2018年浙江省温州市乐清市中考数学模拟试卷(5月份)

合集下载

〖汇总3套试卷〗温州市2018年中考数学毕业生学业模拟试题

〖汇总3套试卷〗温州市2018年中考数学毕业生学业模拟试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x 元,则有( )A .(x ﹣20)(50﹣18010x -)=10890 B .x (50﹣18010x -)﹣50×20=10890 C .(180+x ﹣20)(50﹣10x )=10890 D .(x+180)(50﹣10x )﹣50×20=10890 【答案】C 【解析】设房价比定价180元増加x 元,根据利润=房价的净利润×入住的房同数可得.【详解】解:设房价比定价180元增加x 元,根据题意,得(180+x ﹣20)(50﹣x 10)=1. 故选:C .【点睛】此题考查一元二次方程的应用问题,主要在于找到等量关系求解.2.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y =﹣1x 图象上的点,并且y 1<0<y 2<y 3,则下列各式中正确的是( )A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 2<x 3<x 1 【答案】D【解析】先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y 1<0<y 2<y 3判断出三点所在的象限,故可得出结论.【详解】解:∵反比例函数y =﹣1x中k =﹣1<0, ∴此函数的图象在二、四象限,且在每一象限内y 随x 的增大而增大,∵y 1<0<y 2<y 3,∴点(x 1,y 1)在第四象限,(x 2,y 2)、(x 3,y 3)两点均在第二象限,∴x 2<x 3<x 1.故选:D .【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限是解答此题的关键.3.下列计算正确的是( )A .(a+2)(a ﹣2)=a 2﹣2B .(a+1)(a ﹣2)=a 2+a ﹣2C .(a+b )2=a 2+b 2D .(a ﹣b )2=a 2﹣2ab+b 2【答案】D【解析】A 、原式=a 2﹣4,不符合题意;B 、原式=a 2﹣a ﹣2,不符合题意;C 、原式=a 2+b 2+2ab ,不符合题意;D 、原式=a 2﹣2ab+b 2,符合题意,故选D4.已知圆内接正三角形的面积为33,则边心距是( )A .2B .1C .3D .3 【答案】B【解析】根据题意画出图形,连接AO 并延长交BC 于点D ,则AD ⊥BC ,设OD=x ,由三角形重心的性质得AD=3x , 利用锐角三角函数表示出BD 的长,由垂径定理表示出BC 的长,然后根据面积法解答即可. 【详解】如图,连接AO 并延长交BC 于点D ,则AD ⊥BC ,设OD=x ,则AD=3x ,∵tan ∠BAD=BD AD, ∴BD= tan30°·3,∴3,∵1332BC AD ⋅=, ∴1233, ∴x =1所以该圆的内接正三边形的边心距为1,故选B .【点睛】本题考查正多边形和圆,三角形重心的性质,垂径定理,锐角三角函数,面积法求线段的长,解答本题的关键是明确题意,求出相应的图形的边心距.5.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO 为α,则树OA的高度为( )A.30tan米B.30sinα米C.30tanα米D.30cosα米【答案】C【解析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.考点:解直角三角形的应用-仰角俯角问题.6.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90°B.120°C.270°D.360°【答案】B【解析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【详解】∵图中是三个等边三角形,∠3=60°,∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,∠BAC=180°-60°-∠1=120°-∠1,∵∠ABC+∠ACB+∠BAC=180°,∴60°+(120°-∠2)+(120°-∠1)=180°,∴∠1+∠2=120°.故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.7.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于()A.1∶3 B.2∶3 C3 2 D3 3 【答案】A【解析】∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF与△ABC的面积之比=2 DEAC⎛⎫⎪⎝⎭,又∵△ABC为正三角形,∴∠B=∠C=∠A=60°∴△EFD是等边三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,FD⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠3,EC=cos∠C×DC=12DC,又∵DC+BD=BC=AC=32 DC,∴332332DCDEAC DC==,∴△DEF与△ABC的面积之比等于:2231:3 DEAC⎛⎫==⎪⎝⎭⎝⎭故选A.点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边DEAC之比,进而得到面积比.8.下列图形中,周长不是32 m的图形是( )A.B.C.D.【答案】B【解析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.9.如图,点M是正方形ABCD边CD上一点,连接MM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是()A.1313B.31313C.23D13【答案】B【解析】首先证明△ABF≌△DEA得到BF=AE;设AE=x,则BF=x,DE=AF=1,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到12•x•x+•x×1=6,解方程求出x得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE,最后利用余弦的定义求解.【详解】∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE ⊥AM 于点E ,BF ⊥AM 于点F ,∴∠AFB =90°,∠DEA =90°,∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°,∴∠ABF =∠EAD ,在△ABF 和△DEA 中BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF ≌△DEA (AAS ),∴BF =AE ;设AE =x ,则BF =x ,DE =AF =1,∵四边形ABED 的面积为6, ∴111622x x x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去), ∴EF =x ﹣1=2,在Rt △BEF 中,222313BE =+=,∴313cos 13BF EBF BE ∠===. 故选B .【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形. 10.如图所示,在方格纸上建立的平面直角坐标系中,将△ABC 绕点O 按顺时针方向旋转90°,得到△A′B′O ,则点A′的坐标为( )A .(3 ,1)B .(3 ,2)C .(2 ,3)D .(1 ,3)【答案】D 【解析】解决本题抓住旋转的三要素:旋转中心O ,旋转方向顺时针,旋转角度90°,通过画图得A′.【详解】由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(1,3).故选D.二、填空题(本题包括8个小题)11.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC 的周长为____.【答案】3【解析】试题分析:因为等腰△ABC的周长为33,底边BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC的周长为=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.考点:3.等腰三角形的性质;3.垂直平分线的性质.1212+3.【答案】31223.【详解】原式3+3=33故答案为33【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.13.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为_____.【答案】85 【解析】试题分析:根据网格,利用勾股定理求出AC 的长,AB 的长,以及AB 边上的高,利用三角形面积公式求出三角形ABC 面积,而三角形ABC 面积可以由AC 与BD 乘积的一半来求,利用面积法即可求出BD 的长:根据勾股定理得:22345AC =+=,由网格得:S △ABC =12×2×4=4,且S △ABC =12AC•BD=12×5BD , ∴12×5BD=4,解得:BD=85. 考点:1.网格型问题;2.勾股定理;3.三角形的面积.14.如图,圆O 的直径AB 垂直于弦CD ,垂足是E ,∠A=22.5°,OC=4,CD 的长为________.【答案】2【解析】试题分析:因为OC=OA ,所以∠ACO=22.5A ∠=︒,所以∠AOC=45°,又直径AB 垂直于弦CD ,4OC =,所以CE=22CD=2CE=42考点:1.解直角三角形、2.垂径定理.15.若关于x 的一元二次方程(m-1)x 2-4x+1=0有两个不相等的实数根,则m 的取值范围为_____________.【答案】5m <且1m ≠【解析】试题解析: ∵一元二次方程()21410m x x --+=有两个不相等的实数根, ∴m−1≠0且△=16−4(m−1)>0,解得m<5且m≠1,∴m 的取值范围为m<5且m≠1.故答案为:m<5且m ≠1.点睛:一元二次方程()200.ax bx c a ++=≠ 方程有两个不相等的实数根时:0.∆>16.已知a ,b ,c ,d 是成比例的线段,其中3cm a =,2cm b =,6cm c =,则d =_______cm .【答案】4【解析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad =cb ,将a,b及c的值代入即可求得d.【详解】已知a,b,c,d是成比例线段,根据比例线段的定义得:ad=cb,代入a=3,b=2,c=6,解得:d=4,则d=4cm.故答案为:4【点睛】本题主要考查比例线段的定义.要注意考虑问题要全面.17.如图,AB为⊙O的直径,C、D为⊙O上的点,AD CD=.若∠CAB=40°,则∠CAD=_____.【答案】25°【解析】连接BC,BD, 根据直径所对的圆周角是直角,得∠ACB=90°,根据同弧或等弧所对的圆周角相等,得∠ABD=∠CBD,从而可得到∠BAD的度数.【详解】如图,连接BC,BD,∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=40°,∴∠ABC=50°,∵AD CD=,∠ABC=25°,∴∠ABD=∠CBD=12∴∠CAD=∠CBD=25°.故答案为25°.【点睛】本题考查了圆周角定理及直径所对的圆周角是直角的知识点,解题的关键是正确作出辅助线.18.规定用符号[]m 表示一个实数m 的整数部分,例如:203⎡⎤=⎢⎥⎣⎦,[]3.143=.按此规定,101⎡⎤+⎣⎦的值为________.【答案】4【解析】根据规定,取101+的整数部分即可.【详解】∵103<<4,∴104<+1<5∴整数部分为4.【点睛】本题考查无理数的估值,熟记方法是关键.三、解答题(本题包括8个小题) 19.先化简,再求值:(1﹣11x x -+)÷22691x x x ++-,其中x =1. 【答案】15. 【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】原式=2221(1)(1)1(3)x x x x x x +-++-⋅++=2(1)(1)(3)3113x x x x x x x +-=-++⋅++ 当x=1时,原式2123-=+=15. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.20.某中学九年级甲、乙两班商定举行一次远足活动,A 、B 两地相距10千米,甲班从A 地出发匀速步行到B 地,乙班从B 地出发匀速步行到A 地.两班同时出发,相向而行.设步行时间为x 小时,甲、乙两班离A 地的距离分别为1y 千米、2y 千米,1y 、2y 与x 的函数关系图象如图所示,根据图象解答下列问题:直接写出1y 、2y 与x 的函数关系式;求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A 地多少千米?甲、乙两班相距4千米时所用时间是多少小时?【答案】(1)y1=4x,y2=-5x+1.(2)409km.(3)23h.【解析】(1)由图象直接写出函数关系式;(2)若相遇,甲乙走的总路程之和等于两地的距离.【详解】(1)根据图可以得到甲2.5小时,走1千米,则每小时走4千米,则函数关系是:y1=4x,乙班从B地出发匀速步行到A地,2小时走了1千米,则每小时走5千米,则函数关系式是:y2=−5x+1.(2)由图象可知甲班速度为4km/h,乙班速度为5km/h,设甲、乙两班学生出发后,x小时相遇,则4x+5x=1,解得x=10 9.当x=109时,y2=−5×109+1=409,∴相遇时乙班离A地为409km.(3)甲、乙两班首次相距4千米,即两班走的路程之和为6km,故4x+5x=6,解得x=23 h.∴甲、乙两班首次相距4千米时所用时间是23h.21.如图,已知直线AB经过点(0,4),与抛物线y=14x2交于A,B两点,其中点A的横坐标是2 .求这条直线的函数关系式及点B的坐标.在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由.过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?【答案】(1)直线y=32x+4,点B的坐标为(8,16);(2)点C的坐标为(﹣12,0),(0,0),(6,0),(32,0);(3)当M的横坐标为6时,MN+3PM的长度的最大值是1.【解析】(1)首先求得点A的坐标,然后利用待定系数法确定直线的解析式,从而求得直线与抛物线的交点坐标;(2)分若∠BAC=90°,则AB2+AC2=BC2;若∠ACB=90°,则AB2=AC2+BC2;若∠ABC=90°,则AB2+BC2=AC2三种情况求得m 的值,从而确定点C 的坐标;(3)设M (a ,14a 2),得MN=14a 2+1,然后根据点P 与点M 纵坐标相同得到x=2166a -,从而得到MN+3PM=﹣14a 2+3a+9,确定二次函数的最值即可. 【详解】(1)∵点A 是直线与抛物线的交点,且横坐标为-2,21(2)14y =⨯-=,A 点的坐标为(-2,1), 设直线的函数关系式为y=kx+b ,将(0,4),(-2,1)代入得421b k b =⎧⎨-+=⎩解得324k b ⎧=⎪⎨⎪=⎩∴y =32x +4 ∵直线与抛物线相交,231424x x ∴+= 解得:x=-2或x=8,当x=8时,y=16,∴点B 的坐标为(8,16);(2)存在.∵由A(-2,1),B(8,16)可求得AB 2=22(82)(161)=325 .设点C(m ,0),同理可得AC 2=(m +2)2+12=m 2+4m +5,BC 2=(m -8)2+162=m 2-16m +320,①若∠BAC =90°,则AB 2+AC 2=BC 2,即325+m 2+4m +5=m 2-16m +320,解得m =-12; ②若∠ACB =90°,则AB 2=AC 2+BC 2,即325=m 2+4m +5+m 2-16m +320,解得m =0或m =6; ③若∠ABC =90°,则AB 2+BC 2=AC 2,即m 2+4m +5=m 2-16m +320+325,解得m =32,∴点C 的坐标为(-12,0),(0,0),(6,0),(32,0) (3)设M(a ,14a 2), 则MN2114a =+, 又∵点P 与点M 纵坐标相同,∴32x +4=14a 2, ∴x=2166a - , ∴点P 的横坐标为2166a -, ∴MP =a -2166a -, ∴MN +3PM =14a 2+1+3(a -2166a -)=-14a 2+3a +9=-14 (a -6)2+1, ∵-2≤6≤8,∴当a =6时,取最大值1,∴当M 的横坐标为6时,MN +3PM 的长度的最大值是122.我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A 、C 两地海拔高度约为1000米,山顶B 处的海拔高度约为1400米,由B 处望山脚A 处的俯角为30°,由B 处望山脚C 处的俯角为45°,若在A 、C 两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据3≈1.732)【答案】隧道最短为1093米.【解析】作BD ⊥AC 于D ,利用直角三角形的性质和三角函数解答即可.【详解】如图,作BD ⊥AC 于D ,由题意可得:BD=1400﹣1000=400(米),∠BAC=30°,∠BCA=45°,在Rt △ABD 中,∵tan30°=BD AD ,即4003AD = ∴3(米),在Rt △BCD 中,∵tan45°=BDCD ,即4001CD=,∴CD=400(米),∴AC=AD+CD=4003+400≈1092.8≈1093(米),答:隧道最短为1093米.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形是解题的关键.23.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.该项绿化工程原计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米【解析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:4600022000x-﹣46000220001.5x-= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.24.如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;四边形BFDE是平行四边形.【答案】(1)见解析;(2)见解析;【解析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.25.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.【答案】(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥100,3∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,3313≤x≤60,①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足3313≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.26.解不等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.【答案】﹣1≤x<1.【解析】求不等式组的解集首先要分别解出两个不等式的解集,然后利用口诀“同大取大,同小取小,大小小大中间找,大大小小找不到(”确定不等式组解集的公共部分.【详解】解不等式①,得x<1,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<1.不等式组的解集在数轴上表示如下:中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.关于x 的分式方程230x x a +=-解为4x =,则常数a 的值为( ) A .1a =B .2a =C .4a =D .10a = 【答案】D【解析】根据分式方程的解的定义把x=4代入原分式方程得到关于a 的一次方程,解得a 的值即可.【详解】解:把x=4代入方程230x x a+=-,得 23044a+=-, 解得a=1.经检验,a=1是原方程的解故选D .点睛:此题考查了分式方程的解,分式方程注意分母不能为2.2.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )A .三棱柱B .四棱柱C .三棱锥D .四棱锥 【答案】D【解析】试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.故选D考点:几何体的形状3.如果关于x 的不等式组2030x a x b -≥⎧⎨-≤⎩的整数解仅有2x =、3x =,那么适合这个不等式组的整数a 、b 组成的有序数对(,)a b 共有()A .3个B .4个C .5个D .6个 【答案】D【解析】求出不等式组的解集,根据已知求出1<2a ≤2、3≤3b <4,求出2<a≤4、9≤b <12,即可得出答案.【详解】解不等式2x−a≥0,得:x ≥2a , 解不等式3x−b≤0,得:x≤3b , ∵不等式组的整数解仅有x =2、x =3,则1<2a ≤2、3≤3b <4,解得:2<a≤4、9≤b <12,则a =3时,b =9、10、11;当a =4时,b =9、10、11;所以适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有6个,故选:D .【点睛】本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a 、b 的值.4.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ).A .3229x x -=+B .3(2)29x x -=+C .2932x x +=- D .3(2)2(9)x x -=+ 【答案】B【解析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可. 5.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .8374y x y x -=⎧⎨-=⎩B .8374y x x y -=⎧⎨-=⎩C .8374x y y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩【答案】C 【解析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程.【详解】设合伙人数为x 人,物价为y 钱,根据题意得8x-y 3y 7x 4=⎧⎨-=⎩故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程.6.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E【答案】C【解析】根据平行线性质和全等三角形的判定定理逐个分析.【详解】由//AB ED,得∠B=∠D,因为CD BF,若ABC≌EDF,则还需要补充的条件可以是:AB=DE,或∠E=∠A, ∠EFD=∠ACB,故选C【点睛】本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.7.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为AB 上一点(不与O、A两点重合),则cosC的值为()A.34B.35C.43D.45【答案】D【解析】如图,连接AB,由圆周角定理,得∠C=∠ABO ,在Rt △ABO 中,OA=3,OB=4,由勾股定理,得AB=5, ∴4cos cos 5OB C ABO AB =∠==. 故选D .8.已知抛物线y =x 2+bx+c 的部分图象如图所示,若y <0,则x 的取值范围是( )A .﹣1<x <4B .﹣1<x <3C .x <﹣1或x >4D .x <﹣1或x >3【答案】B【解析】试题分析:观察图象可知,抛物线y=x 2+bx +c 与x 轴的交点的横坐标分别为(﹣1,0)、(1,0), 所以当y <0时,x 的取值范围正好在两交点之间,即﹣1<x <1. 故选B .考点:二次函数的图象.1061449.如图是某个几何体的展开图,该几何体是( )A .三棱柱B .圆锥C .四棱柱D .圆柱【答案】A【解析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱. 【详解】解:观察图形可知,这个几何体是三棱柱.【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..10.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF,其中正确的结论A.只有①②.B.只有①③.C.只有②③.D.①②③.【答案】D【解析】解:①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.则△CBM ≌△CDN ,(HL ) ∴S 四边形BCDG =S 四边形CMGN . S 四边形CMGN =1S △CMG , ∵∠CGM=60°, ∴GM=12CG ,CM=3CG , ∴S 四边形CMGN =1S △CMG =1×12×12CG×32CG=CG 1.③过点F 作FP ∥AE 于P 点. ∵AF=1FD ,∴FP :AE=DF :DA=1:3, ∵AE=DF ,AB=AD , ∴BE=1AE ,∴FP :BE=1:6=FG :BG , 即 BG=6GF . 故选D .二、填空题(本题包括8个小题)11.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为_________元. 【答案】1【解析】试题分析:设该商品每件的进价为x 元,则 150×80%-10-x =x×10%, 解得 x =1.即该商品每件的进价为1元. 故答案为1.点睛:此题主要考查了一元一次方程的应用,解决本题的关键是得到商品售价的等量关系.12.如图,矩形ABCD 中,8AB =,4BC =,将矩形沿AC 折叠,点D 落在点'D 处.则重叠部分AFC ∆的面积为______.【答案】10【解析】根据翻折的特点得到'AD F CBF ∆≅∆,AF CF =.设BF x =,则8FC AF x ==-.在Rt BCF ∆中,222BC BF CF +=,即()22248x x +=-,解出x,再根据三角形的面积进行求解.【详解】∵翻折,∴'4AD AD BC ===,'90D B ∠=∠=︒, 又∵'AFD CFB ∠=∠, ∴'AD F CBF ∆≅∆,∴AF CF =.设BF x =,则8FC AF x ==-.在Rt BCF ∆中,222BC BF CF +=,即()22248x x +=-, 解得3x =, ∴5AF =, ∴11541022AFC S AF BC ∆=⋅=⨯⨯=. 【点睛】此题主要考查勾股定理,解题的关键是熟知翻折的性质及勾股定理的应用. 13.如图,已知m n ∕∕,1105∠=︒,2140∠=︒则a ∠=________.【答案】65°【解析】根据两直线平行,同旁内角互补求出∠3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵m ∥n,∠1=105°,∴∠3=180°−∠1=180°−105°=75° ∴∠α=∠2−∠3=140°−75°=65° 故答案为:65°. 【点睛】此题考查平行线的性质,解题关键在于利用同旁内角互补求出∠3.14.如图,等腰△ABC中,AB=AC,∠BAC=50°,AB的垂直平分线MN交AC于点D,则∠DBC的度数是____________.【答案】15°【解析】分析:根据等腰三角形的性质得出∠ABC的度数,根据中垂线的性质得出∠ABD的度数,最后求出∠DBC的度数.详解:∵AB=AC,∠BAC=50°,∴∠ABC=∠ACB=(180°-50°)=65°,∵MN为AB的中垂线,∴∠ABD=∠BAC=50°,∴∠DBC=65°-50°=15°.点睛:本题主要考查的是等腰三角形的性质以及中垂线的性质定理,属于中等难度的题型.理解中垂线的性质是解决这个问题的关键.415.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣4x图象上的两个点,则y1与y2的大小关系为__________.【答案】y1<y1【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y1的大小,从而可以解答本题.详解:∵反比例函数y=-4x,-4<0,∴在每个象限内,y随x的增大而增大,∵A(-4,y1),B(-1,y1)是反比例函数y=-4x图象上的两个点,-4<-1,∴y1<y1,故答案为:y1<y1.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.16.不等式组2012xxx-≤⎧⎪⎨-<⎪⎩的最大整数解是__________.【答案】2【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【详解】解:20 12xxx-≤⎧⎪⎨-<⎪⎩①②,由不等式①得x≤1,由不等式②得x>-1,其解集是-1<x≤1,所以整数解为0,1,1,则该不等式组的最大整数解是x=1.故答案为:1.【点睛】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为4时,阴影部分的面积为_____.【答案】4π﹣1【解析】分析:连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解.详解:连接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是AB的中点,∴∠COD=45°,∴22,∴阴影部分的面积=扇形BOC的面积-三角形ODC的面积=22451(42)43602π⨯⨯-⨯=4π-1.故答案是:4π-1.点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.18.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为______.【答案】1【解析】首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.解:设黄球的个数为x个,根据题意得:88x=2/3解得:x=1.∴黄球的个数为1.三、解答题(本题包括8个小题)19.某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下:收集数据从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下:整理、描述数据将成绩按如下分段整理、描述这两组样本数据:(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如表所示:(1)表格中a的值为______;请你估计该校九年级体质健康优秀的学生人数为多少?根据以上信息,你。

2024年浙江省中考数学模拟练习试卷(原卷版)

2024年浙江省中考数学模拟练习试卷(原卷版)

2024年浙江省中考数学模拟练习试卷(考试时间:120分钟 试卷满分:120分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下图是由一个长方体和一个圆柱组成的几何体,它的俯视图是( )A. B. C. D.2.下列计算正确的是( )A .422a a −=B .842a a a ÷=C .235a a a ⋅=D .()325b b =3.截至2022年3月24日,携带“祝融号”火星车的“天问一号”环绕器在轨运行609天,距离地球277000000千米;数据用科学记数法表示为( )A .627710×B .72.7710×C .82.810×D .82.7710×4.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.已知点P (m ﹣3,m ﹣1)在第二象限,则m 的取值范围在数轴上表示正确的是( )A .B .C .D .6.化简24142x x −−−的结果是( ) A .12x −+ B .12x −− C .12x + D .12x − 7 .从甲、乙、丙三人中任选两人参加青年志愿者活动,甲被选中的概率是( )A .13B .12C .23 D .198. 如图,AB 为O 的直径,C 、D 为O 上的点,AD CD =,若40CAB ∠=°,则CAD ∠=( )A .20°B .35°C .30°D .25°9.如图,在平面直角坐标系xOy 中,直线AB 经过A (4,0)、B (0,4),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( )A B .﹣1 C .2 D .10.如图,矩形ABCD 的内部有5个全等的小正方形,小正方形的顶点,,,E F G H 分别落在边,,,AB BC CD DA上,若20,16AB BC ==,则小正方形的边长为( )A .B .5C .D .二、填空题:本题共6小题,每小题3分,共18分。

2024年浙江省宁波市中考数学模拟试题(六)

2024年浙江省宁波市中考数学模拟试题(六)

2024年浙江省宁波市中考数学模拟试题(六)一、单选题1.下列算式的结果等于6-的是( )A .()122--B .()122÷-C .()42+-D .()42⨯- 2.下列运算正确的是( )AB -C5±D 347=+ 3.下列计算正确的是( )A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅= 4.设a b c ,,均为实数,( )A .若a b >,则ac bc >B .若a b =,则ac bc =C .若ac bc >,则a b >D .若ac bc =,则a b =5.某中老年合唱团成员的平均年龄为52岁,方差为210岁,在人员没有变动的情况下,两年后这批成员的( )A .平均年龄为52岁,方差为210岁B .平均年龄为54岁,方差为210岁C .平均年龄为52岁,方差为212岁D .平均年龄为54岁,方差为212岁 6.如图,设O 为ABC V 的边AB 上一点,O e 经过点B 且恰好与边AC 相切于点C .若30,3B AC ∠=︒=,则阴影部分的面积为( )A 2πB 2πC πD π- 7.在面积等于3的所有矩形卡片中,周长不可能是( )A .12B .10C .8D .68.如图,锐角三角形ABC 中,AB AC =,D ,E 分别在边AB ,AC 上,连接BE ,CD ,下列命题中,假命题是( )A .若CD BE =,则DCB EBC ∠=∠B .若DCB EBC ∠=∠,则CD BE =C .若BD CE =,则DCB EBC ∠=∠D .若DCB EBC ∠=∠,则BD CE =9.四名同学在研究函数22y x bx c =++(b c ,为已知数)时,甲发现该函数的图象经过点()1,0;乙发现当2x =时,该函数有最小值;丙发现3x =是方程222x bx c ++=的一个根;丁发现该函数图象与y 轴交点的坐标为()0,6.已知这四名同学中只有一人发现的结论是错误的( )A .甲B .乙C .丙D .丁10.如图,ABC V 的两条高线AD BE ,交于点F ,过B ,C ,E 三点作O e ,延长AD 交O e 于点G ,连接GO GC ,.设53AF DF ==,,则下列线段中可求长度的是( )A .GB B .GDC .GOD .GC二、填空题11.分解因式:224x y -+=.12.在一个不透明的纸箱中装有4个白球和n 个黄球,它们只有颜色不同.为了估计黄球的个数,杨老师进行了如下试验:每次从中随机摸出1个球,杨老师发现摸到白球的频率稳定在13附近,则纸箱中大约有黄球个. 13.某种罐装凉茶一箱的价格为84元,某商场实行促销活动,买一箱送四罐,每罐的价格比原来便宜0.8元,设每箱中有凉茶x 罐,则可列方程:.14.如图,在Rt ABC V 中,已知90C ∠=︒,3CD BD =,cos ABC ∠sin BAD ∠=.15.第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(Rt DAE V ,Rt ABF V ,Rt BCG V ,Rt CDH △)和中间一个小正方形EFGH 拼成的大正方形ABCD 中,连接BE .设BAF α∠=,BEF β∠=,正方形EFGH 和正方形ABCD 的面积分别为1S 和2S ,若90αβ+=︒,则21S S =:.16.已知关于x 的一元二次方程20x ax b ++=有两个根1x ,2x ,且满足1212x x <<<.记=+t a b ,则t 的取值范围是 .三、解答题17.(1)计算:212tan 6012-⎛⎫︒+ ⎪⎝⎭; (2)已知2410x x --=,求代数式()()()22311x x x --+-的值. 18.圆圆和方方在做一道练习题:已知0a b <<,试比较a b 与11a b ++的大小. 圆圆说:“当12a b ==,时,有12a b =,1213a b +=+;因为1223<,所以11a ab b +<+”. 方方说:“圆圆的做法不正确,因为12a b ==,只是一个特例,不具一般性.可以……”请你将方方的做法补充完整.19.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理和分析,部分信息如下:a .七年级成绩频数分布直方图;b .七年级成绩在7080x ≤<这一组的是:70,72,74,75,76,76,77,77,77,77,78;c .七、八年级成绩的平均数、中位数如表:根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有 人,表中m 的值为 ;(2)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级50名测试学生中的排名谁更靠前;(3)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.8分的人数. 20.某同学尝试在已知的ABCD Y 中利用尺规作出一个菱形,如图所示.(1)根据作图痕迹,能确定四边形AECF 是菱形吗?请说明理由.(2)若=60B ∠︒,2BA =,4BC =,求四边形AECF 的面积.21.小丽家饮水机中水的温度为20℃,通电开机后,饮水机自动开始加热,此过程中水温()y ℃与开机时间()min x 满足一次函数关系,随后水温开始下降,此过程中水温()y ℃与开机时间()min x 成反比例关系,当水温降至20℃时,根据图中提供的信息,解答问题.(1)当010x ≤≤时,求水温()y ℃关于开机时间()min x(2)求图中t 的值.(3)若小丽在将饮水机通电开机后外出散步,请你预测小丽散步70min 回到家时,饮水机中水的温度.22.在等边三角形ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接CD ,交AP 于点E ,连接BE .(1)依题意补全如图;(2)若20PAB ∠=︒,求ACE ∠;(3)若060PAB ︒<∠<︒,用等式表示线段DE ,EC ,CA 之间的数量关系并证明.23.已知二次函数214y x bx c =-++的图象经过原点O 和点()8,0A t +,其中0t ≥. (1)当0t =时.①求y 关于x 的函数解析式,求出当x 为何值时,y 有最大值?最大值为多少? ②当x a =和x b =时()a b ≠,函数值相等,求a 的值.(2)当0t >时,在08x ≤≤范围内,y 有最大值18,求相应的t 和x 的值.24.如图,作半径为3的O e 的内接矩形ABCD ,设E 是弦BC 的中点,连接AE 并延长,交O e 于点F ,G 是»AB 的中点,CG 分别交AB AF ,于点H ,P ,若4BC =.(1)求BH ;(2)求:AP PE .(3)求tan APH .。

2018年浙江省温州市龙湾区中考数学模拟试卷(解析版)

2018年浙江省温州市龙湾区中考数学模拟试卷(解析版)

2018年浙江省温州市中考数学模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.计算(﹣2)×3的结果是()A.﹣5 B.﹣6 C.1 D.62.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.a5÷a3=a2D.(ab)2=ab23.使函数有意义的自变量x的取值范围为()A.x≠0 B.x≥﹣1 C.x≥﹣1且x≠0 D.x>﹣1且x≠04.如图,已知射线OM,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,那么∠AOB的度数是()A.90°B.60°C.45°D.30°5.随机掷一枚均匀的硬币两次,落地后至少有一次正面朝上的概率是()A.B.C.D.6.一组数据:1,3,3,5,若添加一个数据3,则下列统计量中发生变化的是()A.平均数B.中位数C.众数D.方差7.在平面直角坐标系中,若有一点P(2,1)向上平移3个单位或向左平移4个单位,恰好都在直线y=kx+b上,则k的值是()A.B.C.D.28.二次函数y=(x﹣a)(x﹣b)﹣2,(a<b)的图象与x轴交点的横坐标为m,n,且m<n,则a,b,m,n的大小关系是()A.m<a<b<n B.a<m<b<n C.a<m<n<b D.m<a<n<b9.如图,有一块菱形纸片ABCD,沿高DE剪下后拼成一个矩形,矩形的相邻两边DC和DE的长分别是5,3.则EB的长是()A.0.5 B.1 C.1.5 D.210.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF的长为()A.2B.3C.D.二.填空题(共6小题,满分30分,每小题5分)11.一元二次方程x2﹣5x﹣6=0的解是.12.请写出一个一元一次不等式.13.有一个数值转换器,原理如图,若x=6时,输出y=;若x=25时,输出y=;当输入的x为81时,y=.14.60°的圆心角所对的弧长为2πcm,则此弧所在圆的半径为.15.反比例函数y=﹣的图象的对称中心的坐标是.16.飞机着陆后滑行的距离s(米)关于滑行的时间t(秒)的函数解析式是s=60t﹣1.5t2.则飞机着陆后滑行到停下来滑行的距离为米.三.解答题(共9小题,满分80分)17.计算:﹣(π﹣3.14)0+|﹣6|+()﹣2.18.计算:x(2x﹣3)﹣2(x﹣1)2.19.如图,在平行四边形ABCD中,BE平分∠ABC交AD于点E,DF平分∠ADC交BC于F.求证:(1)△ABE≌△CDF;(2)若BD⊥EF,则判断四边形EBFD是什么特殊四边形,请证明你的结论.20.某数学兴趣小组在全校范围内随机抽取了一部分学生进行“风味泰兴﹣﹣我最喜爱的泰兴美食”调查活动,将调查问卷整理后绘制成如下图所示的不完整的条形统计图和扇形统计图.调查问卷在下面四种泰兴美食中,你最喜爱的是()(单选)A.黄桥烧饼B.宣堡小馄饨C.蟹黄汤包D.刘陈猪四宝请根据所给信息解答下列问题:(1)本次抽样调查的样本容量是;(2)补全条形统计图,并计算扇形统计图中“A”部分所对应的圆心角的度数为;(3)若全校有1200名学生,请估计全校学生中最喜爱“蟹黄汤包”的学生有多少人?21.你知道毕达哥拉斯树吗?在古希腊数学家之中,毕达哥拉斯是最为人们所熟悉、出类拔萃的大数学家,毕达哥拉斯在西方首次证明了“毕达哥拉斯定理”.在当时的西方引起了轰动,并为此举行了一个“百牛大祭”以表庆贺.如图是重复上述步聚若干次后得到的图形,人们把它称为年达哥拉斯树”.操作与猜想:如图①直角三角形的两个锐角分别是40°和50°,其三边上分别有一个正方形.执行下面的操作:由两个小正方形向外分别作锐角为40°和50°的直角三角形,再分别以所得到的直角三角形的直角边为边长作正方形.图②是一次操作后的图形(1)试画出两次操作后的图形.(2)请你选取其中的一部分进行观察,毕达哥拉斯树应用的原理是.(3)如果原来直角三角形斜边长为1cm,写出2次操作后的图形中所有正方形的面积和.(4)如果最初的直角三角形是等腰直角三角形,你能想象出此时“毕达哥拉斯树”的形状吗?22.如图,在Rt△ABC中,∠ACB=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.(1)求证:BD=BF;(2)若CF=2,tan B=,求⊙O的半径.23.如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+与直线y=x+b交于A、B两点,其中点A在x轴上,点P是直线AB上方的抛物线上一动点(不与点A、B重合)过P作y轴的平行线交直线于点C,连接PA、PB.(1)求直线的解析式及A、B点的坐标;(2)当△APB面积最大时,求点P的坐标以及最大面积.24.某中学拟组织七年级师生去参观苏州博物馆.下面是张老师和小芳、小明同学有关租车问题的对话:张老师:“客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵150元.”小芳:“八年级师生昨天在这个客运公司租了5辆60座和3辆45座的客车到苏州博物馆,一天的租金共计6750元.”小明:“如果我们七年级租用45座的客车a辆,那么还有15人没有座位;如果租用60座的客车则可少租1辆,且有一辆车上的人不足一半.”根据以上对话,解答下列问题:(1)客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)求出满足条件的a的值.(3)若同时租用两种或一种客车,要使每位师生都有座位,且每辆客车恰好坐满,问有哪几种租车方案?25.如图,P是半圆弧AB上一动点,连接PA、PB,过圆心O作OC∥BP交PA于点C,连接CB.已知AB=6cm,设O,C两点间距离为xcm,B,C两点间的距离为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究,下面是小东的探究过程,请补充完整:(1)通过取点、画图、冽量,得到了x与y的几组值,如表:说明:补全表格时相关数据取了近似值,保留一位小数(2)y与x的函数关系式为.(0≤x≤3,y>0)(3)建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象:2018年浙江省温州市龙湾区中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.计算(﹣2)×3的结果是()A.﹣5 B.﹣6 C.1 D.6【分析】原式利用异号两数相乘的法则计算即可得到结果.【解答】解:原式=﹣2×3=﹣6,故选:B.【点评】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.2.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.a5÷a3=a2D.(ab)2=ab2【分析】分别根据同底数幂相乘、幂的乘方、同底数幂相除、积的乘方逐一计算即可判断.【解答】解:A、a2•a3=a5,此选项计算错误;B、(a2)3=a6,此选项计算错误;C、a5÷a3=a2,此选项计算正确;D、(ab)2=a2b2,此选项计算错误;故选:C.【点评】本题主要考查幂的运算,解题的关键是熟练掌握同底数幂的除法、同底数幂的乘法、幂的乘方及积的乘方运算的法则.3.使函数有意义的自变量x的取值范围为()A.x≠0 B.x≥﹣1 C.x≥﹣1且x≠0 D.x>﹣1且x≠0【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+1≥0且x≠0,解得x≥﹣1且x≠0.故选:C.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.4.如图,已知射线OM,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,那么∠AOB的度数是()A.90°B.60°C.45°D.30°【分析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【解答】解:连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故选:B.【点评】此题考查了等边三角形的判定与性质.此题难度不大,解题的关键是能根据题意得到OB=OA=AB.5.随机掷一枚均匀的硬币两次,落地后至少有一次正面朝上的概率是()A.B.C.D.【分析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【解答】解:随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是.故选:B.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.一组数据:1,3,3,5,若添加一个数据3,则下列统计量中发生变化的是()A.平均数B.中位数C.众数D.方差【分析】依据定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可.【解答】解:原数据的1、3、3、5的平均数为=3,中位数为=3,众数为3,方差为×[(1﹣3)2+(3﹣3)2×2+(5﹣3)2]=2;新数据1、3、3、3、5的平均数为=3,中位数为3,众数为3,方差为×[(1﹣3)2+(3﹣3)2×3+(5﹣3)2]=1.6;∴添加一个数据3,方差发生变化,故选:D.【点评】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.7.在平面直角坐标系中,若有一点P(2,1)向上平移3个单位或向左平移4个单位,恰好都在直线y=kx+b上,则k的值是()A.B.C.D.2【分析】根据平移得出两点坐标,再利用待定系数法解得解析式即可.【解答】解:点P(2,1)向上平移3个单位或者向左平移4个单位的坐标为(2,4)或(﹣2,1),把(2,4)和(﹣2,1)代入y=kx+b,可得:,解得:,故选:B.【点评】此题考查一次函数问题,关键是根据平移得出两点坐标解答.8.二次函数y=(x﹣a)(x﹣b)﹣2,(a<b)的图象与x轴交点的横坐标为m,n,且m<n,则a,b,m,n的大小关系是()A.m<a<b<n B.a<m<b<n C.a<m<n<b D.m<a<n<b【分析】依照题意画出二次函数y=(x﹣a)(x﹣b)及y=(x﹣a)(x﹣b)﹣2的图象,观察图象即可得出结论.【解答】解:二次函数y=(x﹣a)(x﹣b)与x轴交点的横坐标为a、b,将其图象往下平移2个单位长度可得出二次函数y=(x﹣a)(x﹣b)﹣2的图象,如图所示.观察图象,可知:m<a<b<n.故选:A.【点评】本题考查了抛物线与x轴的交点以及二次函数的图象,依照题意画出图象,利用数形结合解决问题是解题的关键.9.如图,有一块菱形纸片ABCD,沿高DE剪下后拼成一个矩形,矩形的相邻两边DC和DE的长分别是5,3.则EB的长是()A.0.5 B.1 C.1.5 D.2【分析】直接利用菱形的性质得出AD的长,再利用勾股定理得出AE的长,进而利用平移的性质得出答案.【解答】解:∵有一块菱形纸片ABCD,DC=5,∴AD=BC=5,∵DE=3,∠DEA=90°,∴AE=4,则BE=5﹣4=1.故选:B.【点评】此题主要考查了图形的剪拼以及菱形的性质,正确得出AE的长是解题关键.10.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF的长为()A .2B .3C .D .【分析】首先延长FD 到G ,使DG =BE ,利用正方形的性质得∠B =∠CDF =∠CDG =90°,CB =CD ;利用SAS 定理得△BCE ≌△DCG ,利用全等三角形的性质易得△GCF ≌△ECF ,利用勾股定理可得AE =3,设AF =x ,利用GF =EF ,解得x ,利用勾股定理可得CF . 【解答】解:如图,延长FD 到G ,使DG =BE ; 连接CG 、EF ;∵四边形ABCD 为正方形, 在△BCE 与△DCG 中,,∴△BCE ≌△DCG (SAS ), ∴CG =CE ,∠DCG =∠BCE , ∴∠GCF =45°, 在△GCF 与△ECF 中,,∴△GCF ≌△ECF (SAS ), ∴GF =EF ,∵CE =3,CB =6,∴BE ===3,∴AE =3,设AF =x ,则DF =6﹣x ,GF =3+(6﹣x )=9﹣x ,∴EF ==,∴(9﹣x )2=9+x 2,∴x=4,即AF=4,∴GF=5,∴DF=2,∴CF===2,故选:A.【点评】本题主要考查了全等三角形的判定及性质,勾股定理等,构建全等三角形,利用方程思想是解答此题的关键.二.填空题(共6小题,满分30分,每小题5分)11.一元二次方程x2﹣5x﹣6=0的解是x1=6,x2=﹣1 .【分析】方程利用因式分解法求出解即可.【解答】解:方程x2﹣5x﹣6=0,分解因式得:(x﹣6)(x+1)=0,可得x﹣6=0或x+1=0,解得:x1=6,x2=﹣1,故答案为:x1=6,x2=﹣1【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.12.请写出一个一元一次不等式x﹣1>0(答案不唯一).【分析】根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.【解答】解:一元一次不等式有:x﹣1>0.故答案为:x﹣1>0(答案不唯一).【点评】本题考查不等式的定义;写出的不等式只需符合条件,越简单越好.13.有一个数值转换器,原理如图,若x=6时,输出y=;若x=25时,输出y=;当输入的x为81时,y=.【分析】将x的值代入数值转化器计算即可得到结果.【解答】解:x=81时,=9,x=9时,y==3,x=3时,输出y=,故答案为:.【点评】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键.14.60°的圆心角所对的弧长为2πcm,则此弧所在圆的半径为6cm.【分析】根据弧长公式求解即可.【解答】解:∵l=,∴r=═=6cm,故答案为6cm.【点评】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L=.15.反比例函数y=﹣的图象的对称中心的坐标是(0,0).【分析】反比例函数的图象是双曲线,其对称中心是原点.【解答】解:反比例函数y=﹣的图象的对称中心是原点,其坐标为(0,0).故答案是:(0,0).【点评】考查了反比例函数的图象.反比例函数图象是双曲线,它既是轴对称图形,也是中心对称图形.16.飞机着陆后滑行的距离s(米)关于滑行的时间t(秒)的函数解析式是s=60t﹣1.5t2.则飞机着陆后滑行到停下来滑行的距离为600 米.【分析】将s=60t﹣1.5t2,化为顶点式,即可求得s的最大值,从而可以解答本题.【解答】解:s=60t﹣1.5t2=﹣1.5(t﹣20)2+600,则当t=20时,s取得最大值,此时s=600,故飞机着陆后滑行到停下来滑行的距离为:600m.故答案为:600.【点评】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,会将二次函数的一般式化为顶点式,根据顶点式求函数的最值.三.解答题(共9小题,满分80分)17.计算:﹣(π﹣3.14)0+|﹣6|+()﹣2.【分析】直接利用零指数幂的性质以及负指数幂的性质以及算术平方根的定义分别化简得出答案.【解答】解:原式=2﹣1+6+4=11.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.计算:x(2x﹣3)﹣2(x﹣1)2.【分析】根据单项式乘多项式法则、完全平方公式把原式变形,合并同类项即可.【解答】解:原式=2x2﹣3x﹣2(x2﹣2x+1)=2x2﹣3x﹣2x2+4x﹣2=x﹣2.【点评】本题考查的是单项式乘多项式、完全平方公式,单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.19.如图,在平行四边形ABCD中,BE平分∠ABC交AD于点E,DF平分∠ADC交BC于F.求证:(1)△ABE≌△CDF;(2)若BD⊥EF,则判断四边形EBFD是什么特殊四边形,请证明你的结论.【分析】(1)由平行四边形的性质得出AB=CD,AD=CB,AD∥CB,∠A=∠C,∠ABC=∠ADC,证出∠ABE=∠CDF,由ASA即可得出△ABE≌△CDF;(2)由全等三角形的性质得出AE=CF,得出DE=BF,证明四边形EBFD是平行四边形,由对角线互相垂直即可得出四边形EBFD 是菱形.【解答】:∵四边形ABCD 是平行四边形,∴AB =CD ,AD =CB ,AD ∥CB ,∠A =∠C ,∠ABC =∠ADC ,∵BE 平分∠ABC ,DF 平分∠ADC ,∴∠ABE =∠ABC ,∠CDF =∠ADC ,∴∠ABE =∠CDF ,在△ABE 和△CDF 中,,∴△ABE ≌△CDF (ASA );(2)∴AE =CF ,∴DE =BF ,又∵DE ∥BF ,∴四边形EBFD 是平行四边形.∵BD ⊥EF ,∴四边形EBFD 是菱形.【点评】本题考查了菱形的判定、全等三角形的判定与性质、平行四边形的判定与性质;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.20.某数学兴趣小组在全校范围内随机抽取了一部分学生进行“风味泰兴﹣﹣我最喜爱的泰兴美食”调查活动,将调查问卷整理后绘制成如下图所示的不完整的条形统计图和扇形统计图.调查问卷在下面四种泰兴美食中,你最喜爱的是( )(单选)A .黄桥烧饼B .宣堡小馄饨C .蟹黄汤包D .刘陈猪四宝请根据所给信息解答下列问题:(1)本次抽样调查的样本容量是 50 ;(2)补全条形统计图,并计算扇形统计图中“A”部分所对应的圆心角的度数为72°;(3)若全校有1200名学生,请估计全校学生中最喜爱“蟹黄汤包”的学生有多少人?【分析】(1)用B种小吃的人数除以对应百分比可得样本容量;(2)根据四种小吃的人数之和等于总人数求得C的人数,据此可补全条形图,用360°乘以A部分人数占总人数的比例可得;(3)用总人数乘以样本中C种类人数占被调查人数的比例即可得.【解答】解:(1)本次抽样调查的样本容量是15÷30%=50,故答案为:50;(2)C种小吃的人数为50﹣(10+15+5)=20(人),补全条形图如下:扇形统计图中“A”部分所对应的圆心角的度数为360°×=72°,故答案为:72°;(3)估计全校学生中最喜爱“蟹黄汤包”的学生有1200×=480(人).【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.你知道毕达哥拉斯树吗?在古希腊数学家之中,毕达哥拉斯是最为人们所熟悉、出类拔萃的大数学家,毕达哥拉斯在西方首次证明了“毕达哥拉斯定理”.在当时的西方引起了轰动,并为此举行了一个“百牛大祭”以表庆贺.如图是重复上述步聚若干次后得到的图形,人们把它称为年达哥拉斯树”.操作与猜想:如图①直角三角形的两个锐角分别是40°和50°,其三边上分别有一个正方形.执行下面的操作:由两个小正方形向外分别作锐角为40°和50°的直角三角形,再分别以所得到的直角三角形的直角边为边长作正方形.图②是一次操作后的图形(1)试画出两次操作后的图形.(2)请你选取其中的一部分进行观察,毕达哥拉斯树应用的原理是勾股定理.(3)如果原来直角三角形斜边长为1cm,写出2次操作后的图形中所有正方形的面积和.(4)如果最初的直角三角形是等腰直角三角形,你能想象出此时“毕达哥拉斯树”的形状吗?【分析】(1)根据要求画出图象即可;(2)根据勾股定理可知:斜边上的正方形的面积=直角边上的面积之和;(3)根据勾股定理即可解决问题;(4)根据轴对称图形的性质即可判断;【解答】解:(1)2次操作后的图形如图所示.(2)毕达哥拉斯树应用的原理是勾股定理.故答案为勾股定理;(3)所有正方形的面积和为4平方厘米.(4)如果最初的直角三角形是等腰直角三角形,“毕达哥拉斯树”将是轴对称的.【点评】本题考查作图﹣应用与设计、直角三角形的性质、勾股定理、正方形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.22.如图,在Rt△ABC中,∠ACB=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.(1)求证:BD=BF;(2)若CF=2,tan B=,求⊙O的半径.【分析】(1)连接OE,由AC为圆O的切线,利用切线的性质得到OE垂直于AC,再由BC 垂直于AC,得到OE与BC平行,根据O为DB的中点,得到E为DF的中点,即OE为三角形DBF的中位线,利用中位线定理得到OE为BF的一半,再由OE为DB的一半,等量代换即可得证;(2)设BC=3x,根据题意得:AC=4x,AB=5x,根据cos∠AOE=cos B,可得=,即=,解方程即可;【解答】(1)证明:连接OE,∵AC与圆O相切,∴OE⊥AC,∵BC⊥AC,∴OE∥BC,又∵O为DB的中点,∴E为DF的中点,即OE为△DBF的中位线,∴OE=BF,又∵OE=BD,则BF=BD;(2)解:设BC=3x,根据题意得:AC=4x,AB=5x又∵CF=2,∴BF=3x+2,由(1)得:BD=BF,∴BD=3x+1,∴OE=OB=,AO=AB﹣OB=5x﹣=,∵OE∥BF,∴∠AOE=∠B,∴cos∠AOE=cos B,即=,即=,解得:x=,则圆O的半径为=5.【点评】此题考查了切线的性质,锐角三角函数定义,以及圆周角定理,熟练掌握切线的性质是解本题的关键.23.如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+与直线y=x+b交于A、B两点,其中点A在x轴上,点P是直线AB上方的抛物线上一动点(不与点A、B重合)过P作y轴的平行线交直线于点C,连接PA、PB.(1)求直线的解析式及A、B点的坐标;(2)当△APB面积最大时,求点P的坐标以及最大面积.【分析】(1)先求出抛物线y =﹣x 2﹣x +与x 轴交点A 的坐标,再将A 点坐标代入y =x +b ,利用待定系数法求出直线的解析式为y =x ﹣,与抛物线的解析式联立,解方程组,即可求得B 点的坐标;(2)设P (x ,﹣x 2﹣x +),则C (x , x ﹣),则PC =﹣x 2﹣4x +5,利用三角形面积公式得到S △APB =PC •|x A ﹣x B |=(﹣x 2﹣4x +5)×(1+5),然后利用二次函数的性质解决问题.【解答】解:(1)∵y =﹣x 2﹣x +,∴当y =0时,﹣x 2﹣x +=0,解得x 1=﹣,x 2=1,∴A 点的坐标为(1,0).将A (1,0)代入y =x +b ,得0=×1+b ,解得b =﹣,∴直线的解析式为y =x ﹣.由,解得,,∴B 点的坐标为(﹣5,﹣3);(2)设P(x,﹣x2﹣x+),则C(x, x﹣),∴PC=(﹣x2﹣x+)﹣(x﹣)=﹣x2﹣4x+5,∴S△APB=PC•|x A﹣x B|=(﹣x2﹣4x+5)×(1+5)=﹣3x2﹣12x+15=﹣3(x+2)2+27,当x=﹣2时,△APB面积最大,最大值为27,此时点P的坐标为(﹣2,).【点评】本题考查了二次函数的性质,利用待定系数法求直线的解析式,函数图象上点的坐标特征,两函数交点坐标的求法,三角形的面积,难度适中.24.某中学拟组织七年级师生去参观苏州博物馆.下面是张老师和小芳、小明同学有关租车问题的对话:张老师:“客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵150元.”小芳:“八年级师生昨天在这个客运公司租了5辆60座和3辆45座的客车到苏州博物馆,一天的租金共计6750元.”小明:“如果我们七年级租用45座的客车a辆,那么还有15人没有座位;如果租用60座的客车则可少租1辆,且有一辆车上的人不足一半.”根据以上对话,解答下列问题:(1)客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)求出满足条件的a的值.(3)若同时租用两种或一种客车,要使每位师生都有座位,且每辆客车恰好坐满,问有哪几种租车方案?【分析】(1)根据题意设出两种车的租金,列二元一次方程组即可;(2)用a表示七年级人数,根据条件构造不等式组;(3)在(2)的基础上设出租用两种车型的数量,表示总人数,得到二元一次方程讨论方程的解.【解答】解:(1)设60座和45座的客车每辆每天的租金分别是x元、y元,由题意得解得答:60座和45座的客车每辆每天的租金分别是1050元和900元(2)由已知,七年级人数为(45a+15)人由题意解得因为a为整数∴a=8(3)由(2)七年级共45×8+15=375人设60座和45座车分别为m辆n辆则60m+45n=3754m+3n=25则有m=解得n∴n为可取0﹣8的整数∵m为整数∴n=3时,m=4n=7时,m=1∴租车方案有两种:方案一:60座4辆,45座3辆方案二:60座1辆,45座7辆【点评】本题为代数应用题,考查了一元一次不等式组和二元一次方程组,解答关键是根据题意构造方程、不等式.25.如图,P是半圆弧AB上一动点,连接PA、PB,过圆心O作OC∥BP交PA于点C,连接CB.已知AB=6cm,设O,C两点间距离为xcm,B,C两点间的距离为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究,下面是小东的探究过程,请补充完整:(1)通过取点、画图、冽量,得到了x与y的几组值,如表:说明:补全表格时相关数据取了近似值,保留一位小数(2)y与x的函数关系式为y=.(0≤x≤3,y>0)(3)建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象:【分析】(1)OC∥BP,则OC是△ABP的中位线,则BP=2x,PC=AC==,y==,将x=1或2代入即可求解;(2)由(1)得:y=;(3)描点即可.【解答】解:OC∥BP,则OC是△ABP的中位线,则BP=2x,PC=AC==,y==;(1)当x=1时,y≈3.5,x=2时,y≈4.58≈4.6,故:答案为3.5,4.6;(2)由(1)知,y=(0≤x≤3);答案为:y=;(3)如下图:【点评】本题为圆的综合题,主要考查三角形中位线和勾股定理的应用,难度不大.。

2023年浙江省温州市中考数学模拟试题

2023年浙江省温州市中考数学模拟试题

25
A.
9 20
C.
7
25
B.
8 15
D.
7
二、填空题(本题有 6 小题,每小题 5 分,共 30 分) 11.分解因式: x2 4x . 12.计算: a2 a3 .
13.若扇形的圆心角为 120°,半径为 4,则扇形的面积为
(第 10 题图) .
14.若关于 x 的方程 x2 6x c 0 有两个相等的实数根,则 c 的值是 .
组中值
1
2
3
4
5
人数(人)
21
30
19
18
12
(1)画扇形图描述数据时,1.5 x 2.5这组数据对应的扇形圆心角是多少度?
(2)估计该校学生目前每周劳动时间的平均数;
(3)请你为该校制定一个学生每周劳动时间的合格标准(时间取整数小时),并用统计量说明其合理性.
22. (本题 10 分)如图,在△ABC 中, AC BC ,以 BC 为直径的半圆 O 交 AB 于点 D,过点 D 作半圆 O 的切线,交 AC 于点 E. (1)求证: ACB 2ADE ; (2)若 DE 3, AE 3 ,求 C»D 的长.
的x
(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式, 并画出这个函数的图象.
(2)当水位高度达到 5 米时,求进水用时 x.
20.(本题 8 分)如图,在△ABC 中,∠ABC 的平分线 BD 交 AC 边于点 D,∠C=45°. (1)求证:AB=BD; (2)若 AE=3,求△ABC 的面积.
19.(本题 8 分)一个深为 6 米的水池积存着少量水,现在打开水阀进水,下表记录了 2 小时内 5 个时刻的 水位高度,其中 x 表示进水用时(单位:小时),y 表示水位高度(单位:米).

浙江省乐清2018中考模拟数学试题word

浙江省乐清2018中考模拟数学试题word

乐清学校 2018 中考模拟试卷(5)一、选择题(本题有 10 小题,每小题 4 分,共 40 分,每小题只哟一个选项是正确的) 1.(4 分)﹣3 的绝对值是( ) A.3 B.﹣3C. 13D. 13- 2.(4 分)如图所示的几何体,其左视图是( )3.(4 分)如图,直线 AB ∥CD,AF 交 CD 于点 E,∠DEF=140°,则∠A 的度数是( )A.140°B.40°C.50°D.60° 4.(4 分)如图是一组不等式组的解集在数轴上的表示,则该不等式组的解集为( )A.﹣1<x ≤2B.x ≤2 C .﹣1≤x <2 D.x >﹣15.(4 分)根据调查,某地区一周空气质量报告中每天空气污染指数如下表所示,这组数据的众数是( ) A.20 B.21 C.22 D.246.(4 分)方程1136x x --=的解是( ) A.x=0 B.x=2 C.x=5 D.x=77.(4 分)如图,等腰△ABC 中,AB=AC,∠A=20°.线段 AB 的垂直平分线交 AB 于 D,交 AC 于 E,连接 BE,则∠CBE 等 于( ) A.80° B.70° C.60° D.50°8.(4 分)某超市今年 1 鱼粉的营业额为 50 万元,从 2 月起营业额明显上升,已知 2 月至 3 月营业额的月增长率 是 1 月至 2 月营业额的月增长率的 2 倍,3 月份的营业额是 66 万元,设该超市 1 月至 2 月营业额的月增长率 为 x,根据题意,可列方程( ) A.50(1+x)=66 B.50(1+x)2=66 C.50(1+2x)2=66 D.50(1+x)(1+2x)=66 9.(4 分)如图,▱ABCD 的对角线 AC,BD 相交于点 O,E 是以 A 为圆心,以 2 为半径为圆上一动点,连接 CE,点 P 为 CE 的中点,连接 BP ,若 AC=a,BD=b,则 BP 的最大值为( ) A. 2a+1 B. 2b+1 C.2a b + D. 2a b++1 10.(4 分)如图,在△ABC 中,BC ∥x 轴,AD ⊥BC,A,B 两点恰好在反比例函数 y=kx(k >0)第一象限的图象上,若 S △ACD =6,S △ABD =9,则 k 为( ) A.10 B.15C.18D.20二、填空题(本题有 6 小题,每小题 5 分,共 30 分) 11.(5 分)因式分解:a 2+4a +4= .12.(5 分)甲、乙两名射击手的 5 次射击测试成绩统计如图所示,分别记甲、乙两人这次射击的方差为 S 甲 2,S 乙 2,则 S 甲 2 S 乙 2(填“>”或“<”)13.(5 分)已知一次函数 y=﹣2x +(1﹣t)的图线与 x 轴的交点在(﹣1,0),B(2,0)之间(包括 A 、B 两点),则 t 的最小值是 .14.(5 分)在一次爱心捐款中国,某班 40,名学生捐款情况如扇形统计图所示,则这个班级的学生共捐款 元. 15.(5 分)如图,将 45°的∠AOB 按图摆放在一把刻度尺上,顶点 O 与尺下沿的端点重合,OA 与尺的下沿重合,OB 与尺上沿的交点 B 在尺上的度数为 2cm,若将射线 OB 绕点 O 顺时针旋转 18°与尺子的上沿交于点 C,则点 C 在尺上的度数约为 c m.(结果精确到 0.1cm,参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)16.(5 分)如图是一个装有两个大小相同的球形礼品的包装盒示意图,其中两个小球之间有个等腰三角形隔板, 已知矩形长为 45cm,宽为 20cm,两圆与矩形的边以及等腰△ABC 的腰都相切,则所需的三角形隔板的底边 AB 长为 .三、解答题(本题有 8 小题,共 80 分,解答需写出必要的文字说明、演算步骤或证明过程) 17.(5 分)计算: 9-00(23)tan 60++18.(5 分)先化简,再求值:(x +3)(x ﹣3)﹣x(x ﹣2),其中 x=32.19.(8 分)如图,已知 AD 为△ABC 的中线,延长 AD,分别过点 B,C 作 BE ⊥AD,CF ⊥AD. (1)求证:△BED ≌△CFD.(2)若∠EAC=45°,AF=4,DC=5,求 EF 的长.20.(8 分)在一个不透明的布袋里装有 4 个球,其中 2 个红球,2 个白球,它们除颜色外其余都相同. (1)若从中任意摸出一个球,求摸出红球的概率.(2)若摸出 1 个球,记下颜色后不放回,再摸出 1 个球,求两次摸出球恰好颜色不同概率(画树状图或列表说明)21.(8 分)图①、图②都是 4×4 的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为 1.在每 个网格中标注了 5 个格点.按下列要求画图: (1)在图①中以格点为顶点画一个等腰三角形,使其内部已标注的格点只有 3 个; (2)在图②中,以格点为顶点,画一个正方形,使其内部已标注的格点只有 3 个,且边长为无理数.22.(10 分)如图,点O 为Rt△ABC 斜边AC 上一点,以点O 为圆心,OC 长为半径的⊙O 与AB 相切于点D,分别交AC,BC 于点G,E.(1)求证:弧DG=弧DE.(2)若DE∥AC,BE=1,求AG 和弧DG的长.23.(10 分)2017 年3 月温州文博会期间,某商店决定购进A、B 两种文博会纪念品.若购进A 种纪念品10 件,B 种纪念品5 件,需要215 元;若购进A 种纪念品5 件,B 种纪念品10 件,需要205 元.(1)求A、B 两种纪念品购进单价;(2)已知该商店购进这两种纪念品共花费1365 元,且A、B 两种纪念品数量相差未超过20 件,那么该商店购进这A、B 两种纪念品各几件?24.(12 分)如图1,抛物线y=﹣x2+2mx+3m2(m>0)与y 轴相交于点A,过点A 作x 轴的平行线交抛物线于另一点B,过点B 作BC⊥x 轴于点C,抛物线的顶点为D. (1)若抛物线经过点(4,12),求m 的值和点D 的坐标;(2)连结AC,是否存在一个内角为30°的△ABC,若存在,求出符合条件的额m 值;若不存在,请说明理由;(3)如图2,在(1)的条件下,连结CD 交AB 于点E,连结AD 并延长交CB 的延长线于点F,连结BD,设△ADE 的面积为S1,△BCE 的面积为S2,△BDF 的面积为S3,则S1:S2:S3= .(直接写出答案)25.(14 分)如图1,在Rt△ABC 中,∠ACB=Rt∠,sin∠B= 35,AB=10,点D 以每秒5 个单位长度的速度从点B 处沿沿射线BC 方向运动,点F 以相同的速度从点A 出发沿边AB 向点B 运动,当F 运动至点B 时,点D、E 同时停止运动,设点D 运动时间为t 秒.(1)用含t 的代数式分别表示线段BD 和BF 的长度.则BD= ,BF= .(2)设△BDF 的面积为S,求S 关于t 的函数表达式及S 的最大值.(3)如图2,以DF 为对角线作正方形DEFG.①在运动过程中,是否存在正方形DEFG 的一边恰好落在Rt△ABC 的一边上,若存在,求出所有符合条件的t 值;若不存在,请说明理由.②设DF 的中点为P,当点F 从点A 运动至点B 时,请直接写出点P 走过的路程.。

(汇总3份试卷)2018年温州市中考统考数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图钓鱼竿AC 长6m ,露在水面上的鱼线BC 长32m ,钓者想看看鱼钓上的情况,把鱼竿AC 逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是( )A .3mB .33mC .23mD .4m【答案】B【解析】因为三角形ABC 和三角形AB′C′均为直角三角形,且BC 、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB ,进而得出∠C′AB′的度数,然后可以求出鱼线B'C'长度. 【详解】解:∵sin ∠CAB =322BC AC ==∴∠CAB =45°. ∵∠C′AC =15°, ∴∠C′AB′=60°. ∴sin60°=''362B C =, 解得:B′C′=3. 故选:B . 【点睛】此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题. 2.已知一个多边形的内角和是外角和的2倍,则此多边形的边数为 ( ) A .6 B .7C .8D .9【答案】A【解析】试题分析:根据多边形的外角和是310°,即可求得多边形的内角的度数为720°,依据多边形的内角和公式列方程即可得(n ﹣2)180°=720°,解得:n=1. 故选A .考点:多边形的内角和定理以及多边形的外角和定理3.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( )A .2、40B .42、38C .40、42D .42、40 【答案】D【解析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40, 故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.4.已知⊙O 的半径为5,若OP=6,则点P 与⊙O 的位置关系是( ) A .点P 在⊙O 内 B .点P 在⊙O 外C .点P 在⊙O 上D .无法判断【答案】B【解析】比较OP 与半径的大小即可判断. 【详解】r 5=,d OP 6==,d r ∴>,∴点P 在O 外,故选B . 【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种.设O 的半径为r ,点P 到圆心的距离OP d =,则有:①点P 在圆外d r ⇔>;②点P 在圆上d r ⇔=;①点P 在圆内d r ⇔<.5.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( ) A .12B .14C .16D .116【答案】B【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案. 【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41=164,故选B . 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比. 6.一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc<0;②b 2>4ac ;③4a+2b+c<0;④2a+b=0..其中正确的结论有:A .4个B .3个C .2个D .1个【答案】B【解析】试题解析:①∵二次函数的图象的开口向下, ∴a<0,∵二次函数的图象y 轴的交点在y 轴的正半轴上, ∴c>0,∵二次函数图象的对称轴是直线x=1,12ba,∴-= ∴2a+b=0,b>0 ∴abc<0,故正确;②∵抛物线与x 轴有两个交点, 240b ac ∴->, 24b ac ∴>, 故正确;③∵二次函数图象的对称轴是直线x=1, ∴抛物线上x=0时的点与当x=2时的点对称, 即当x=2时,y>0 ∴4a+2b+c>0, 故错误;④∵二次函数图象的对称轴是直线x=1,12ba,∴-=∴2a+b=0, 故正确.综上所述,正确的结论有3个. 故选B.7.下列各组单项式中,不是同类项的一组是( ) A .2x y 和22xy B .3xy 和2xy -C .25x y 和22yx -D .23-和3【答案】A【解析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【详解】根据题意可知:x 2y 和2xy 2不是同类项. 故答案选:A. 【点睛】本题考查了单项式与多项式,解题的关键是熟练的掌握单项式与多项式的相关知识点. 8.下列四个多项式,能因式分解的是( ) A .a -1 B .a 2+1 C .x 2-4y D .x 2-6x +9【答案】D【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可. 试题解析:x 2-6x+9=(x-3)2. 故选D .考点:2.因式分解-运用公式法;2.因式分解-提公因式法.9.估计的值应在( ) A .5和6之间 B .6和7之间C .7和8之间D .8和9之间【答案】C【解析】先化简二次根式,合并后,再根据无理数的估计解答即可.【详解】==, ∵49<54<64,∴,∴7和8之间, 故选C . 【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.10.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数ky x= (x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则k 的值是( )A .92B .74C .245D .12【答案】C【解析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k. 【详解】∵四边形OCBA 是矩形, ∴AB=OC ,OA=BC , 设B 点的坐标为(a ,b ), ∵BD=3AD , ∴D (4a,b ), ∵点D ,E 在反比例函数的图象上,∴4ab=k , ∴E (a , ka),∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a)=9, ∴k=245, 故选:C 【点睛】考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键. 二、填空题(本题包括8个小题)11.如图,点,,D E F 分别在正三角形ABC 的三边上,且DEF ∆也是正三角形.若ABC ∆的边长为a ,DEF ∆的边长为b ,则AEF ∆的内切圆半径为__________.【答案】3()6a b-【解析】根据△ABC、△EFD都是等边三角形,可证得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根据切线长定理得到AH=12(AE+AF-EF)=12(a-b);,再根据直角三角形的性质即可求出△AEF的内切圆半径.【详解】解:如图1,⊙I是△ABC的内切圆,由切线长定理可得:AD=AE,BD=BF,CE=CF,∴AD=AE=12[(AB+AC)-(BD+CE)]=12[(AB+AC)-(BF+CF)]=12(AB+AC-BC),如图2,∵△ABC,△DEF都为正三角形,∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,∴∠1+∠2=∠2+∠3=120°,∠1=∠3;在△AEF和△CFD中,13BAC CEF FD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△CFD(AAS);同理可证:△AEF≌△CFD≌△BDE;∴BE=AF,即AE+AF=AE+BE=a.设M是△AEF的内心,过点M作MH⊥AE于H,则根据图1的结论得:AH=12(AE+AF-EF )=12(a-b ); ∵MA 平分∠BAC , ∴∠HAM=30°; ∴HM=AH•tan30°=12(a-b )•33=()3a b 6-故答案为:()3a b -. 【点睛】本题主要考查的是三角形的内切圆、等边三角形的性质、全等三角形的性质和判定,切线的性质,圆的切线长定理,根据已知得出AH 的长是解题关键.12.如图是一个立体图形的三种视图,则这个立体图形的体积(结果保留π)为______________.【答案】250π【解析】从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱.由三视图可得圆柱的半径和高,易求体积. 【详解】该立体图形为圆柱, ∵圆柱的底面半径r=5,高h=10,∴圆柱的体积V=πr 2h=π×52×10=250π(立方单位). 答:立体图形的体积为250π立方单位. 故答案为250π. 【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积×高. 13.不等式组2x+1x {4x 3x+2>≤的解集是 ▲ .【答案】﹣1<x≤1【解析】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,解第一个不等式得,x>﹣1,解第二个不等式得,x≤1,∴不等式组的解集是﹣1<x≤1.14.如图,P(m,m)是反比例函数9yx=在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.【答案】933+.【解析】如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=9x在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△PAB是等边三角形,∴∠PAH=60°.∴根据锐角三角函数,得3.∴3∴S△POB=12OB•PH=9332+.15.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:x …-5 -4 -3 -2 -1 …y … 3 -2 -5 -6 -5 …则关于x的一元二次方程ax2+bx+c=-2的根是______.【答案】x1=-4,x1=2【解析】解:∵x=﹣3,x=﹣1的函数值都是﹣5,相等,∴二次函数的对称轴为直线x=﹣1.∵x=﹣4时,y=﹣1,∴x=2时,y=﹣1,∴方程ax1+bx+c=3的解是x1=﹣4,x1=2.故答案为x1=﹣4,x1=2.点睛:本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.16.如图,AG ∥BC ,如果AF :FB =3:5,BC :CD =3:2,那么AE :EC =_____.【答案】3:2;【解析】由AG//BC 可得△AFG 与△BFD 相似 ,△AEG 与△CED 相似,根据相似比求解. 【详解】假设:AF =3x,BF =5x , ∵△AFG 与△BFD 相似 ∴AG =3y,BD =5y由题意BC:CD =3:2则CD =2y ∵△AEG 与△CED 相似 ∴AE:EC = AG:DC =3:2. 【点睛】本题考查的是相似三角形,熟练掌握相似三角形的性质是解题的关键. 17.已知A(x 1,y 1),B(x 2,y 2)都在反比例函数y =6x的图象上.若x 1x 2=﹣4,则y 1⋅y 2的值为______. 【答案】﹣1.【解析】根据反比例函数图象上点的坐标特征得到121266,y y x x ==, 再把它们相乘,然后把124x x =-代入计算即可.【详解】根据题意得121266,y y x x ==, 所以1212126636369.4y y x x x x =⋅===-- 故答案为:−1. 【点睛】考查反比例函数图象上点的坐标特征,把点,A B 的坐标代入反比例函数解析式得到121266,,y y x x ==是解题的关键.18.在△ABC 中,AB=AC ,把△ABC 折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N .如果△CAN 是等腰三角形,则∠B 的度数为___________.【答案】或.【解析】MN是AB的中垂线,则△ABN是等腰三角形,且NA=NB,即可得到∠B=∠BAN=∠C.然后对△ANC 中的边进行讨论,然后在△ABC中,利用三角形内角和定理即可求得∠B的度数.解:∵把△ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N,∴MN是AB的中垂线.∴NB=NA.∴∠B=∠BAN,∵AB=AC∴∠B=∠C.设∠B=x°,则∠C=∠BAN=x°.1)当AN=NC时,∠CAN=∠C=x°.则在△ABC中,根据三角形内角和定理可得:4x=180,解得:x=45°则∠B=45°;2)当AN=AC时,∠ANC=∠C=x°,而∠ANC=∠B+∠BAN,故此时不成立;3)当CA=CN时,∠NAC=∠ANC=180x2-.在△ABC中,根据三角形内角和定理得到:x+x+x+180x2-=180,解得:x=36°.故∠B的度数为45°或36°.三、解答题(本题包括8个小题)19.小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)【答案】(1)13;(2)19;(3)第一题.【解析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:18;如果在第二题使用“求助”小明顺利通关的概率为:19;即可求得答案.【详解】(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率=13;故答案为13;(2)画树状图为:共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为19;(3)建议小明在第一题使用“求助”.理由如下:小明将“求助”留在第一题,画树状图为:小明将“求助”留在第一题使用,小明顺利通关的概率=18,因为18>19,所以建议小明在第一题使用“求助”.【点睛】本题考查的是概率,熟练掌握树状图法和概率公式是解题的关键.20.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:频数分布表中a = ,b= ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?【答案】(1)a=0.3,b=4;(2)99人;(3)1 4【解析】分析:(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.详解:(1)a=1-0.15-0.35-0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为:0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:31= 124.点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.求证:AB=DC;试判断△OEF的形状,并说明理由.【答案】(1)证明略(2)等腰三角形,理由略【解析】证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)△OEF为等腰三角形理由如下:∵△ABF≌△DCE,∴∠AFB=∠DEC.∴OE=OF.∴△OEF为等腰三角形.22.新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.【答案】(1)30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数);(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算.【解析】解:(1)当1≤x≤8时,每平方米的售价应为:y=4000﹣(8﹣x)×30="30x+3760" (元/平方米)当9≤x≤23时,每平方米的售价应为:y=4000+(x﹣8)×50=50x+3600(元/平方米).∴30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数)(2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),当W1>W2时,即485760﹣a>475200,解得:0<a<10560,当W1<W2时,即485760﹣a<475200,解得:a>10560,∴当0<a<10560时,方案二合算;当a>10560时,方案一合算.【点睛】本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.23.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.降价前商场每月销售该商品的利润是多少元?要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?【答案】(1) 4800元;(2) 降价60元.【解析】试题分析:(1)先求出降价前每件商品的利润,乘以每月销售的数量就可以得出每月的总利润;(2)设每件商品应降价x元,由销售问题的数量关系“每件商品的利润×商品的销售数量=总利润”列出方程,解方程即可解决问题.试题解析:(1)由题意得60×(360-280)=4800(元).即降价前商场每月销售该商品的利润是4800元;(2)设每件商品应降价x元,由题意得(360-x-280)(5x+60)=7200,解得x1=8,x2=60.要更有利于减少库存,则x=60.即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.点睛:本题考查了列一元二次方程解实际问题的销售问题,解答时根据销售问题的数量关系建立方程是关键.24.当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.【答案】(1)15人;(2)补图见解析.(3)1 2 .【解析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【详解】解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A1所在圆心角度数为:215×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=3162.【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.25.某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:本次抽查的样本容量是;在扇形统计图中,“主动质疑”对应的圆心角为度;将条形统计图补充完整;如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?【答案】(1)560;(2)54;(3)补图见解析;(4)18000人【解析】(1)本次调查的样本容量为224÷40%=560(人);(2)“主动质疑”所在的扇形的圆心角的度数是:360∘×84560=54º;(3)“讲解题目”的人数是:560−84−168−224=84(人).(4)60000×168560=18000(人),答:在课堂中能“独立思考”的学生约有18000人.26.解不等式组2233134x xx x+≤+⎧⎪+⎨<⎪⎩(),并把解集在数轴上表示出来.【答案】不等式组的解集为13x≤<,在数轴上表示见解析.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【详解】由2(x+2)≤3x+3,可得:x≥1,由134x x+<,可得:x<3,则不等式组的解为:1≤x<3,不等式组的解集在数轴上表示如图所示:【点睛】本题考查了一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列几何体中,主视图和左视图都是矩形的是()A.B.C.D.【答案】C【解析】主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.【详解】A. 主视图为圆形,左视图为圆,故选项错误;B. 主视图为三角形,左视图为三角形,故选项错误;C. 主视图为矩形,左视图为矩形,故选项正确;D. 主视图为矩形,左视图为圆形,故选项错误.故答案选:C.【点睛】本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.2.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B. C.D.【答案】BA C D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去【解析】试题解析:选项,,的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选B.3.如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为()A .(2,23)B .(﹣2,4)C .(﹣2,22)D .(﹣2,23)【答案】D 【解析】分析:作BC ⊥x 轴于C ,如图,根据等边三角形的性质得4,2,60OA OB AC OC BOA ====∠=,则易得A 点坐标和O 点坐标,再利用勾股定理计算出224223BC =-=,然后根据第二象限点的坐标特征可写出B 点坐标;由旋转的性质得60,AOA BOB OA OB OA OB ∠'=∠'==='=',则点A′与点B 重合,于是可得点A′的坐标.详解:作BC ⊥x 轴于C ,如图,∵△OAB 是边长为4的等边三角形∴4,2,60OA OB AC OC BOA ====∠=,∴A 点坐标为(−4,0),O 点坐标为(0,0),在Rt △BOC 中,224223BC =-=,∴B 点坐标为(2,23)-;∵△OAB 按顺时针方向旋转60,得到△OA′B′,∴60,AOA BOB OA OB OA OB ∠'=∠'==='=',∴点A′与点B 重合,即点A′的坐标为(2,23)-,故选D.点睛:考查图形的旋转,等边三角形的性质.求解时,注意等边三角形三线合一的性质.4.在如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )A .B .C .D .【答案】D【解析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【详解】由题意知,函数关系为一次函数y=-1x+4,由k=-1<0可知,y 随x 的增大而减小,且当x=0时,y=4,当y=0时,x=1.故选D .【点睛】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解.5.如图,在矩形ABCD 中,O 为AC 中点,EF 过O 点且EF ⊥AC 分别交DC 于F ,交AB 于点E ,点G 是AE 中点且∠AOG=30°,则下列结论正确的个数为( )DC=3OG ;(2)OG= 12BC ;(3)△OGE 是等边三角形;(4)16AOE ABCD S S ∆=矩形.A .1B .2C .3D .4【答案】C 【解析】∵EF ⊥AC ,点G 是AE 中点,∴OG=AG=GE=12AE , ∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°-∠AOG=90°-30°=60°, ∴△OGE 是等边三角形,故(3)正确;设AE=2a ,则OE=OG=a ,由勾股定理得,()2222=2=3AE OE a a a --, ∵O 为AC 中点,∴3a ,∴BC=123a , 在Rt △ABC 中,由勾股定理得,()()22233a a -, ∵四边形ABCD 是矩形,∴CD=AB=3a ,∴DC=3OG ,故(1)正确;∵OG=a,12BC=32a,∴OG≠12BC,故(2)错误;∵S△AOE=12a•3a=232a,S ABCD=3a•3a=33a2,∴S△AOE=16S ABCD,故(4)正确;综上所述,结论正确是(1)(3)(4)共3个,故选C.【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.6.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′,连接CC′.若∠CC′B′=32°,则∠B的大小是( )A.32°B.64°C.77°D.87°【答案】C【解析】试题分析:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.考点:旋转的性质.7.已知关于x的一元二次方程mx2+2x-1=0有两个不相等的实数根,则m的取值范围是(). A.m>-1且m≠0B.m<1且m≠0C.m<-1 D.m>1【答案】A【解析】∵一元二次方程mx2+2x-1=0有两个不相等的实数根,∴m≠0,且22-4×m×(﹣1)>0,解得:m>﹣1且m≠0.故选A.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)根的判别式:(1)当△=b2﹣4ac>0时,方程有两个不相等的实数根;(2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;(3)当△=b 2﹣4ac <0时,方程没有实数根.8.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα【答案】B【解析】在两个直角三角形中,分别求出AB 、AD 即可解决问题; 【详解】在Rt △ABC 中,AB=ACsin α, 在Rt △ACD 中,AD=ACsin β, ∴AB :AD=ACsin α:AC sin β=sin sin βα,故选B . 【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题. 9.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为()A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元 【答案】C【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011, 故选C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O ,AC 8=,BD 6=,DH AB ⊥于点H ,且DH 与AC 交于G ,则OG 长度为( )A .92B .94C .352D .354【答案】B【解析】试题解析:在菱形ABCD 中,6AC =,8BD =,所以4OA =,3OD =,在Rt AOD △中,5AD =, 因为11641222ABDSBD OA =⋅⋅=⨯⨯=,所以1122ABDS AB DH =⋅⋅=,则245DH =,在Rt BHD 中,由勾股定理得,22222418655BH BD DH ⎛⎫=-=-= ⎪⎝⎭,由DOG DHB ∽可得,OG OD BH DH =,即3182455OG =,所以94OG =.故选B.二、填空题(本题包括8个小题) 11.函数21y x =-中,自变量x 的取值范围是_____. 【答案】x ≠1【解析】根据分母不等于0,可以求出x 的范围; 【详解】解:(1)x-1≠0,解得:x≠1; 故答案是:x≠1, 【点睛】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数;。

2024年浙江省温州市实验中学中考模拟数学试题

2024年浙江省温州市实验中学中考模拟数学试题一、单选题1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.据文化旅游部数据中心测算,今年“五一”假期,全国国内旅游出游合计295000000人次,数据295000000用科学记数法表示为( ) A .82.9510⨯B .29.510⨯nC .90.29510⨯D .92.9510⨯3.端午节,妈妈给小慧准备了4个粽子,其中豆沙粽、蛋黄粽各1个,肉粽2个.小慧从中任取1个粽子,是豆沙粽的概率为( )A .14B .13C .12D .234.下列计算正确的是( ) A .2246a a a += B .248a a a ⋅= C .2422a a ÷=D .()22416a a -=5.函数21y x =的大致图像是( ) A . B . C . D .6.如图,在ABC V 中,过点C 作BAC ∠的平分线AD 的垂线,垂足为D ,点E 为AC 的中点,连接DE 交BC 于点F .若5AB =,8AC =,则DF 的长为( )A .1B .1.5C .2D .2.57.如图,点C 在以AB 为直径的半圆O 上,140AOC ∠=︒,点D 在AC 上,则D ∠的度数是( )A .100︒B .110︒C .120︒D .130︒8.如图,手电筒的灯泡A 距离地面的高度AD 为h ,灯泡照亮范围的横截面是ABC V ,且AB AC =,78BAC ∠=︒,地面被照亮的区域是一个圆,则该圆的直径BC 为( )A .2tan39h ⋅︒B .2tan 39h︒C .2tan 78h ⋅︒D .2tan 78h︒9.已知点1(,)A n y ,2(3,)B n y +在函数()(2)y a x m x m =---(0a ≠,m 为常数)的图象上,则下列判断正确的是( )A .当0a >时,若10y <,则20y <B .当0a >时,若10y >,则20y >C .当a<0时,若10y <,则20y <D .当a<0时,若10y >,则20y <10.如图,把一张长方形纸片ABCD 沿PQ ,MN 折叠,顶点A ,B ,C ,D 的对应点分别为A ',B ',C ',D ¢,点B '与D ¢重合,点A '恰与BC ,MD '的交点重合.若2CD =,3A M '=,则AD 的长为( )A .12cmB .5cmC .cmD .15cm二、填空题 11.已知23a b =, 则代数式 a b a b +-的值为.12.下面是某小区随机抽取的60户家庭的某月用电量(千瓦时/户/月)情况统计表:已知该小区有1800户家庭,由此估计月用电量超过300千瓦时的家庭有户.13.如图,已知ABC V 是等边三角形,O 是BC 的中点,O e 分别与边AB ,AC 切于点D 和点E .若4AB =,则DE 的长为.14.若正比例函数1y k x =的图象与反比例函数 2k y x=的图象交于点()(),, 42,A a B b -,则12k k +的值为.15.如图①,底面积为30cm²的空圆柱容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h (cm )与注水时间t (s )之间的关系如图②.若“几何体”的下方圆柱的底面积为15cm²,求“几何体”上方圆柱体的底面积为.16.如图,在Rt ABC △中,90ACB ∠=︒,以AC 和BC 为边在ABC V 的外侧作正方形ACDE 和正方形BCFG ,延长ED 和GF 交于点P ,AM AB ⊥交EP 于点M ,BN AB ⊥交GP 于点N ,PC 的延长线交AB 于点Q .若2PM ME =,14PQ =,则阴影部分的面积为.三、解答题17.(1)解不等式组235113x x x -<⎧⎪+⎨>-⎪⎩ (2)解方程:()()21210x x ---=18.如图,在ABC V 中,AB AC =,BD AC ⊥于D .(1)尺规作图:作线段BC 的垂直平分线,交BC 于点E ,交BD 于点F .(保留作图痕迹,不写作法)(2)连结CF ,判断DFC ∠和A ∠的数量关系,并说明理由.19.某校从甲、乙两名学生中选一名参加市小数学家评比,该校将甲、乙两人的6次测试成绩绘制成如下统计图,并对数据统计如下表:(1)求这6次测试中,甲的中位数和乙的平均分;(2)为了在小数学家评比中尽可能取得好成绩,请你从相关统计量和统计图进行分析,并给出合理的选择建议.20.为了大力弘扬中华优秀传统文化,某校决定开展名著读书活动,用3600元购买“四大名著”若干套后,发现这批图书满足不了学生的阅读需求,图书管理员在购买第二批时正赶上图书城8折销售该套书,于是用2400元购买的套数只比第一批少4套,求第一批购进的“四大名著”每套的价格是多少元.21.如图,平行四边形ABCD 中,点E 是对角线AC 上一点,连接BE DE ,,且BE DE =.(1)求证:四边形ABCD 是菱形;(2)若10tan 2AB BAC =∠=,,求四边形ABCD 的面积. 22.用充电器给某手机充电时,其屏幕画面显示目前电量为20%(如图1),经测试,在用快速充电器和普通充电器对该手机充电时,其电量y (单位:%)与充电时间x (单位:h )的函数图象分别为图2中的线段AB ,AC . 根据以上信息,回答下列问题:(1)求线段AC 对应的函数表达式;(2)先用普通充电器充电ah 后,再改为快速充电器充满电,一共用时3h ,请在图2中画出电量y (单位:%)与充电时间x (单位:h )的函数图象,并标注出a 所对应的值. 23.已知二次函数2(2)3(0)y m x m =-->的图象与x 轴交于点(,0),(,0)A a B b . (1)当3a =-时,求b 的值.(2)当0a b <<时,求m 的取值范围.(3)若(1,),(1,)P a p Q b q ++两点也都在此函数图象上,求证:0p q +>.24.如图1,已知四边形BCDF 内接于⊙O ,BC 是直径,AC 是圆的切线交BD 的延长线于A 点,过D 作DE BC ⊥交BF 的延长线为G 点,设cos A x ∠=(4590A ︒<∠<︒)(1)求证:BFD BDG ∠=∠.(2)若5BF FD =,35x =,请猜测GBC ∠的度数.并说明理由.(3)如图2,连结BE ,FE ,EF 经过圆心O ,记DFG V 的面积为1S ,BEF △的面积为2S ,求212x x-.。

乐清市2018年4月初中毕业学业水平适应性测试数学试题(中考一模)数学试题及评分标准


3 2
B.
2 3 3
C.1
D. 2
(第 8 题)
(第 9 题)
(第 10 题)
二、填空题(本大题共有 6 小题,每小题 5 分,共 30 分) 11.请写出一个比 大的负整数: ▲ . 12.不等式组
2 x 1 3 的解集是 ▲ . x 0
13.若一个扇形的圆心角为 60°,面积为 6π,则这个扇形的半径为 ▲ cm. 14.在同车道行驶的机动车,后车应当与前车保持足以采取紧急制动措施的安全距离.如图,在一个路口, 一辆长为 10m 的大巴车遇红灯后停在距交通信号灯 20m 的停止线处,小张驾驶一辆小轿车跟随大巴 车行驶.设小张距大巴车尾 x m,若大巴车车顶高于小张的水平视线 0.8m,红灯下沿高于小张的水平 视线 3.2m,若小张能看到整个红灯,则 x 的最小值为 ▲ m.
9.如图,矩形 ABCD 中,点 E 是 CD 边上的中点,连结 AE 取 AE 中点 F,连结 FC,FB,若△FCB 是等 边三角形,则 CD:CF=( ▲ ) A.
10.如图,一张三角形纸片 ABC,其中∠BAC=60°,BC=6,点 D 是 BC 边上一动点,将 BD,CD 翻折使 得 B',C'分别落在 AB,AC 边上(B 与 B',C 与 C'分别对应),点 D 从点 B 运动至点 C,△B'C'D 面积的 大小变化情况是( ▲ ) A.一直减小 B.一直不变 C.先减小后增大 D.先增大后减小
(第 6 题)
7.如图,数轴上 A,B 不同两点所表示的数互为 相反 数 ,则关于原点位置的说法正确的是( ▲ ) .. .. . A.可能在点 A 的左侧 C.可能在点 B 的右侧 B.一定与线段 AB 的中点重合 D.可能与点 A 或点 B 重合

浙江省温州市2018年中考六校联考数学试题(含答案)

祝你成功!
卷Ⅰ
一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)
1. ﹣5的绝对值是( ▲ )
A.5 B.1
C.0 D.﹣5
2.右图是七(1)班40名同学在校午餐所需时间的频数直
方图(每组含前一个边界值,不含后一个边界值).
由图可知,人数最多的一组是( ▲ )
则点H为AE的中点.
∴P(2,2),H(4,0)


解得: (舍去)

∴M .(3分)
(3)①如图2,过点M作MK⊥x轴交于点K.
∵点P在线段DE上运动,则t > 0.
P(2,t),PE=EH=t.
由MK//EF,
得:
∴MK=HK=3t,OK=3t-(2+t)=2t-2.
即M(2-2t,3t)
化简:
∴DF‖AC∴∠FDB=∠AED(4分)
(2)连结AD∵点D是弧AC的中点
∴弧AD=弧CD∴∠FBD=∠ABD=∠DAC(1分)
∴tan∠FBD=tan∠ABD=tan∠DAC=
在RT△ABD中,AB=2×5=10, tan∠ABD=
设AD=3x,则BD=4x∴ 解得x=2
∴AD=6(3分)
在RT△ADG中,AD=6, tan∠DAC=
▲平方米.
三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)
17.(本题10分)(1)计算: . (2)化简: .
18. (本题8分)如图,在△ABC中,AD是BC边上的中线,
点E是AD的中点,过点A作AF∥BC交BE的延长线于F.
(1)求证:△AEF≌△DEB;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年浙江省温州市乐清市中考
数学模拟试卷(5月份)
一、选择题(本大题共10小题,每小题4分,共40分)
1.(4分)如图,用圆规比较两条线段A′B′和AB的长短,其中正确的是()
A.A′B′>AB B.A′B′=AB C.A′B′<AB D.A′B′≤AB
2.(4分)如图,在正方体的一角截去一个小正方体,所得立体图形的主视图是()
A.B.C.D.
3.(4分)下列计算正确的是()
A.a﹣2a=a B.(a2)3=a6C.a2+a3=a5 D.a6÷a3=a2
4.(4分)化简的结果是()
A.B.C.D.a+1
5.(4分)如果=2,则的值是()
A.3 B.﹣3 C.D.
6.(4分)某种学生快餐(300g)营养成分的统计如图所示,根据统计图,下列结论错误的是()
A.这种快餐中,脂肪有30g
B.这种快餐中,蛋白质含量最多
C.表示碳水化合物的扇形的圆心角是144°
D.最多的营养成分是最少的8倍
7.(4分)如图,数轴上A,B两点所表示的数互为倒数,则关于原点的说法正确的是()
A.一定在点A的左侧B.一定与线段AB的中点重合
C.可能在点B的右侧D.一定与点A或点B重合
8.(4分)《九章算术》是我国古代著名数学经典,其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.如图,已知弦AB=1尺,弓形高CD=1寸,(注:1尺=10寸)问这块圆柱形木材的直径是()
A.13寸B.6.5寸C.26寸D.20寸
9.(4分)如图,矩形ABCD中,点E是CD边上的中点,连结AE取AE中点F,连结FC,FB,若△FCB是等边三角形,则CD:CF=()
A. B.C.1 D.2
10.(4分)如图,一张三角形纸片ABC,其中∠BAC=60°,BC=6,点D是BC边上一动点,将BD,CD翻折使得B′,C′分别落在AB,AC边上,(B与B′,C 与C′分别对应),点D从点B运动运动至点C,△B′C′D面积的大小变化情况是()
A.一直减小B.一直不变C.先减小后增大D.先增大后减小
二、填空题(本大题共6小题,每小题5分,共30分)
11.(5分)请写出一个比﹣π大的负整数:.
12.(5分)不等式组的解集是.
(5分)若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为.13.
14.(5分)在同车道行驶的机动车,后车应当与前车保持足以采取紧急制动措施的安全距离.如图,在一个路口,一辆长为10m的大巴车遇红灯后停在距交通信号灯20m的停止线处,小张驾驶一辆小轿车跟随大巴车行驶.设小张距大巴车尾xm,若大巴车车顶高于小张的水平视线0.8m,红灯下沿高于小张的水平视线3.2m,若小张能看到整个红灯,则x的最小值为.
15.(5分)如图,平面坐标系xoy中,B(12,4),C(8,0),OA∥BC,OA=BC,
= .过点A作反比例函数y=(k>0),图象交BC于点D,连结OD,则S
△OCD
16.(5分)平面直角坐标系中,横坐标与纵坐标都是整数时,我们称这个点为整点,当二次函数y=ax2+bx+c(a≠0)在0≤x≤4.0≤y≤4范围内通过的整点个数大于4时,则a的所有可能值是.
三、解答题(本大题共8小题,共计80分)
17.(10分)(1)计算:20180﹣2cos30°+,
(2)解方程: +=0
18.(8分)已知x=2是关于x的方程x2﹣mx﹣4m2=0的一个根,求m(2m+1)的值.
19.(8分)某数学兴趣小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.
(1)该事件最有可能是(填写一个你认为正确的序号).
①一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,多次经过该路口时,看见红灯的概率;
②掷一枚硬币,正面朝上;
③暗箱中有一个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.
(2)你设计的一个游戏,多次掷一个质地均匀的正六面体骰子,当骰子数字正面朝上,该事件发生的概率接近于.
20.(8分)如图1,2为6×6正方形方格纸中,每个小的正方形边长为单位1,点A,B,C,D都在格点处.
(1)如图1,四边形ABCD的周长是.
(2)如图2,AC与BD相交于点O,tan∠BOC= .
21.(10分)小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B 同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:
(1)小林以折扣价购买商品A、B是第次购物;
(2)求出商品A、B的标价;
(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?
22.(10分)如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,过点D作⊙O的切线交BC的延长线于点E.
(1)求证:EF=DE;
(2)若AD=4,DE=5,求BD的长.
23.(12分)如图,在平面直角坐标系中,抛物线与x轴交于A(﹣2,0),B(4,0)两点,与y轴交于点C,且OB=OC.
(1)求抛物线的解析式;
(2)已知点D(0,﹣1),点P为线段BC上一动点,延长DP交抛物线于点H,连结BH.
①当四边形ODHB面积为9,求点H的坐标;
②设m=,求m的最大值.
24.(14分)如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.(1)求证:四边形AGDH为菱形;
(2)若EF=y,求y关于x的函数关系式;
(3)连结OF,CG.
①若△AOF为等腰三角形,求⊙O的面积;
②若BC=3,则CG+9= .(直接写出答案).。

相关文档
最新文档