真菌的纤维素,
真菌的几丁质和甘露聚糖等。
11
第三阶段:
已合成的双糖肽插在细胞膜外的细胞壁生长点中,并交联形 成肽聚糖。
这一阶段分两步:
第一步:是多糖链的伸长——双糖肽先是插入细胞壁生长点 上作为引物的肽聚糖骨架(至少含6~8个肽聚糖单体分子) 中,通过转糖基作用(transglycosylation)使多糖链延伸一 个双糖单位;
ATP ADP
葡萄糖
葡萄糖-6-磷酸
Gln Glu 果糖-6-磷酸
乙酰CoA CoA
葡糖胺-6-磷酸
N-乙酰葡糖胺-葡糖胺-1-磷酸
N-乙酰葡糖胺-UDP
磷酸烯醇式丙酮酸 Pi NADPH NADP
N-乙酰胞壁酸-UDP
7
“Park”核苷酸的合成
8
第二阶段:
在细胞膜上由N-乙酰胞壁酸五肽与N-乙酰葡萄糖胺合 成肽聚糖单体——双糖肽亚单位。
20
一些抗生素能抑制细菌细胞壁的合成,但是它们的作用 位点和作用机制是不同的。
① -内酰胺类抗生素(青霉素、头孢霉素):
是D-丙氨酰-D-丙氨酸的结构类似物,两者相互竞争转肽酶 的活性中心。当转肽酶与青霉素结合后,双糖肽间的肽桥无 法交联,这样的肽聚糖就缺乏应有的强度,结果形成细胞壁 缺损的细胞,在不利的渗透压环境中极易破裂而死亡。 ②杆菌肽: 能与十一异戊烯焦磷酸络合,因此抑制焦磷酸酶的作用,这 样也就阻止了十一异戊烯磷酸糖基载体的再生,从而使细胞 壁(肽聚糖)的合成受阻。

微生物代谢

微生物代谢

有机物 最初能源 日 光 无机物
化能异养菌 光能营养菌 化能自养菌 通用能源(ATP)
一、化能异养微生物的生物氧化和产能
生物氧化指糖、脂、蛋白质等有机物质在活细胞内 氧化分解产生H2O与CO2并释放能量的作用。
生物氧化的过程有脱氢(或电子)、递氢(或电 子)、和受氢(或电子)3个阶段。
产能(ATP) 生物氧化的功能: 产还原力[H] 产小分子中间代谢物
2.代谢调节在发酵工业上的应用 a. 应用营养缺陷型菌株解除反馈调节
高丝氨酸缺陷型菌株不能合成高丝氨酸酶,故不能合成高丝 氨酸,也不能合成苏氨酸和甲硫氨酸,在补给适量的高丝氨酸就 可产生大量的赖氨酸。
b. 应用抗反馈调节的突变株解除反馈调节 指一种 对反馈 抑制不 敏感或 对阻遏 有抗性 的菌株 或兼而 有之的 菌株
(3)初级代谢与微生物生长平行进行,但次级代谢 与微生物生长不平行,一般在生长后期才进行。
第三节 微生物的代谢调节与发酵生产
1. 代谢调节 微生物细胞代谢的调节主要是通过控制酶的作用来 实现的。 酶活性调节 调 节 类 型
调节的是已有酶分子的活性, 是在酶化学水平上发生的
酶合成调节
调节的是酶分子的合成量,是 在遗传学水平上发生的
NH4+、NO2-、H2S、S0、H2、Fe2+等
呼吸链的氧化磷酸化反应
硝化细菌、铁细菌、硫细菌、氢细菌等属于化能自养类型
(二)光能自养微生物
真核生物:藻类及绿色植物
产氧
原核生物:蓝细菌
光能自养微生物
不产氧
真细菌:光合细菌
古细菌:嗜盐菌
1. 环式光合磷酸化
特点:
①电子传递途径属循环方式
②产能与产还原力分别进行

10.微生物独特合成代谢途径汇总

10.微生物独特合成代谢途径汇总
羟基丙酸途径
(一)Calvin循环(Calvin cycle)
Calvin循环又称Calvin-Benson循环、 Calvin-Bassham循环、核酮糖二磷酸途径或 还原性戊糖磷酸循环。这一循环是光能自养生物
和化能自养生物固定CO2的主要途径。
核酮糖二磷酸羧化酶(ribulose biphosphate carboxylase,
自 学
(四)羟基丙酸途径
(hydroxypropionate pathway)
自 学
二、生物固氮
生物固氮(nitrogen-fixing organisms,diazotrophs)
是指大气中的分子氮通过微生物固氮酶的催化而还原成氨的
过程,生物界中只有原核生物才具有固氮能力。
自 学
三、微生物结构大分子——肽聚糖的生物合成
非循环光合磷酸化 紫膜光合磷酸化
2. 分解代谢和合成代谢的联系
两用代谢途径 代谢物回补顺序 乙醛酸循环
3. 微生物独特合成代谢途径 CO2的自养固定 生物固氮 细胞壁肽聚糖的生物合成
微生物次生代谢产物的生物合成
当转肽酶与青霉素结合后,因前后两个肽聚糖单 体间的肽桥无法交联,因此只能合成缺乏正常机械强 度的缺损“肽聚糖”,从而形成了细胞壁缺损的细胞
,例如原生质体或球状体等,它们在渗透压变动的不
利环境下,极易因破裂而死亡。 因为青霉素的作用机制在于抑制肽聚糖的生物合 成,因此对处于生长繁殖旺盛期的微生物具有明显的 抑制作用,而对处于生长休止期的细胞(rest cell), 则无抑制作用。
代谢是微生物新陈代谢的核心。
生 物 氧 化 的 过 程 脱氢(或电子) 递氢(或电子) 受氢(或电子)
异养微生物
生 物 氧 化 的 类 型

微生物的新陈代谢习题

微生物的新陈代谢习题

微生物的新陈代谢习题一名词解释1、无氧呼吸2、呼吸3、生物氧化4生物固氮5发酵6硝化反应7反硝化反应8抗生素9、固氮作用二、填空1微生物产生ATP的方式三种。

2、经呼吸链,每个NADH可产生个ATP。

3、在循环光和磷酸化过程中,被激发的菌绿素分子释放的电子最后给4、在非循环磷酸化过程中,O2来自被氧化。

5、当微生物进化呼吸时,分解一个单位葡萄糖,一般形成个ATP分子。

6、两种微生物间H2的产生和氧化称为7、物质氧化才能供微生物能量,物质氧化的方式根据最终电子受体的不同有三种方式,和8、大肠杆菌发酵葡萄糖的V.P.反应为性,甲基红实验为性。

9、放线菌对国民经济的重要性,在于它们是抗生素的主要产生菌,许多临床和生产上使用价值如,等等,都由放线菌产生。

10、EMP途径,HMP途径,ED途径三者相比,产能最多的途径是,产还原能力最多的途径是三、判断题1、能够固氮的微生物都是原核生物。

2、反化作用只有在无氧条件下进行3、氧化磷酸化包括发酵作用,有氧呼吸和无氧呼吸。

4、同一种微生物由于环境中的PH不同可能积累不同的代谢产物5、硝化细菌可以把氨转化为亚硝酸和硝酸,它属于化能自养型微生物6、7、化能自养型微生物生长所需要的能源来自无极氧化过程中放出的化学能8、阿维菌素是一种抗生素,它是一种微生物杀虫剂四、选择题1、原核生物所特有的糖降解途径是()A、EMPB、HMPC、EDD、TCA循环2、同型乳酸菌发酵中的丙酮酸来自()A、EMPB、HMPC、EDD、TCA循环3、通过有氧代谢,下述那个反应产生的ATP最多()A、葡萄糖——6-磷酸葡萄糖B、葡萄糖——丙酮酸C、琥珀酸——延胡索酸4、下属过程那个不产生ATP()A、光和磷酸化B、氧化磷酸化C、底物水平磷酸化D、Calvincycle5、葡萄糖彻底氧化包括三个典型的阶段()A、化学渗透B、光和磷酸化C、还原D、葡萄糖降解6、异氧生物利用有机物作能源和碳源,产生5碳中间产物供合成核酸,利用的途径是()A、混合酸发酵途径B、循环光和磷酸化C、TCA循环D、HMP途径7、细菌在有氧条件下彻底分解一分子的葡萄糖可产生()分子ATPA、2B、12C、36D、388、元和微生物能量代谢及很多合成代谢的部位是()A、质膜B、线绿体C、高尔基体D、核糖体9、10、发酵作用是()的生物氧化作用A、氧化参与下B、无极氧化物参与下C、有外源电子最终受体D、无外源电子最终受体11、下列()不抑制细菌细胞壁肽聚糖的合成过程A、万古霉素B、青霉素C、杆菌肽D、链霉素12、()是酿酒工业常用的糖化酶菌种A、根菌B、曲霉C、青霉D、枯草杆菌五、简答题1、试述固氮微生物的种类及其固氮的生化机制2、什么叫无氧呼吸,比较呼吸,无氧呼吸,发酵的异同点?3、什么是初级代谢和次级代谢?它们两者的关系?。

独特合成代谢举例

独特合成代谢举例
呼吸 无氧呼吸 阻氧屏障 ATP eNAD(P)H2 FD
(Fld)
N N
2H+,2e
ADP+Pi PII PI
发酵 光合作用
(HN NH)
2H+,2e
H2N N2H
2H+,2e
总式
N2 + 6 e + 6 H+ + 12 ATP
2NH3
2 N3H + 12 ADP + 12 Pi
固氮过程——简介
固氮酶的抗氧类型
菌好氧:固氮菌以好氧为主,以有氧呼吸产能
累积生物量。
酶厌氧:固氮菌中固氮酶在漫长演化中形成各种
阻氧保护机制。
阻氧类型:呼吸驱氧;构象保护;异形胞及
非异形胞的间隔性固氮和束状群体固氮及 类菌体和泡囊等固氮场所。
固氮抗氧机制
呼吸驱氧:细胞中耗碳源上什、呼吸强度增高; 产ATP下降、O2分压下降, 它可利用一条分支呼吸链。(eg:固氮菌科) 构象保护:固氮酶与Fe-S蛋白II及Mg2+存在下 形成一种耐氧复合大分子保护。(eg:褐球固氮菌) 蓝细菌 异 型 胞 : 胞大、壁厚、少产氧光合系统II、 SOD活性高。 (eg: Anabaena) 还有 时间分隔、束状群体、和高SOD活性等。
固氮过程——反应细节
还原剂 ADP+Pi Mg
II II
ATP--Mg
II II
I..
.I
Mo
-N
.
.I
Mo Mo N=N
Mo N
Fd
(Fld )
.
.
Fd( Fld)
II
ATP-Mg
ATP Mg
.

2017-2018年北航生物与医学工程学院特种医学701基础医学综合考研大纲重难点

2017-2018年北航生物与医学工程学院特种医学701基础医学综合考研大纲重难点

701基础医学综合考试大纲(2017版)考试内容包括生理学、细胞生物学、细胞生物学、微生物学和免疫学五大部分,所占比例分别为25%、25%、25%、15%和10%。

第一部分生理学 (25%)一. 人体组织结构1. 生命化学:生命体的基本元素,组织液。

3.细胞的结构和功能:细胞的生物电现象。

4.人体组织:上皮组织,结缔组织,肌肉组织及神经组织的功能。

二. 表皮系统皮肤及附属器的功能。

三. 运动系统骨骼肌的组织结构特点,骨骼肌的收缩机制。

四. 神经和内分泌系统1.神经系统功能,神经细胞、神经胶质细胞的功能,神经突触的结构与功能,反射弧的构成与功能。

2.脑脊液的产生与循环,中枢神经系统的血液供应,自主神经的特点与功能。

3.下丘脑垂体与甲状腺:下丘脑、腺垂体、甲状腺与甲状旁腺分泌的激素及功能。

4.肾上腺与胰腺:肾上腺、胰腺分泌的激素及其功能。

6.下丘脑-腺垂体-靶腺轴的调控方式、负反馈调节机制。

五.感受器1.味觉和嗅觉:味蕾的分布与功能;味觉和嗅觉的传导途径。

2.视觉器官:眼球及眼附属器的结构与功能,视力的形成与调节。

3.听觉器官:声波的传导与听力的形成。

六.循环系统1.血液:血液的组成,血细胞的组成和功能,血液的运输功能,凝血与纤溶的过程与机制,ABO血型与Rh血型的分型依据及输血原则。

2.血液循环系统:心脏的结构,瓣膜、心肌细胞的特点;心肌的电生理特性,心脏的供血;熟悉动脉、静脉及毛细血管的结构和功能,体循环与肺循环的循环路径, 组织液的生成;心动周期各时相的特点,血压的形成与调节。

3.淋巴系统与免疫:人体特异性及非特异性免疫的机制与特点。

七.呼吸系统1.呼吸系统的构成、结构特点及功能。

2.呼吸膜的结构特点及功能,呼吸的机制,外呼吸、内呼吸的概念,氧、二氧化碳在血液中的运输,呼吸的调节。

八.消化系统1.消化系统的组成、消化道的结构特点和功能,肝脏的功能。

2.各消化腺分泌的消化酶,碳水化合物,脂肪,蛋白质在消化道的消化和吸收过程,门脉循环的功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微生物的新陈代谢
代谢--生命体进行的一切化学反应。

代谢分为分解代谢和合成代谢。

分解代谢:复杂营养物分解为简单化合物(异化作用)。

合成代谢:简单小分子合成为复杂大分子(同化作用)
微生物对能量利用:
有机物化能异养菌
日光光能营养菌→通用能源A TP
还原态无机物化能自养菌
只有A TP和酰基辅酶A起偶联作用,其他高能化合物只作为〜P供体。

生物氧化的形式包括:某物质与氧结合、脱氢、失去电子三种。

生物氧化过程分为:脱氢、递氢、受氢三个阶段。

生物氧化功能:产能(A TP)、产还原力[H]、产小分子中间代谢物。

生物氧化类型:呼吸、无氧呼吸和发酵。

底物(基质)脱氢的四条主要途径
以葡萄糖作为典型底物
1、EMP途径(糖酵解途径)
有氧时,与TCA连接,将丙酮酸彻底氧化成二氧化碳和水。

无氧时,丙酮酸进一步代谢成有关产物。

EMP途径总反应为:
C6H12O6+2NAD++2Pi+2ADP→2CH3COCOOH(丙酮酸)+2NADH+2H+2ATP+2H2O。

EMP终产物的去向:
1)有氧条件:2NADH+H+经呼吸链的氧化磷酸化反应产生6A TP;
2)无氧条件:
①丙酮酸还原成乳酸;
②酵母菌(酿酒酵母)的酒精发酵:丙酮酸脱羧为乙醛,乙醛还原为乙醇。

(3)EMP途径生理功能
①供应A TP形式的能量和还原力(NADH2);
②是连接其他几个重要代谢的桥梁(TCA、HMP、ED途径)
③为生物合成提供多种中间代谢物;
④通过逆向反应可进行多糖合成。

(4)生产实践意义
与乙醇、乳酸、甘油、丙酮、丁醇等的发酵产生关系密切。

2、HMP途径(己糖-磷酸途径)
产生大量NADPH2和多种重要中间代谢物。

HMP途径的总反应
6葡萄糖-6-磷酸+12NAD P++6H2O →5葡萄糖-6-磷酸+12NADPH+12H++6CO2+Pi HMP途径的三个阶段
1)葡萄糖分子经过三步反应产生核酮糖-5-磷酸和CO2;
2)核酮糖-5-磷酸同分异构化或表异构化为核糖-5-磷酸和木糖-5-磷酸;
3)无氧参与条件下,几种戊糖发生碳架重排,产生己糖磷酸和丙糖磷酸。

HMP途径在微生物生命活动中的重要意义
①供应合成原料提供戊糖-P、赤藓糖-P;
②产还原力:产生12NADPH2;
③作为固定CO2的中介:是自养微生物CO2的中介(核酮糖-⑤-P在羧化酶的催化下固定CO2并形成核酮糖-15-二磷酸);
④扩大碳源利用范围:为微生物利用C3~C7多种碳源提供了必要的代谢途径;
⑤连接EMP途径:为生物合成提供更多的戊糖。

(4)生产实践意义
可提供许多重要的发酵产物(核苷酸、氨基酸、辅酶、乳酸等)。

3、ED途径2-酮-3-脱氧-6-磷酸葡萄糖酸裂解途径KDPG
是少数缺乏完整EMP的微生物具有的一种替代途径,细菌酒精发酵经ED进行。

ED途径总反应式
C6H12O6+ADP+Pi+NADP++NAD+→2CH3COCOOH+ATP+NADPH+H++NADH+H+ ED途径特点
1)KDPG(2-酮-3-脱氧-6-P-葡萄糖酸)裂解为丙酮酸和3-磷酸甘油醛;
2)存在KDPG醛缩酶;
3)两分子丙酮酸来历不同;
4)产能效率低(1molA TP/1mol葡萄糖)。

5)可与EMP、HMP、TCA循环等代谢途径相连,可相互协调、满足微生物对能量、还原力和不同中间代谢产物的需要。

4、TCA循环(三羧酸循环)
真核在线粒体中,原核在细胞质中。

TCA在代谢中占有重要枢纽地位
TCA循环的意义:
(1)生理意义:在一切分解代谢和合成代谢中占有枢纽地位,在动植物和微生物细胞中普遍存在,不仅是糖分解代谢的主要途径,也是脂肪、蛋白质分解代谢的最终途径,具有重要生理意义
(2)实践意义:与微生物大量发酵产物如柠檬酸、苹果酸、琥珀酸和谷氨酸等的生产密切相关。

柠檬酸是葡萄糖经TCA循环形成的最有代表性的发酵产物。

葡萄糖经不同脱氢途径后的产能效率
TCA循环总反应式
丙酮酸+4NAD++FAD+GDP+Pi+3H2O→3CO2+4(NADH+H+)+FADH2+GTP
若起始于乙酰-CoA
乙酰-CoA+3NAD++FAD+GDP+Pi+2H2O—→2C O2+3(NADH+H+)+FADH2+GTP+CoA
自养微生物
自养微生物按其最初能源的不同,可分为两大类:一类是能对无机物进行氧化而获得能量的微生物,化能无机自养型微生物;另一类是能利用日光辐射能的微生物,光能自养型微生物。

分解代谢和合成代谢的联系
两用代谢途径
凡在分解代谢和合成代谢中均具有功能的代谢途径,称为两用代谢途径。

EMP、HMP和TCA 循环都是重要的两用代谢途径。

代谢回补顺序:又称代谢物补偿途径或添补途径,是指能补充两用代谢途径中因合成代谢而消耗的中间代谢物的那些反应。

生物固氮
生物固氮:是指大气中的分子氮通过微生物固氮酶的催化而还原成氨的过程,生物界中只要原核生物才具有固氮能力。

固氮微生物(都是原核微生物)
①自生固氮菌:好氧、厌氧、兼性厌氧及各种营养类型。

②共生固氮菌:与豆科共生为根瘤菌,与非豆科共生是放线菌。

③联合固氮菌:根际、叶面微生物。

固氮机制
生物固氮反应的6要素:1.ATP的供应;N≡N分子中存在3个共价键,要把这种极端稳固的分子打开需费巨大能量。

固氮过程中把N2还原2NH3时消耗大量A TP(N2:A TP=1:18~24),由呼吸、厌氧呼吸、发酵或光合磷酸化作用提供。

2.还原力[H]及其传递载体;固氮反应中需大量还原力(N2:[H]=1:8),以NAD(P)H+H+的形式提供。

3.固氮酶;固氮酶是一种复合蛋白,由固二氮酶和固二氮酶还原酶两种相互分离的蛋白构成。

4.还原底物N;
5.镁离子;
6.严格的厌氧微环境。

总反应式:
N2+8[H]+16~24ATP→2NH3+H2+16~24ADP+16~24Pi
肽聚糖的生物合成
可分成在细胞质中、细胞膜上和细胞膜外3个合成阶段
(1) 在细胞质中合成
单糖组分在细胞质中合成(UDP是第一个载体)
1)由葡萄糖合成N-乙酰葡萄糖胺和N-乙酰胞壁酸:
2)由N-乙酰胞壁酸合成“Park”核苷酸:
(2)在细胞膜中的合成:
由“P”核苷酸合成肽聚糖亚单位的过程是在细胞膜上完成的,在细胞质内合成“P”核苷酸后,穿入细胞膜并进一步接上N-乙酰葡萄糖胺和甘氨酸五肽,即合成了肽聚糖亚单位。

这个肽聚糖亚单位通过一个类脂载体(十一异戊烯磷酸)携带到细胞膜外,进行肽聚糖合成。

UDP-NAM-五肽转至膜上,与一脂质载体(细菌萜醇-C55类异戊二烯醇)结合,释放出NAM-五肽焦磷脂,在膜内侧与UDP-NAG结合,构成肽聚糖亚单位。

细菌萜醇是第二个载体。

亚单位转移至细胞壁的生长点上(插入),万古霉素、杆菌肽抑制。

(3)在细胞膜外的合成
1)转糖基化作用:
2)转肽作用:
在细胞膜外侧,亚单位与引物相连(转糖基作用),再通过转肽酶作用,将亚单位末端的D-丙-D-丙拆开,第四个AA与另一亚单位的DAP之间交联,另一D-Ala释放。

抗生素青霉素的抑菌机制:
青霉素是肽聚糖亚单位五肽末端的D-丙氨酰胺-D-丙氨酸的类似物,两者可相互竞争转肽酶的活力中心。

转肽酶一旦被青霉素结合,前后2个肽聚糖单体间不能形成肽桥,肽聚糖缺乏机械强度,由此产生了原生质体或球状体之类的细胞壁缺损细菌。

青霉素的作用机制是抑制肽聚糖分子中肽桥的生物合成,对于生长繁殖旺盛阶段的细菌具有明显的抑制作用,对处于生长停滞状态的休止细胞,却无抑制作用。

微生物的代谢调节与发酵生产
代谢调控在发酵工业中的应用
1.应用营养缺陷型菌株解除正常的反馈调节
2.应用抗反馈调节的突变株解除反馈调节控制细胞膜的渗透性
3. 控制细胞膜的渗透性。

相关文档
最新文档