tempress扩散炉控制系统简介

合集下载

扩散炉智能控制系统设计开题报告

扩散炉智能控制系统设计开题报告

1.毕业设计的主要内容、重点和难点等主要内容:以PLC为核心,设计实现对扩散炉温度和工艺过程的检测与控制。

扩散炉有上、中、下3 区炉丝加热和压力控制加压,3 区温度分别由相应位置上的热电偶测出,压力由压力传感器测量,该控制系统主要功能就是实现对温度的控制,并使其按照设定工艺曲线自动运行。

同时提供友好的人机界面,实时显示温度、压力值和报警信息,方便工艺设定、系统调试等操作设计重点:(1)对扩散炉中的多个工位的温度测点分别进行检测、显示、控制;(2)温度控制精度在全量程范围内,检测分辨率≤±0. 2 ℃,控制精度≤±1 ℃;(3)储存多条温度工艺曲线,可由1~20 段直线组成,每段直线可设定时间:1~9 999 min;(4)具有断电参数保护功能;(5)具有较强的抗干扰能力并可适应工业现场的工作要求;(6)控制方式为自适应控制方式;(7)工作方式为自动、手动。

设计难点:(1)使用应用PLC的模拟量检测与控制能力以实现对被控过程的温度监测和控制;(2)如何设计模拟硬件电路使其比较精确的进行温度采集;(3)使用何种算法满足精度要求;(4)如何设计触摸屏操作界面使其进行友好互动。

2.准备情况(查阅过的文献资料及调研情况、现有设备、实验条件等)研究概况及发展趋势:进入21世纪,电子信息产业的持续高速发展激励和带动了集成电路产业的发展,这就为微电子产业发展提供了空前广阔的发展空间,也为半导体专用设备提供了巨大的市场潜力。

扩散炉用于大规模集成电路、分立器件、电力电子、光电器件和光导纤维等行业的扩散、氧化、退火、合金及烧结等工艺。

其主要用途是在高温条件下对半导体晶圆进行掺杂,即将元素磷、硼扩散入硅片,从而改变和控制半导体内杂质的类型、浓度和分布,以便建立起不同的电特性区域。

虽然某些工艺可以使用离子注入的方法进行掺杂,但是热扩散仍是最主要、最普遍的掺杂方法。

硅的热氧化作用是使硅片表面在高温下与氧化剂发生反应,生长一层二氧化硅膜。

几种主流扩散炉各项对照GOOD

几种主流扩散炉各项对照GOOD

Tempress炉体部分与 centrotherm的不同之处
1.控制方式不同: tempress采用DPC和DTC电路板箱进行数字过程和数 字温度控制,而 centrotherm则采用CESAR控制电脑和温度控制器来实现以 上功能; 2.电源供给不同: tempress有专门的供电箱,而 centrotherm的配电箱 集成在机台的炉体部分; 3.控制系统所处位置不同: tempress的DTC皆位于机台下方, DPC位 于气源柜下方,而 centrotherm的控制系统则位于炉体后面,与动力系统并 位于同一侧; 4.紧急制动不同: tempress每一跟炉管都有一个电源开关,集中位于 炉体下方,而 centrotherm炉体部分只有一个电源和一个 UPS开关,用于控 制整个机台; 5.spike TC超温报警设置不同: tempress只有1,3,5三个温区的spike TC有超温报警监控热偶,而 centrotherm五个spike TC上都有超温监控热 偶;
tempress净 化风机外部
centrotherm净化 风机外部
两者的相同之处有:
1.都是采用碳化硅桨进行石英舟的进出舟操作; 2.都有lift,储存架,冷却箱,净化风机,shuttle等装置; 3.都有手动上料台:shuttle
Gas cabinate—centrotherm
Centrotherm气源柜可以分为如下几个功能区:尾气瓶放置区,bubbler放置区,磷源温度 和液位监视区,气体控制区,热排,酸排,冷却水供给及净化区。其位置如图所示。
炉体部分—centrotherm
centrotherm炉体部位包含炉体,控制柜和电源柜三个部 分。
炉体部位包含五根炉管,控制柜里面包含着负责工艺程序执行的CESAR电脑,CMS和温度 控制器,电源柜负责供给整个机台所需的动力电源,相当于tempress的电源柜。

太阳能电池扩散设备Tempress

太阳能电池扩散设备Tempress

DPC
PT压力传感器用来时时检测气体的压力,起报警的作用。当工艺运行时, DPC首先与数字输出板通信,按照工艺要求打开气动阀和MFC流量计。这时 MFC的流量计讲信号时时传回模拟输入输出板,经过处理后将信号发送给DPC, DPC经过处理后将修正值再反馈给MFC,达到控制阀门开度的作用,起到控制 流量的作用。 如下图所示:源瓶的控制是由DPC将信号送到数字输出板,数字输出板将其 变换成相应的信号送到气动部分,然后使气动阀动作,打开阀门,起到开通 和关端的作用。源瓶的开通与关断,必须满足设备的要求才能动作,否则气 动阀门无法打开。
CDA Pressure sensor PT
Manual bypass
1/4” Outlet
Process tube
触摸屏TSC电脑的联系:公司通过一台TSC来监控两台TEMPRESS扩散炉。TSC电脑起到时时 监控的作用,而且在触摸瓶能够改动的参数都能够在TSC上来操作完成。触摸屏与TSC都 是和DPC相连,所有指令都由DPC来处理完成。触摸屏可以直接对DPC参数改动TSC电脑需 要将DPC数据读入才能修改;而TSC改动参数后与DOC通讯后,触摸屏可直接显示当前的参 数设定。
程序控制器 DPC
Shutoff valve
DPC与DTC、DMC、触摸屏直接通信,设备所有 的动作都是DPC发出指令,由相应的控制器完成 控制动作。剩下的一路由DPC直接控制的是气路 部分,它是由DPC直接控制开度和关断,并由DPC 做出相应的计算。如图所示:
MFC
Analog output
Digital output
温度控制器 DTC
温度控制器DTC与加热丝和热电偶的控制示意图: 加热丝与温度补偿线
Spike 热电偶

扩散炉(48所)简介-alan

扩散炉(48所)简介-alan
∗ ∗ ∗ ∗ ∗
一、扩散工艺原理 二、四探针原理 三、扩散装置示意图 四、P2O5,Cl2Leabharlann 性质 五、高温氧化/扩散系统的设备简介
扩散的工艺原理
∗ 制造PN结原理:实质上就是想办法使受主杂质(P型), 在半导体晶体内的一个区域中占优势,而使施主杂 质(N型)在半导体内的另外一个区域中占优势,这样 就在一块完整的半导体晶体中实现了P型和N型半导 体的接触,而此时半导体晶体内部就形成PN结。 ∗ 利用磷原子(N型) 向晶硅片(P型)内部扩散的方法, 改变晶硅片表面层的导电类型,从而形成PN结。这 就是用POCl3液态源扩散法制造P-N结的基本原理。
Chint Solar Confidential
11
高温氧化/扩散系统的设备简介 高温氧化 扩散系统的设备简介
• 气源气路
O2 MFC
小N2 MFC
大N2 MFC
Chint Solar Confidential
12
高温氧化/扩散系统的设备简介 高温氧化 扩散系统的设备简介
• 闭管的炉体尾部气路
尾气液收集瓶 尾气排放管道
气源进气口
炉体尾气管
Chint Solar Confidential
7
高温氧化/扩散系统的设备简介 高温氧化 扩散系统的设备简介
• 控制部分: 控制部分:
位于控制柜的计算机控制系统分布在各个层面,而每个层面的控制系统都是相 对的独立部分,每层控制对应层的推舟、炉温及气路部分,是扩散/氧化系统的控 制中心。 在每层相应的前面板上, 左侧分布15寸触摸屏,右侧 分布状态指示灯、报警器、 急停开关和控制开关。
Cl2
①颜色\气味\状态:通常情况下为有刺激性气味 黄绿色的气体。 ②密度:比空气密度大,标况时 是ρ=M/V(m)=(71g/mol)/(22.4L/mol)=3.17g/L 。 ③易 液化。熔沸点较低,在101kPa下,熔点-107.1°C, 沸点-34.6°C,降温加压可将氯气液化为液氯,液 氯即Cl2,其与氯气物理性质不同,但化学性质基 本相同。 ④溶解性:可溶于水,且易溶于有机溶 剂,难溶于饱和食盐水。1体积水在常温下可溶解2 体积氯气,形成氯水,密度为3.170g/L。

炉体简介

炉体简介

4.日常维护及报警处理
4.1.3.2利用CMI进行压力测试 在测试之前确保石英管内热平衡,级没有升温或者降温
进行。 1.运行相应炉管CESAR控制电脑内的“”DRUCKT_E”工
艺。 2.在测试结束后会显示一个状态或者错误信息。 3.如果未超过设定的压力值,找到石英件连接的泄漏点,
如有损坏,将之更换。 4.检测维修结果是否良好,如有必要,再次执行第3步。 5.在确保连接紧固后,密封所有的连接管线。
体继电器及电流探测器。
加热
1.4.1 变压器部分
保险
变压器位于炉体底层,每个机 丝
台共10个,每根炉管2个,其中
一个作用于一、五区,另一个
作用于二、三、四温区。为炉
丝提供65v/90A 的加热电压和电 固体
流。
继电

电流探 测器
1.炉体的基本构成
1.4.2 固态继电器
(Solid State Relay,缩写SSR) 用隔离器件实现了控制端与负 载端的隔离。固态继电器的控 制端由RDI08/24提供脉冲触 发信号,实现加热负载电路导 通.
2. 控温系统
2.1.1 温度控制器(REG97)
REG97是一个多温区PID温度控制器,它通过PID运算法和扩展的模糊 逻辑控制的结合,提供了一个更加快速、同步的非线性的自动控制系 统,和一般的PID控制器相比做了以下扩展: • 对外界影响模糊控制 • 采用2个PID模块的级联控制 • 热电偶校准修正值的计算 • 正反设定值梯度 • 加热和冷却变量的单独输出终端 • 在加热开始和结束的速率上有平稳的过渡 • 对于不同温区有不同的控制参数和控制规则 • 通过外部CAN总线模块发出对加热和降温的启动信号 • 能够扩展到对多达20个温区的温度控制

扩散炉智能控制系统的设计和应用

扩散炉智能控制系统的设计和应用

扩散炉智能控制系统的设计和应用摘要:针对传统的扩散炉控制系统的温度控制精度、生产工艺控制能力等较低的现状, 提出了一种以PLC 为核心的扩散炉智能控制系统。

该系统将模糊控制算法引入传统的扩散炉控制系统, 利用模糊控制规则自适应地在线对量化因子进行修改。

应用结果表明: 该系统有效地实现了对多工位扩散炉温度工艺曲线和辅助工艺的自动控制, 提高了温度控制精度以及工作效率。

关键词:扩散炉、控制、应用前言:在扩散炉智能控制系统中, 需要使用电加热来实现对扩散炉工艺需要的温度控制, 使其按照工艺要求达到并保持在某一温度设定值, 而且控制过程中, 对象温度的稳定性和精度要求都很高. 常用的调节温度的方法有继电式调温、调压器调压调温和电子式( 多用可控硅) 移相调压调温等几种.可控硅作为电力电子器件, 已被广泛的运用在控制领域. 可控硅调压调温的特点是体积小、无噪声、调节方便、控制精度高, 但会对电网产生一定影响, 适用于小功率加热器. 笔者提出的扩散炉智能控制系统中可控硅移相触发电路以 T CA785 为核心, 设计了加热炉炉体的炉口、炉中、炉尾的温度控制电路, 实际运行表明该电路设计简单, 控制效果好.一、系统的工艺要求1. 1系统的工艺要求本控制系统的控制对象为多工位扩散炉, 它是由多个扩散炉炉体和一个加热炉体组成。

工作时, 将加热炉体套在某个扩散炉炉体外部, 使用电加热来实现扩散炉工艺需要的温度控制。

由于各个扩散炉每次装载的材料数量不同, 各个扩散炉结构的差异等原因, 在对扩散炉的工艺温度进行控制时, 需要配置不同的控制参数。

另外, 在某个扩散炉完成扩散工艺操作以后, 加热炉体要自动转至其他工位进行其工艺操作过程。

该智能控制系统的工艺要求是: 1) 对一套扩散炉中的多个工位的温度测点分别进行检测、显示、控制; 2) 温度控制精度。

在全量程范围内, 检测分辨率≤±0. 2摄氏度 , 控制精度≤±1) 储存多条温度工艺曲线。

扩散炉串级温度控制系统

扩散炉串级温度控制系统1 引言随着石油,煤炭等不可再生能源的大量使用,这些一次能源在不久的几十年至百年后会在地球上消失。

能源是人类社会之所以能够飞速发展的原因,随着石油,煤炭等一次能源的日益枯竭,能源危机也不断的向人类敲响了警钟。

人类急需一种替代能源,而且这种能源能够取之不竭,用之不尽。

太阳能无疑成为了首选,它有着别的能源很多所不具有的优势,所以近几十年来太阳能电池从实验室到工厂的大规模流水线生产,都说明太阳能是未来人类所赖以生存和发展的新能源!随着国内太阳能产业的不断发展壮大,国内太阳能设备的生产也变得越来越成熟。

整个电池片生产环节中扩散环节是形成P–N 结的过程,是整个电池片生产过程的核心环节。

对扩散过程的严格要求无疑是对扩散设备性能的严格要求。

扩散工艺过程中温度控制系统能否按照工艺过程良好的控温直接关系到扩散整个反应过程的质量好坏。

因此扩散设备的温度控制系统的优劣是衡量扩散设备性能的关键。

而衡量扩散设备优劣的关键则是其温度控制的性能。

2扩散炉温度控制系统2.1温度串级控制单元系统控制框图如下图Fig.1,Fig.2所示,工控机采用研华IPC610P计算机,显示器为工业一体化15〞触摸显示器,通讯接口为RS485,温度控制为SDC45A山武串级温控仪,触发器采用过零触发电路,功率部件由特种变压器,空气开关,交流接触器,熔断器,可控硅,等组合而成,加热炉为进口直径8mm电热线材绕制而成。

Fig.12.2控温原理炉腔中反应管内温度的稳定要靠调节炉管外炉丝的加热功率来控制。

就扩散炉的控温方式而言,炉壁上的热电偶测得的温度不能实时反应出反应管内的温度变化。

因此,相对于炉腔中温度的变化,温度调节系统的动作会有很大的滞后性。

为了提高回温及温度稳定的速度和温区稳定性,设备温度控制环节选用了控温性能好,响应速度快的双回路串级温度调节系统。

如图Fig.2所示,外热偶与炉腔垂直,五个温区分别用5支直径为0.5mm长130mm的S型热电偶。

Tempress操作界面


操作温度范围要与炉管热电偶类型匹配!
2.2.2. Normal Temperature Table

正常温度表格 正常工艺用的温度列表,最多16个 表格示例如下:
Control
RECIPE NR 0 TEMP SETP(℃)
Paddle Independent
SLOPE(℃/min) HIGH/LOW LIMITS(℃) GAIN(%)
开始工艺控制
1.5.2. Select recipe control
选择工艺控制
1.5.3. Normal/Maintenance mode
正常 / 维护模式
1.5.1. Start recipe control



开始工艺控制 规定了控制炉管的4种模式(开始某工艺) Remote(TSC)仅允许通过TSC-II操控,此 模式下触摸屏被禁用。 Normal(Local+Remote) Disabled Local(Touch Screen)
1.5.2. Select recipe control



选择工艺控制 规定了控制炉管的4种模式(选择某工艺) Remote(TSC)仅允许通过TSC-II操控,此 模式下触摸屏被禁用。 Normal(Local+Remote) Disabled Local(Touch Screen)
4
5 6 7 8 9
注:实际操作时 按下方的“Z”按 钮看其他温区
850.0
900.0
850.0
900.0
850.0
900.0
850.0
900.0
850.0
900.0
10
11

所扩散炉温度加热控制分享


检查接触器 NO 是否吸合
紧固接 线,检查
接线
YES
检查接触器 线圈电压
NO
(正常220V)
更新换炉体
用钳型表测量 炉体有无加热 NO
电流
YES
NO
无电流, 测量温控 仪,有无输
检查接触器输出端 相间电压和对地电 YES 压,分别是380V和 220V,如果不正常 更换接触器
有电流,但是太小 (不在75A-100A 范围内)调整电阻, 直至电流正常
48所扩散炉培训 温度、加热控制
目录 2
• 扩散炉加热系统的组成元件 • 扩散炉加热控制系统的工作原理 • 扩散炉加热控制系统常见故障分析
组成元件图片
3
San Francisco
熔断体
热电偶 Wa可sh控in硅gton
London Munich
温控仪
Tokyo Wuxi Shenzhen
交流接触器
变压器
Sydney
触发板
3
扩散炉加热系统的工作原理 4
工作原理分两部分: 1:低压控制部分. 2:高压主电路部分.
他们之间是通过 232-485转接口连 接进行通讯
工控机
彩色为高压 主电路部分
380V 电源
交流接触器
将测得炉体的 温度信号传输 给温控仪
热电偶
测炉体 温度
温控仪
将实际温度和设定温度进行对 比根据温差输出触发电压0-5V
在拆卸前,先将加热关掉(按下 加热关按纽),先卸下阻容板,再 拆下散热片,接着拆下可控硅
可控硅
在安装可控硅时,注意夹板要 夹紧,固定螺丝要拧紧.
散热片
7
THE END !
7
触发板

扩散炉介绍


扩散炉结构原理
炉体各技术参数:



1.1可配石英管最大外经: φ300mm 1.2工作温度范围: 400~1100℃ 1.3恒温区长度及精度: 工作温度:600℃~1100℃ 1070mm /±1℃ 1.4单点温度稳定性: 工作温度:600℃~1100℃ ±2℃/24h 1.5升温时间:(从室温升至1100℃) ≤60min 1.6温度斜变能力: 最大可控升温速度: 15℃/min 最大降温速度(1100~1000℃ ) 5℃/min 1.7最大升温功率: 43KVA/每管 1.8保温功率: 15KVA/每管 1.9送料装置: 行程: ~2160mm 速度: 20~1000mm/min 承重: 15Kg
扩散炉结构原理
扩散炉结构原理 2.2控制柜
控制柜是整个设备的控制核心,所有的操作动作都在控制柜中实现
控制器功能简介



2.2.1采用进口智能控制器,对炉温、阀门进行自动控制,并管理全部工艺时序。每 个炉管有一套独立的控制系统。 a具有可编程的升、降温功能。 b具有PID自整定功能。 c可输出四个开关量。 d具有超温报警、工艺结束报警功能。 e具有极限超温报警功能,同时能自动切断炉丝加热电源。 f可存储十条工艺曲线。每条工艺曲线最多有十五步。曲线间可以任意链接、重 复。 g可同时显示控制热偶温度值及PROFILE热偶温度值。 h留有通讯接口,可通过专用软件进行工艺编制和数据采集。 2.4.2 流量控制与监测系统: 选用英国进口智能控制器及流量报警控制电路对质量流量控制器进行工艺气体的 实时,控制与监测具有在线报警与调节功能,同时能对每一路气体阀门很方便的 进行手动,自动切换,并留有通讯接口,可通过电脑显示与设定流量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Digital Process Controller Expert in Furnace technologyTempress® Systems, Inc.Technical Reference manualM410_02 January 2006Table of Contents1Introduction.......................................................................................................1-11.1Overview..............................................................................................................1-11.2System Features..................................................................................................1-11.3Technical definitions............................................................................................1-2 2Technical Description......................................................................................2-52.1Introduction..........................................................................................................2-52.2Digital I/O Board..................................................................................................2-52.3Analog I/O Board.................................................................................................2-52.4Boatloader Board.................................................................................................2-52.5Processor Board..................................................................................................2-52.6Communication Board.........................................................................................2-62.7Powersupply Board..............................................................................................2-62.8Battery Backup Board..........................................................................................2-62.9Voltage regulator board.......................................................................................2-72.10I/O Interconnection Board....................................................................................2-72.11Pressure interface board.....................................................................................2-72.12Safety board........................................................................................................2-72.13Hi/Low limit board................................................................................................2-82.14Temperature control............................................................................................2-8 3Recipe commands............................................................................................3-93.1Introduction..........................................................................................................3-93.2Recipes................................................................................................................3-93.2.1The message command..........................................................................3-93.2.2The time command..................................................................................3-93.2.3The temperature command.....................................................................3-93.2.4The boat command...............................................................................3-113.2.5The analog output command................................................................3-113.2.6The digital output command..................................................................3-113.2.7The alarm command.............................................................................3-123.2.8The branch command...........................................................................3-123.2.9The abort commands............................................................................3-133.2.10The wait command..............................................................................3-133.2.11The abort recipe command.................................................................3-143.3The variable command......................................................................................3-153.4Maintenance mode............................................................................................3-153.5Tube control mode.............................................................................................3-15 4Board layouts..................................................................................................4-17 5Appendix A Boards........................................................................................5-21II Index ……………………………………………………………………………………1 Introduction1.1 OverviewThe Digital Process Controller (DPC) has been designedfor high accuracy process control of all availableprocesses for diffusion, conveyor and small batch verticalfurnaces. The DPC provides a versatile means ofautomating diffusion processes when used in combinationwith the Digital temperature Controller (DTC).The DPC consists of two basic units:1. The process controller.2. Touch screen and/or TSC-II.In addition there are several boards:• Digital I/O board for connection digital In/Outputs• Analog I/O board for connection analog In/Outputs• Safety board (for external torch)• Pressure interface board (LPCVD systems)• Servo driver (Boatloader control)The user interface contains a Touch screen and/or TSC-II and are used to program the recipe commands and monitor current status. The Touch Screen is mounted in the control panel area while the TSC-II computer is free to locate.The DPC is a microprocessor-based controller, which can perform all process functions such as the selection of temperature recipe on the DTC, control of boat loader and gas flows as well as the sequencing of overall processing. The DPC interfaces directly with the DTC, which is a highly accurate microprocessor-based controller of temperatures in diffusion, conveyor and small batch vertical furnaces.1.2 System FeaturesRECIPES A maximum of 16 normal process recipes up to 750 bytes long or 8recipes 1500 bytes long can be stored. Up to 8 abort recipes with alength of 200 bytes can be used.MESSAGES A maximum of 16 messages, each of up to 12 characters long can bedisplayed to instruct operatorsBOAT LOADING CONTROL Auto position calibration. Inputs are monitored with alarm for left andright limit and boat fused.TEMPERATURE CONTROL Temperature Control is by connection to the DTC through an RS422Cserial interface. Up to 15 predefined temperature recipes can bestored and 1 free programmable temperature recipe. Eachtemperature recipe includes: temperature setpoint, ramping, type ofcontrol (paddle or spike), independent or master/slave control and Hiand Low alarm limit settings. Up to 16 profile recipes can be selectedfor automatic profiling.ANALOG OUTPUTS There are 8 analog outputs (optionally 16), which allow programmingof outputs in a variety of units and ranges, each with a setpointresolution of 1 digit.DIGITAL OUTP UTS There are 8 digital outputs (optionally 16, 24 or 32). It is possible tointerlock the digital outputs with analog outputs for soft start on MassFlow Controllers.DIGITAL INPUT The system will accept digital inputs for process monitoring. Theprocess monitoring includes provisions for pressure switches, doorswitches, etc.“WAIT FOR” PROVISION The system contains a “wait for” provision until condition is satisfiedfor start, time, temperature, boat, digital inputs, digital outputs,analog I/O on setpoint and pressure.DTC INTERFACE A 6850 Asynchronous Communications Interface Adapter (ACIA) isused for the RS422C compatible serial interface to the DTC. Baud rateis 9600 bits/s.BATTERY BACK-UP An external Ni-Mh battery maintains data stored in volatile memoryfor a minimum of 30 days after power is disconnected.Figure 1-1 DPC System connections overview1.3 Technical definitionsTimeResolution time :second.Maximum time per step number :255 hours, 59 minutes, 59 seconds.Boat loading ControlSpeed range :5-1000 mm/min.Speed resolution :1 mm/min.Position range :10-3000 mm.Position resolution :1 mm.Oscillation speed (only in combination with the soft :0, 10 or 100 mm/min. (down, up, reset)Introductioncontact loader).Auto zero position calibration.Monitoring inputs with alarm for left and right limit and boat used.Analog OutputsNo. of outputs :8 (optionally 16).Range :0-5V. Programming and monitoring may be in the following units and ranges:Units :%, SCCM, SLM, ºC, TORR, mTOR andmg/m, plus free programmable (max 4char)0-800, 0-1000, 0-1200, 0-0-500. Ranges :0-300,1500, 0-1800 and 0-2000, and freeprogrammable. Point positionprogrammable.Setpoint resolution :1 digit.Analog InputsNo. of inputs :8 (optionally 16) for monitoring analogoutputs with provision for alarms, wait for,branch on, and abort on. 8 separate inputs(optionally 16) for process monitoring.Digital OutputsNumber of outputs :8 (optionally 16,24 or 32).Darlington transistor outputs Specification :opto-isolatedmax 1A, 30V.Interlock possibility with analog outputs for soft start on Mass Flow Controllers. If a digital outputis interlocked, the valve automatically opens if the setpoint for the analog output is programmed.Digital InputsNumber of Inputs :8 (optionally 16, 24 or 32) opto-isolatedinputs for checking digital outputsfunctionality with alarm provision. 8(optionally 16, 24 or 32) opto-isolatedinputs for process monitoring with alarm,wait for, branch on and abort on provision.Input voltage :5-30V.Step NumberEach step number can have any of the following commands: message, time, temperature, boat,analog outputs, digital outputs, alarm, branch, abort, wait for and abort recipe. A VariableCommand can be set in combination with several of the commands mentioned above to allowquick adjustments of those commands.MessagesNumber of messages: :16.Message Length: :12 characters.RecipesNumber of normal (process) recipes :8 or 16.Normal recipe length :1500 or 750 bytes.Number of abort recipes :8.Abort recipe length :200 bytes.Temperature ControlRS422C serial interface to the Digital Temperature Controller. Up to 15 preset temperature recipesmay be selected, one is freely programmable. Each temperature recipe includes temperaturesetpoint, ramping, type of control (paddle or spike), independent or master/slave control andAlarm Limit settings. Up to 16 profile recipes may be selected for automatic temperature profiling.Introduction“Wait for” provision for end of ramping, end of profiling and within temperature alarm limits. Other Technical DataOperating voltage :115/230V 50/60 Hz.Ambient temperature :0 - 40 o C.Serial interface to remote computer :RS422C compatible, baud rate 9600 bits/s. Dimension :125 x 290 x 310 mm.Battery backup :minimum 30 days memory retention time.2 Technical Description2.1 IntroductionThe basic Digital Process Controller (DPC) consists of a base unit with a motherboard for the plug-in boards, a main transformer, a battery board and a rear connector. The standard unit includes the power supply board, the processor board, one digital I/O board, one analog I/O board and the RS422 communication board. Four additional slots in the unit permit the expansion of both the analog and digital capabilities. A pressure interface board for low-pressure purposes, a safety board for hardware controlling the ratio of a H2 and O2 mixture (flame detection) and a Hi/Low limit board can be added to the process control loop. The pressure interface board, the safety board and the Hi/Low limit board are tied to the analog and digital I/O Interconnection boards.2.2 Digital I/O BoardEach digital I/O board has 8 optically isolated digital outputs and 8 optically isolated digital inputs. Each of the outputs has a Darlington transistor with a maximum current of 0.5 amp at 30 volts DC. This will drive most gas solenoids, relays or lights directly, without additional current drivers or relays. Each output has a corresponding optically isolated input for feedback. In addition, a 2mA control current is used to check the functionality of the pilot valves. If the pilot valve fails a digital output alarm is generated . To prevent unwanted alarms for these outputs, unused outputs must be tied to +24V via a 2K7 resistor through jumper settings.The 8digital inputs will be on when a voltage of between 5 and 30 volts is applied . Each digital input may be used for process monitoring with “alarm”, “wait for", "abort on” and "branch on" (only on inputs 1-16) provision.2.3 Analog I/O BoardEach analog I/O board has 8 analog outputs and 16 analog inputs with a range of 0-5V. The 12 bit digital-to-analog converter (DAC 800) is used in the range -5V to +5V. A negative output voltage is used only for a soft start on normally open Mass Flow controllers and is not programmable. Eight of the analog inputs are used in combination with the analog outputs. The analog output supplies the setpoint for a mass flow controller and the corresponding analog input is used for monitoring the actual flow ths providing feedback. All these combinations have “Limit Alarm”, “wait for", “branch on” and “abort on" provisions. Since software version 2.I.0 the range and units are free programmable. It is possible to define an I/O channel with a range of –200 to 2000 [xxx]. The other 8 inputs may be used for process monitoring.2.4 Boatloader BoardThe DPC is equipped with a slot for a Boatloader board. For current Tempress diffusion furnaces this slots will be empty, because a new loader control system replaces this board.2.5 Processor BoardThe hub of the system is a Motorola CMOS, 8-bit microprocessor. The on-board timer is used for all the timing functions. This card contains one socket housing for an 32Kb E-PROM and a further three sockets, each for an 8 Kb static RAM.There are two connectors. One is a 10-pole flat cable connector, which is used to connect to the obsolete 'One line Program and Display unit’ and is RS232C compatible. This option in not in use anymore. The 6-pole flat cable connector is used for connecting the Touch screen Display and is RS422 compatible. Both connectors share the same signal lines and can therefore not be used simultaneously.The board is provided with an automatic restart circuit. If the microprocessor stops for more than 5 seconds, the power supply supervisor will reset the system.Figure 2-1 Jumper position processorThis board contains jumper connections (see Figure 2-1 for jumper location), which provide the following functions:H1 is used for E-PROM memory allocation purposes.H1 DescriptionNo Jumper Not used1-2 set Default setting (memory allocation)2-3 set Not usedH2 is used to define the system configuration.2.6 Communication BoardThe communication board is a 3-channel communication board. This board provides the communication with the digital temperature controller (DTC), to the servo control unit (loader) and the Tempress system controller (TSC) through 10-pole flatcables. The communication link with the DTC is a RS422 current one with a baudrate of 9600 baud. The links for the TSC and for a vertical loadsystem are also RS422 current ones. The baudrate is preselected on 9600 baud.An ACIA (6850) performs the parallel to serial conversion.2.7 Powersupply BoardThe power supply board in slot 11 rectifies the DPC transformer output to the following voltages:+ 10 Vdc the supply for the voltage regulator board+ 15 Vdc (stabilized) used by the analog I/O board+ 12 Vdc (stabilized) not usedThe power supply board contains fixed voltage regulator components. Adjustments cannot be made to any of the output voltages.The Powersupply board takes care for the voltage for the all DPC boards. The Powersupply board supplies +12/-12V as well as +15/-15V.2.8 Battery Backup BoardThe battery Backup Board for the DPC is provided by a 3.6V battery mounted at the top of the cageproviding backup the controller memory in case of power failure.The battery capacity is measured by an IC that operates LED D1. Green indicates that the battery is in good condition. Red LED means the battery should be replaced. TP1 and TP2 are points at which the battery voltage may be measured.Pins on JP1 are jumpered when the board is powered on. The jumper is removed for storage purposes (prevents battery discharge).2.9 Voltage regulator boardThe voltage regulator board is mounted at the back of the cage. P1 is used to adjust the 5 V output. This is factory set and should need no adjustment in the field. It contains 4 testpoints as shown in Figure 4-7.The four testpoints are as follows:Pin DesignationTP1 10 volt (not stabilised)TP2 GroundvoltTP3 5TP4 Supply to memory chip for backup2.10 I/O Interconnection BoardThe digital inputs and outputs are connected to the digital interconnection board and the analog inputs and outputs are connected to the analog interconnection board. These interconnections boards interface between the DPC and the actual valves and MFC’s and also allow for additional safety boards. Two additional flat cable connectors are provided for connecting a gas flow panel with lights (not used when a Touch screen Display is used) and a ratio and temperature safety board.An on board safety circuit switches off the +24V to the digital outputs in case the DPC ceases to trigger the circuit. This results in switching of the (dangerous) gases by closing the valves.The board contains several test points (TP) for checking current and steering signals, see A Figure 5-1 and Figure 5-2.2.11 Pressure interface boardThe pressure interface board will be used in Low Pressure Chemical Vapour Deposition (LPCVD) systems. On board is a stabilized power supply of + and - 15V for an externally connected pressure transducer and the electronic circuits. A +12V signal is supplied to the digital circuit. The external transducer supplies a 0-10V signal corresponding to the pressure of 0-10 TORR. This incoming signal amplifiedto give an output of 0-5V corresponding to 0-2000 mTORR. Alternatively, a 0-10 TORR rangeis selectable on the board by a wire-jumper.The output of this amplifier is connected to a comparator, which compares it with an adjustable setpoint. It is the safety circuit, which insures that the solenoid valves cannot be activated if the pressure is above the setpoint value.An evacuate line control circuit is on board to evacuate up to 6 separate gas lines in a safe manner, so to avoid the simultaneous evacuation of incompatible gases.2.12 Safety boardThe safety board Figure 5-3 is used to check the safety conditions when using hydrogen and oxygen in a Tempress external torch. It is used as a hardware protection. This safety board works only in combination with the Tempress DPC control system. It is not used in this configuration as a “stand-alone” unit.The safety conditions are:• Torch temperature above setpoint value• Correct H2/O2 Ratio• Torch flame presentBefore the Hydrogen MFC is activated the safety board checks whether the injector tip temperature and the gas ratio are safe. Only then the hydrogen valve will be opened and hydrogen is allowed toflow. After 20 seconds the presence of the hydrogen flame is checked for. If no flame is detected the hydrogen valve is deactivated and the hydrogen flow stops.The hydrogen valve will be closed if a ratio alarm or flame detection alarm occurs during subsequent processing. The alarm condition is latched until the the hydrogen valve is reset. LED’s shows the latched conditions. These conditions are also available for connection to the digital inputs of the Digital Process Controller. When the hydrogen valve was switched off by an alarm condition, it is only possible to open it again via de-activating the hydrogen output(in a process recipe in the Digital Process Controller, set H2 MFC to 0slm).The O2:H2 ratio is guarded continuously and the hydrogen valve will be closed if the actual flows of O2 and H2 are reaching the explosive ratio 1:2. To compare the O2 and H2 flows correctly one must configure the safety board according to the O2 and H2 MFC maximum range properly.For example, an O2 MFC of 10 slm and a H2 MFC of 10 slm must be combined with the ratio jumper on the safety board set at 1:2.On the other hand, an O2 MFC of 10 slm and a H2 MFC of 20 slm must be combined with the ratio jumper on the safety board set at 1:1.2.13 Hi/Low limit boardThe Hi Low limit board is used in applications where a minimum or maximum flow of a specific gas is required for safe operation of other chemicals. For example, the use of TransLC® requires a minimum O2 flow for complete combustion (see Process manual details on the use of TransLC®). Using the Hi/Low limit board the actual flow (retun signal) of the O2 MFC is continuously compared to a safety value. The components used to operate TransLC® (bubble valves) will be closed should the actual O2 flow fall below this threshold value.!! Insert !! Figure !!2.14 Temperature controlAn RS422 compatible serial interface connects the DPC to the Digital Temperature Controller. The baud rate is 9600 bits/s. The DPC can select up to 16 temperature recipes and 16 profile recipes for automatic temperature profiling. The DPC has a “wait for” provision for end of ramping or end of automatic profiling. All the alarms of the DTC are sent to the DPC and passed on to the operator. The DPC has a “wait for", "branch on” or "abort on" provision on this temperature alarm.3 Recipe commands3.1 IntroductionThe standard recipe commands as programmed in the DPC can be used to make a process recipe. This chapter contains a description of all possible commands.3.2 RecipesThe DPC unit can store and execute 8 or 16 normal recipes and 8 abort recipes. A recipe consists of steps and commands. Each step has a unique number and may have the following commands: Message AlarmTime Branch Temperature recipe Abortfor Boat Wait Analog output Abort recipeDigital output Variable CommandStep number 0 of a normal process recipe is used for standby conditions where possible. See Process manual details on Process Recipe Setup).After starting the process recipe, the step numbers are executed sequentially. The sequence can be interrupted by active branch or abort conditions.An automatic or operator initiated abort causes the DPC to return to step 0 of the aborted process recipe immediately. An activatedabort recipe will intercept any abort command and will be executed like a normal recipe. The DPC returns to step number 0 of the aborted process recipe when the end of the abort recipe has been reached..3.2.1 The message commandThe message command will be displayed throughout the execution of the step. The messages that can be used are defined during the certification procedure.3.2.2 The time commandThe time command is used to program the time to wait before executing the next step number. Maximum program time per step is 255:59:59 (hh:mm:ss). If there is a WAIT command in the step the time is used for the wait alarm. In this case the next step will begin as soon as all the wait conditions have been satisfied. If the wait conditions are not satisfied by the end of the entered time, the alarm will sound and the wait alarm condition will be shown.To calculate a fairly realistic total process time, the time needed to satisfy all the wait conditions should be used. The remaining time in the process is recalculated at the start of each step, so the remaining time is corrected after each wait condition.3.2.3 The temperature commandThe “TEMP” command instructs the DTC to execute the indicated normal temperature recipe or profiling temperature recipe. Up to 16 normal process temperature recipes or profile temperature recipes area available from the normal temperature table or profiling temperature table. In addition, free programmable temperature settings are available through separate commands.3.2.3.1 Temperature normal recipeThe normal temperature recipe is used to define the actual process temperature needed for the process. Up to 15 preset normal temperature recipes (numbers 0-14) can be stored in the normal temperature table including temperature setpoint, ramp rate, high/low limits and gain for each zone, and the control type and which profiling temperature table to use. The last position (recipe 15) in the normal temperature table is free programmable and allows for unlimited temperatures recipes.3.2.3.2 Ramp all zones to setpoint temperature.The free programmable normal temperature recipe (#15) will be overwritten by the “Ramp all zones to setpoint temperature” command.3.2.3.3 Ramp one zone to setpoint temperatureSame as 3.2.3.2, only now it is possible to define one particular zone (1-5).3.2.3.4 Set High/Low limit for all zones.The High/Low limits can be used to check temperature fluctuations. If the actual temperature exceeds the temperature setpoint with more than the High limit, or drops below the setpoint with more than the Low limit a corresponding alarm is generated.The free programmable normal temperature recipe (#15) will be overwritten by the “Set High/Low limits for all zones” command.3.2.3.5 Set High/Low limit for one zoneSame as 3.2.3.4, only now it is possible to define one particular zone (1-5).3.2.3.6 Set gain for all zonesThe gain is an amplification factor for the PID control. Default value is 100%, maximum value 255%. The free programmable normal temperature recipe (#15) will be overwritten by the “Set gain for all zones” command.3.2.3.7 Set gain for one zoneSame as 3.2.3.6, only now it is possible to define one particular zone (1-5).3.2.3.8 Set temperature controlThe PID temperature control loop needs thermocouple signals as input. The “Set temperature control” command define which thermocouple should be used, Spike or Paddle. In addition, the master-slave or independent control must be selected here (default independent).3.2.3.9 Select profile tableThis function is to select one of the four (A-D) profile temperature tables.When a new temperature command is executed its values are sent to the DTC and overwrite the current DTC version of Normal Temperature Recipe 15. At the same time Normal Recipe 15 will be selected. In case of usage of new temperature commands it is not recommend to mix those with ‘old’ temperature commands, since Normal Temperature Recipe 15 will continuously be overwritten by the ‘new’ temperature command.CautionWhen a ‘new’ temperature command is in use, never write to DTC a normaltemperature table from the TSC. The latest setpoint in Normal Recipe 15 will beoverwritten.3.2.3.10 Temperature profile recipeTo improve temperature accuracy automatic or manual profiling can be used. Up to 16 profiling temperature recipes can be stored in the profiling temperature table. Each profiling temperature recipeRecipe commandscontains the paddle thermocouple setpoint, the corresponding spike thermocouple values and the required power output. Four different profiling temperatures tables (A, B, C, D) are available to accommodate different process environments.3.2.4 The boat commandThe boat command will program the boat position and the boat speed. The ancient oscillation speed command is nowadays used for Soft Contact Loader systems.. The boat loader moves to the position indicated at the programmed speed, slows down to 200mm/min when the position has approached setpoint within 20mm andstops completely when it reaches the setpoint position. In case a Soft Contact Loader system is used, the oscillation speed will be used to define the vertical movement of the paddle. An oscillation speed of 0mm means DOWN, 10mm means UP and 100mm means reset memory.3.2.5 The analog output commandThe analog output command is used to set the output voltage of the indicated analog output corresponding to the setpoint value in the range of 0-5V, and the digital output of corresponding number if an interlock was programmed. The range and units of the analog output and the interlocks are defined during the certification procedure. The analog outputs will be commonly used to manage mass flow controllers and bubbler temperatures.3.2.5.1 Set ramp time all analog outputsThe ramp time for all analog outputs defines the time that is allowed to reach the specified setpoint. Default value is 8 sec, maximum value is 255 sec.3.2.5.2 Set ramp time one analog outputSame as 3.2.5.1, only now for 1 particular analog output.3.2.6 The digital output commandThe digital output command is used to put the digital outputs into the ON or OFF condition. During the certification procedure a digital output can be interlocked to an analog output. This output cannot be programmed with a digital output command, but will be activated automatically if the setpoint of the matching analog output is >0. Most commonly a digital output will manage a gas valve.3.2.6.1 Digital Output as alarm outputUsing the TSC-2 system controller it is possible to define a digital output as alarm output and a digital input as alarm silence input, without having a touch screen. These output numbers has to be defined in the TSC system (version 5.2 or higher). The alarm output has the same functionality as the alarm output on the touch screen. That means that in case a new alarm is added to the current alarms, the output will be activated. The output can be reset by activating the alarm silence input. In case of a Message Warning, the output is activated intermittent, with a cycle time of about 3 seconds.)To prevent interference with other digital inputs and outputs, the name of theNotedefined I/O MUST be empty (8 spaces)。

相关文档
最新文档