高数学习心得体会

合集下载

高数学习感想(共五则范文)

高数学习感想(共五则范文)

高数学习感想(共五则范文)第一篇:高数学习感想高数学习感想经过将近一年的学习,我们对高数进行了系统性的学习,不仅在知识反方面得到了充实,在思想方面也得到了提高,就我个人而言,我认为高等数学有以下几个显著特点:1)识记的知识相对减少,理解的知识点相对增加;2)不仅要求会运用所学的知识解题,还要明白其来龙去脉;3)联系实际多,对专业学习帮助大;4)教师授课速度快,课下复习与预习必不可少。

我个人认为高数同以前学习的数学的主要差别在于对积分的难易掌握。

通过这学期的学习和上学习的积累我也充分体会到了高数的难点。

平时的学习积累加上老师对高数的重点说明,我对我个人学习积分部分进行了一段总结如下:微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。

它是数学的一个基础学科。

内容主要包括极限、微分学、积分学及其应用。

微分学包括求导数的运算,是一套关于变化率的理论。

它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。

积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

(⒈)极限:运用微积分法求极限中利用等价量代换求极限--等价量代换是我们求解极限问题常用的方法注意无穷小量的代换,熟悉常用的无穷小量代换,能便捷的求出极限注意几个几个常用的无穷小量的代换X~cosx~sinx~tanx~arcsinx~arctanx~arccosxX~ln(1+x)例题1:求极限limx→01+tanx-1-tanx.xe-1解limx→01+tanx-1-tanxex-1=limx→02tanx(e-1)(1+tanx+1-tanx)2x+ο(x)x=limx→0(x+ο(x))(1+tanx+1-tanx)2xx(1+tanx+1-tanx)=limx→0=1.--利用两个重要极限求极限两个重要极限是:sinx1=1(2)lim(1+)x=e.x→0x→∞xxsinxsin◊=1可理解为lim=1,而第二种极限其中第一种重要极限limx→0◊→0x◊(1)lim11lim(1+)x=e可以理解为lim(1+)◊=e或者lim(1+◊)◊=e.x→∞◊→∞◊→0x◊112例题2:求lim(cos)n.n→∞n解211lim[1+(cos-1)]n=lim[1+(cos-1)]n→∞n→∞nn11⋅n2(cos-1)1 ncos-1n1=lim[1+(cos-1)]n→∞n1111⋅n2⋅[-⋅2+ο(2)]12nncos-1n -12=e=1e--利用定积分求极限球极限--利用微分中值定理求极限等等多种方法(⒉)微分学:微分运算法则同积分法则基本相同。

高等数学学习心得体会(通用4篇)

高等数学学习心得体会(通用4篇)

高等数学学习心得体会(通用4篇)高等数学学习篇1在我的意识里,但凡数学成绩好的同学,一定都是天资聪颖;而对数学一往情深的同学,都绝非等闲之辈。

自从上了高中,数学对我来说就成了软肋,硬伤,成了让我神伤的科目,突然间变得对数学一窍不通,才猛然间发觉自己的思维不知道被什么所禁锢,变得呆板而僵硬,做题犹如啃砖头。

大一的时候,意外地发现我们必须学习高数课,我虽然很敬佩我们的高数老师,他和蔼可亲,对我们关爱有加,把高数讲得清楚易懂,还告诉我们如何学好高数以便更好地发展中医。

尽管如此,结局还是悲凉的,我终日以泪洗面,甚至产生了轻生的念头,大一对我来说是不堪重负,不忍回首的一年,期末了,还一道题都不会做,考完了,才发现自己是班上的垫底。

高数,让我开始怀疑自己的智商,怀疑我以后能否自食其力。

每一次上课,我都像个呆子,钻进耳朵的那些专业术语不知道该怎么去消化,而周围的同学也都还是能回答问题,自信满满,这种强烈的对比让我受挫,我开始重新审视自己。

高数,带给我改变的动力,我感谢高数,但仅仅因为它是高“树”,而我被挂在了上面。

在后来的学习中,我再也不敢对专业课掉以轻心,我开始觉得期末考试的内容其实也没有那么难,那么高数呢?究竟是它太难还是我从心里对它产生畏惧,以至我没有勇气相信自己可以认识它?我怕,怕有朝一日终会再次遇到它,因为陌生,所以恐惧。

经历了一年多的成长,我发现其实很多事情都没有想象中那么难,也没有想象中那么简单,关键在于你如何对待它。

我想起我可以为了自己做一个笔袋而一动不动坐一下午,并且为了解决出现的不足而把数据计算一遍又一遍,一遍遍拆,一遍遍改,在探索中前进,乐此不疲。

而学习高数呢,一开始我怕,遇到不懂了,我更怕,最后呢,我只能逃课,不去听,不去想,以为这样就能躲过一切,我才发现,我是个彻彻底底的懦夫,我只会做逃兵,我并没有尽最大的努力。

在选课的时候,我发现还能选修高数,这次,我不想再错过。

我想起了《追风筝的人》的一句话:“那里,有再一次成为好人的路。

大学高数心得体会

大学高数心得体会

大学高数心得体会大学高等数学作为大多数理工科专业学生的必修课程,是一门具有较高难度且重要性极大的学科。

在学习过程中,我积累了一些心得体会,希望可以与大家分享。

一、明确学习目标学习高等数学需要明确学习目标,明确自己为什么要学这门课程。

对于理工科专业的学生来说,高等数学是后续学习其他专业课程的基础,掌握好高数知识对于打好基础非常重要。

同时,高数也是一门具有严密逻辑性的学科,培养了我们的逻辑思维和解决问题的能力。

二、理论与实践相结合在学习高数的过程中,理论知识与实践应该同步进行。

理论知识的学习是建立在数学公式和定理的理解上,但仅仅掌握理论是远远不够的。

要想真正理解和运用数学知识,需要结合实践,进行大量的练习和题目的解答。

通过实践的过程,加深对知识的理解,并发现自己在应用中存在的问题,从而不断提高。

三、掌握核心概念高等数学是一门基础课程,其中有许多核心概念需要深入理解和掌握。

例如,极限、导数、积分等等。

这些概念是建立在之前学习的数学概念的基础上的,对于理解后续知识的发展具有重要的作用。

因此,在学习过程中,要注重对这些核心概念的理解,通过大量的例题和练习题,加深对这些概念的印象,形成自己的框架。

四、培养解题思路高等数学中的题目往往需要运用多种方法和思路进行解题。

要想解决一个数学问题,需要培养良好的解题思路。

在学习过程中,要注重培养自己的解题能力,阅读大量的解题思路和方法,并尝试自己的方式来解决问题。

通过多种思路的比较和实践,形成自己独特的解题思维方式,提高解题效率。

五、合理安排学习时间高等数学是一门需要投入时间和精力的学科。

在学习高数的过程中,要合理安排学习时间。

建议制定学习计划,每天保持一定的学习时间,并保持坚持和持续学习的态度。

学习高数需要积累,并不是一蹴而就的事情,只有通过长时间的积累和不断重复,才能够真正掌握数学知识。

六、寻求帮助和互助在学习高等数学的过程中,难免会遇到一些难题和困惑。

在这个时候,不要怕困难和挫折,要学会主动寻求帮助。

高数学习心得

高数学习心得

高数学习心得在高等数学的学习过程中,我深刻体会到了数学的重要性和应用价值。

以下是我对高数学习的心得体会。

首先,高数学习需要打好基础。

高等数学作为大学数学的重要组成部分,是对中学数学知识的深入拓展和延伸。

因此,打好中学数学基础是非常重要的。

在高数学习之前,我花了一些时间回顾了中学数学的知识点,并做了一些习题来巩固基础。

这为我后续的高数学习打下了坚实的基础。

其次,高数学习需要理解概念。

高等数学中有许多抽象的概念和定义,理解这些概念对于学习高数非常重要。

我在学习过程中注重理解每个概念的定义和意义,通过画图和举例等方式来帮助自己理解。

同时,我也积极参与课堂讨论和与同学们的交流,通过互相讲解和解答问题来加深对概念的理解。

第三,高数学习需要掌握解题方法。

高等数学中的题目种类繁多,解题方法也各有不同。

在学习过程中,我注重掌握各种解题方法,并学会灵活运用。

我通过大量的习题练习,不断熟悉各种解题方法,并总结归纳出一些解题技巧。

同时,我也参考了一些优秀的解题范例和方法,借鉴他人的经验来提高自己的解题能力。

第四,高数学习需要注重实践应用。

高等数学的学习不仅仅停留在理论层面,更重要的是将所学知识应用到实际问题中。

在学习过程中,我积极参与实际问题的解决,例如在物理、经济等领域应用数学模型进行分析和计算。

通过实践应用,我更深入地理解了高数知识的实际意义和应用场景,也提高了自己解决实际问题的能力。

最后,高数学习需要坚持和持续复习。

高等数学的学习是一个渐进的过程,需要持续的努力和复习。

我每天都会安排一定的时间进行高数的学习和复习,通过不断地巩固和回顾知识点,提高自己的记忆和理解能力。

同时,我也会定期进行全面的复习,通过做一些综合性的习题和模拟考试来检验自己的学习效果。

总结起来,高等数学的学习需要打好基础、理解概念、掌握解题方法、注重实践应用以及坚持和持续复习。

通过这些努力,我在高数学习中取得了一定的成绩,并且对数学产生了更深入的兴趣和理解。

高数学习心得优秀3篇写范文网

高数学习心得优秀3篇写范文网

高数学习心得优秀3篇高数学习心得优秀3篇高数学习心得要怎么写,才更标准规范?根据多年的文秘写作经验,参考优秀的高数学习心得样本能让你事半功倍,下面分享【高数学习心得优秀3篇】,供你选择借鉴。

高数学习心得篇1数学学习方法●全面复习,把书读薄从历年试卷的内容分布上可以看出,凡是考试大纲中提及的内容,都可能考到,甚至某些不太重要的内容,在某一年可以在大题中出现,如98年数学一中,不但第三题是一道纯粹的解析几何题,而且还有两道题是与线性代数结合考了解析几何的内容,可见,猜题的复习方法是靠不住的,而应当参照考试大纲,全面息,不留遗漏.全面复习不是生记硬背所有的知识,相反,是要抓住问题的实质和各内容,各方法的本质联系,把要记的东西缩小到最小程度,(要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识),而且,不记则已,记住了就要牢靠,事实证明,有些记忆是终生不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们的联系而得到.这就是全面复习的含义.●突出重点,精益求精在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌,会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点.在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多. 猜题的人,往往要在这方面下功夫.一般说来,也确能猜出几分来.但遇到综合题,这些题在主要内容中含有次要内容.这时,猜题便行不通了.我们讲的突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带资,用重点内容担挈整个内容.主要内容理解透了,其它的内容和方法迎刃而解.即抓出主要内容不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容.如微分中值定理,有罗尔定理,拉格朗日定理,柯西定理和泰勒公式.由于罗尔定理是拉格朗日定理的特殊情况,而柯西定理和泰勒公式又是拉格朗日定理的推广.比较这些关系,便自然得到拉格朗日定理是核心,这这个定理搞深搞透,并从联系中掌握好其它几个定理,而在考试大纲中,罗尔定理与拉格朗日定理都是要求理解的内容,都是考试重点,我们更突出拉氏定理,可谓是精益求精.●基本训练反复进行学习数学,要做一定数量的题,把基本功练熟练透,但我们不主张题海战术,而是提倡精练,即反复做一些典型的题,做致电一题多解,一题多变.要训练抽象思维能力,对些基本定理的证明,基本公式的推导,以及一些基本练习题,要作到不用书写,就象棋手下盲棋一样,只需用脑子默想,即能得到下确答案.这就是我们在前言中提到的,在20分钟内完成10道客观题.其中有些是不用动笔,一眼就能乍出答案的题,这样才叫训练有素,熟能生巧,基本功扎实的人,遇到难题办法也多,不易被难倒.相反,作练习时,眼高手低,总找难题作,结果,上了考场,遇到与自己曾经作过的类似的题目都有可能不会;不少考生把会作的题算错了,归为粗心大意,确实,人会有粗心的,但基本功扎实的人,出了错立即会发现,很少会粗心地出错.高等数学是高等工科院校的重要基础课程。

高数学习心得

高数学习心得

高数学习心得在高数学习的过程中,我深刻体味到了数学的重要性和学习方法的重要性。

通过系统的学习和不断的练习,我逐渐掌握了高数的基本概念和解题技巧,取得了不错的成绩。

以下是我在高数学习过程中总结的一些心得和体味。

首先,高数学习需要有良好的基础知识。

在学习高数之前,我对初等数学的基本概念和运算法则进行了复习和巩固。

这为后续的高数学习打下了坚实的基础,使我能够更好地理解和掌握高数的知识。

其次,高数学习需要掌握好学习方法。

高数的学习不仅仅是死记硬背,更需要理解和应用。

在学习过程中,我注重理论与实践的结合,通过大量的练习题加深对知识的理解和记忆。

同时,我还善于总结归纳,将学过的知识点进行分类整理,形成自己的知识框架,方便复习和应用。

此外,高数学习需要注重思维的培养。

高数的题目往往需要一定的思维能力和逻辑思维能力。

在解题过程中,我养成为了自己的思维习惯,比如先分析问题,理清思路,然后选择合适的方法进行求解。

同时,我还注重培养自己的数学思维,通过参加数学竞赛和解决一些拓展性的问题,提高了自己的数学思维能力和解题能力。

此外,高数学习需要注重实践和应用。

高数的知识不仅仅是为了对付考试,更是为了将来的学习和工作中的实际应用。

在学习过程中,我注重将所学的知识与实际问题相结合,通过解决一些实际问题,加深对知识的理解和应用能力。

最后,高数学习需要坚持和持续努力。

高数的学习是一个渐进的过程,需要持之以恒地进行。

在学习过程中,我养成为了每天定期复习和练习的习惯,不断地巩固和提高自己的数学水平。

同时,我还积极参加课外辅导班和数学讲座,拓宽自己的数学视野,提高自己的学习效果。

总的来说,高数学习需要有良好的基础知识、掌握好学习方法、注重思维的培养、实践和应用,并且坚持和持续努力。

通过这些方法和经验,我在高数学习中取得了不错的成绩,也提高了自己的数学素质。

希翼我的经验能够对其他学习高数的同学有所匡助。

2024年大学高数学习心得体会(2篇)

2024年大学高数学习心得体会(2篇)

2024年大学高数学习心得体会对于许多文科学生来说,数学也许是一个令人有些畏惧的名词,有些同学也许就是因为数学学不好或者不太喜欢数学,而选择了学文科的,高等数学学习方法与经验。

但是,对于任何一个文科生来说,数学都是非常重要的,有人把数学比做是文科生的生命线,有人说数学和英语在很大程度上决定了一名文科生的层次,这都是有一定道理的。

因此,一定要尽自己最大的努力来学好数学.在我看来,数学其实是一门非常奇妙而有趣的学问。

只要你有一双善于发现、敢于发现的眼睛,你就能够找到数学的魅力所在,就会对它产生兴趣。

而兴趣是最好的老师,如果你既对数学感兴趣,又下定决心努力学好数学,那又怎么会学不好呢?课本对于数学来说,是很重要的。

我们做的试题,有很多都是课本例题或其“变种”只要花上一点点时间把课本好好看看,要拿下这些题便易如反掌;反之,要是对一些基本的概念、定理都含混不清,不但基础题会失分,难题更不可能做得好。

数学的逻辑性、分析性极强,可以说是一种纯理性的科学,要求思维清晰明了,因而基础知识十分重要,尤其是对于数学不是特别好的同学来说。

以下是我个人觉得在数学学习过程中非常必要的几点:1、按部就班。

数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。

所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。

2、强调理解。

概念、定理、公式要在理解的基础上记忆。

我的经验是,每新学一个定理,便尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。

3、基本训练。

学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉常考的题型,训练要做到有的放矢。

4、标出重点。

平常看题看课本的时候,碰到有好的解题方法或重点内容,可以用鲜艳的彩笔划出来,以便以后复习时能一目了然.最后想谈谈数学这一科目的应试技巧。

概括说来,就是"先易后难"。

学习高数的心得体会

学习高数的心得体会

学习高数的心得体会篇一:学习高数的心得体会学习高数的心得体会转眼间,大一将要结束了,记得刚开始接触高数的时候,确实觉得力不从心,不知道该怎么学才能将公式运用自如,渐渐地发现,其实那些公式并不是死记硬背才行,只要充分理解了各个知识点,遇到题目可以(:学习高数的心得体会)自己分析出正确的解题思路,就能把题目解出来。

所以,学习高等数学,记忆的负担轻了,但对思维的要求却提高了。

每一次高数课,都是一次大脑的思维训练,都是一次提升理解力的好机会。

还记得当时学习曲面积分的时候,怎么也学不会,看过就往,反反复复,搞得我真不知道怎样才好,不过现在还好能大体记住曲面积分的个知识点,各类解法,总结下,曲面积分:对面积的曲面积分:对坐标的曲面积分:????f(x,y,z)ds???dxyf[x,y,z(x,y)]?zx(x,y)?zy(x,y)dxdy??P(x,y,z)dydzdxy?Q(x,y,z)dzdx?R(x,y,z)dxdy,其中:号;号;号。

?Qcos??Rcos?)ds??R(x,y,z)dxdy?????R[x,y,z(x,y)]dxdy,取曲面的上侧时取正????P[x(y,z),y,z]dydz,取曲面的前侧时取正dyz??P(x,y,z)dydz???Q(x,y,z)dzdx?????Q[x,y(z,x),z]dzdx,取曲面的右侧时取正dzx两类曲面积分之间的关系:??Pdydz?Qdzdx?Rdxdy????(Pcos???(?P?x??Q?y??R?z)dv?Pdydz??Qdzdx?Rdxdy?(Pcos???Qcos??Rcos?)ds高斯公式的物理意义——通量与散度:?div??0,则为消失...??P?Q?R散度:div????,即:单位体积内所产生的流体质量,若?x?y?z??通量:??a?nds???ands???(Pcos??Qcos??Rcos?)ds,??因此,高斯公式又可写?成:divadv???????ands在纠结曲面积分的时候我也注意到了,在理解的基础上对知识点进行总结,会让思路变得清晰而准确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高数学习心得体会篇一:学习高等数学体会论文Hefei University大一高等数学论文院系:电子信息与电气自动化学生姓名:孙野学号: 31专业:自动化班级:一班年级:一年级指导老师:刘国旗完成时期: 十二月十三号摘要:高等数学是大学工科里的一门基础学科。

在我学的自动化专业中更显得格外重要。

经历了快一个学期的高等数学学习对这门课程有一定认识的同时,在学习的过程中遇到了各式各样的难题与困惑,因此,特对在学习中的遇到困难与将来如何更好的努力,不断提高学习这门课的能力进行了总结,希望在以后的时间里可以有所进步。

Abstract:Higher mathematics is an important basic engineering inside the university. The more I learn in automation specialty in very important. Experienced higher mathematics almost a semester has certainunderstanding at the same time on the course, in the learning process encountered problems and confusion, so to every kind of, in the study of the difficulties and strive in the future how to better, continuously improve the ability of learning this course are summarized, in the hope that time can make progress.关键词:高等数学、总结方法、极限一:对高中数学的回顾高中学习数学我经历过两个数学老师。

先说说第一个数学老师吧,这是一个年轻的小伙老师,他以前是教初中的后来通过考试,升就教了高中,我们是他教的第一届的高中学生。

对于这个我第一个高中数学老师我认为他和第二个老师最大的区别就是他上课从来不用ppt,他喜欢写板书,所以每节课后我们都记下满满几页的笔记。

这样的教学方式单单就我来说我是不能适应的,因为我喜欢上课跟着老师教学的思路去学习,但是他要我们上课记下他在黑板上学习的板书,这样就导致我们光顾着去做笔记,却没有跟着他上课的思路去思考问题,不能去理解他讲的是什么,课下对着笔记我们又不记得他上课是怎么讲的。

所以高中前部分我的数学一直都不好。

后来因为一些原因我们换了一个数学老师,这是一个我估计快要退休的了老师,这个老师因为教书了很多年很有教书经验,也是他后来拯救了我的高中数学。

他给我们上课的第一天就要求我们一定要课前预习和课后复习。

其实之前很多老师也这么要求过我们,但是我都没有很好的去要求自己。

我的这个老师虽然年龄有点大,但是一点没有影响他上课的激情,他上课很有感染力,我每节课都跟着他的思路后面去分析问题,解决问题。

课上简单的记一下笔记,但是不能影响我跟着他的节奏去听课,也是后来在他的帮助下高中数学成绩有了突飞猛进。

对于高中的数学就做这么多的概述,接下来谈谈大学学习高等数学的心得体会。

二 :对高等数学的简单认识经过将近一年的学习,我对高数进行了系统性的学习,不仅在知识反方面得到了充实,在思想方面也得到了提高,就我个人而言,我认为高等数学有以下几个显著特点:1)识记的知识相对减少,理解的知识点相对增加;2)不仅要求会运用所学的知识解题,还要明白其来龙去脉;3)联系实际多,对专业学习帮助大;4)教师授课速度快,课下复习与预习必不可少。

三:学习高数的学习方法。

(1)课前预习适当的预习是必要的,了解老师即将要讲什么内容,相应地复习与之相关内容。

如果时间不多,你可以浏览一下教师将要讲的主要内容,获得一个大概的印象,这可以在一定程度上帮助你在课堂上跟上教师的思路,如果时间比较充裕,除了浏览之外,还可以进一步细致地阅读部分内容,并且准备好问题,看一下自己的理解与教师讲解的有什么区别,有哪些问题需要与教师讨论。

如果能够做到这些,那么你的学习就会变得比较主动、深入,会取得比较好的效果。

就拿我来说以前上高中时老师说上了大学你们就解脱了,所以上第一节高数课时我就带了一本高数书就去了,往那一坐听了两节课我就受不了了,根本听不懂,很多学高数的人都说高数难学不容易懂。

其实就是他们学高数第一个环节都没做到位。

后来的学习中我咨询了一些学长学姐他们都一再强调做好这个环节。

(2)认真上课注意老师的讲解方法和思路,其分析问题和解决问题的过程,记好课堂笔记,听课是一个全身心投入--听、记、思相结合的过程。

教师在有限的课堂教学时间中,只能讲思路,讲重点,讲难点。

不要指望教师对所有知识都讲透,要学会自学,在自学中培养学习能力和创造能力。

所以要努力摆脱对于教师和对于课堂的完全依赖心理。

当然也不是完全不要老师,不上课。

老师能在课堂教学把主要思路,重点与难点交代清楚,从而使你自学起来条理清楚,有的放矢。

对于教师在课堂上讲的知识,最重要的是获得整体的认识,而不拘泥于每个细节是否清楚。

学生在课堂上听课时,也应当把主要精力集中在教师的证明思路和对于难点的分析上。

如果有某些细节没有听明白,不要影响你继续听其它内容。

只要掌握了主要思路,即使某些细节没有听清楚,也没有关系。

你自己完全能够在这个思路的引导下将全部细节补足,最后推出结论。

应当在学习的各个环节培养自己的主动精神和自学能力,摆脱对教师与课堂的过分依赖。

这不仅是今天学习的需要,而且是培养创造能力的需要。

在认真听课这个环节,我身边很多同学都抱怨老师上课节奏太快听不懂。

其实正如我上面所说,大学是一个自学的过程你不可能把每一个知识点老师都能给你讲到,老师上课都是讲一些重点和难点。

(3)课后复习复习不是简单的重复,应当用自己的表达方式再现所学的知识,例如对某个定理的复习,不是再读一遍书或课堂笔记,而是离开书本和笔记,回忆有关内容,不清楚之处再对照教材或笔记。

另外,复习时的思路不应当教师讲课或者教科书的翻版,一个可供参考的方法是采用倒叙式。

从定理的结论倒推,为了得到定理的结论,是怎样进行推理的,定理的条件用在何处。

这样倒置思维方式,更加接近这个定理的发现的思路,是一种创造性的思维活动。

经过快一个学期的学习,我的现在大学高等数学老师刘老师是通过布置一些课后题目让我们去完成。

每节课后他布置的题目都不难,解题方法都是他上课讲过的。

我们做的题目他都认认真真的去批改,把我们错误的地方都标记出来,这样我就知道我哪里还不会,哪个知识点还篇二:学习高数的心得体会学习高数的心得体会转眼间,大一将要结束了,记得刚开始接触高数的时候,确实觉得力不从心,不知道该怎么学才能将公式运用自如,渐渐地发现,其实那些公式并不是死记硬背才行,只要充分理解了各个知识点,遇到题目可以自己分析出正确的解题思路,就能把题目解出来。

所以,学习高等数学,记忆的负担轻了,但对思维的要求却提高了。

每一次高数课,都是一次大脑的思维训练,都是一次提升理解力的好机会。

还记得当时学习曲面积分的时候,怎么也学不会,看过就往,反反复复,搞得我真不知道怎样才好,不过现在还好能大体记住曲面积分的个知识点,各类解法,总结下,曲面积分:对面积的曲面积分:对坐标的曲面积分:f(x,y,z)dsDxyf[x,y,z(x,y)]zx(x,y)zy(x,y)dxdy22P(x,y,z)dydzDxyQ(x,y,z)dzdxR(x,y,z)dxdy,其中:号;号;号。

QcosRcos)dsR(x,y,z)dxdyR[x,y,z(x,y)]dxdy,取曲面的上侧时取正P[x(y,z),y,z]dydz,取曲面的前侧时取正DyzP(x,y,z)dydzQ(x,y,z)dzdxQ[x,y(z,x),z]dzdx,取曲面的右侧时取正Dzx两类曲面积分之间的关系:PdydzQdzdxRdxdy(Pcos(PxQyRz)dvPdydzQdzdxRdxdy(PcosQcosRcos)ds高斯公式的物理意义——通量与散度:div0,则为消失...PQR散度:div,即:单位体积内所产生的流体质量,若xyz通量:AndsAnds(PcosQcosRcos)ds,因此,高斯公式又可写成:divAdvAnds在纠结曲面积分的时候我也注意到了,在理解的基础上对知识点进行总结,会让思路变得清晰而准确。

其实我觉得,高等数学的学习目的不是为了应付考试,因此,我们的学习不能停留在以解出答案为目标。

我们必须知道解题过程中每一步的依据。

最初,我以为只要把定理内容记住,能做题就行了。

然而,渐渐地,我发现如果没有真正明白每个定理的来龙去脉,就不能真正掌握它,更谈不上什么运用自如了。

于是,我试着开始认真地学习每一个定理的推导。

尽管这个过程并不轻松,但我却认为非常值得。

因为只有通过自己去探索的知识,才是掌握得最好的。

前几天在上看到一个日志感觉挺玩的,就摘下来了:拉格朗日,傅立叶旁,我凝视你凹函数般的脸庞。

微分了忧伤,积分了希望,我要和你追逐黎曼最初的梦想。

感情已发散,收敛难挡,没有你的极限,柯西抓狂。

我的心已成自变量,函数因你波起波荡。

低阶的有限阶的,一致的不一致的,我想你的皮亚诺余项。

狄利克雷,勒贝格杨,一同仰望莱布尼茨的肖像,拉贝、泰勒,无穷小量,是长廊里麦克劳林的吟唱。

打破了确界,你来我身旁,温柔抹去我,阿贝尔的伤,我的心已成自变量,函数因你波起波荡。

低阶的有限阶的,一致的不一致的,是我想你的皮亚诺余项。

篇三:论高数学习体会论高数学习体会摘要:对此次高等数学书籍学习的知识点和知识体系进行总结和心得体会。

关键字:高等数学,能力,极限,微分,积分,因材施教。

正文:时间飞逝的让人觉得窒息,不知不觉这学期已经接近尾声。

所以针对这学期的学习,我有很多的心得体会和感想,并且做了总结。

一、对本学期主要知识点和知识体系进行总结:(1)、函数与极限应用模块。

第一章主要是从研究函数过度到极限的。

函数y=f(x),y 是因变量,f(x)是对应法则,x是自变量。

换句话说,任意的D属于x都存在着唯一的W与它对应。

函数学习还包括了它的基本属性即单调性,奇偶性,还有周期性和有界函数。

通过函数学习我们知道了需求函数,供给函数,成本函数,收入函数,利润函数等,这些对我们的专业学习和生活有很大的用出。

使我印象最深刻的就是函数的运算这一章节中的复合函数这一块。

例如:y=arctan2^x是由y=arctanu和u=2^x,合成的。

接下来就是极限的学习。

在数列极限中得出以下结论:1、limC=C2、limq^n-1=0 -1 ①若分子与分母的最高次幂相同,则是最高次幂的系数。

相关文档
最新文档