有机合成工艺优化.doc

合集下载

某种有机合成反应的工艺优化与改进

某种有机合成反应的工艺优化与改进

某种有机合成反应的工艺优化与改进标题:某种有机合成反应的工艺优化与改进摘要:有机合成反应作为有机化学的重要分支,在化学工业中有着广泛的应用。

本论文以某种有机合成反应为研究对象,针对其工艺进行优化与改进,以提高反应的产率和选择性,减少副反应产物的生成,并改善反应的物理条件,从而实现工艺的高效可持续发展。

引言:有机合成反应是有机化学中最重要的研究领域之一,在药物合成、化学品生产等领域有着广泛的应用。

然而,许多有机合成反应的工艺存在着一些问题,如低产率、难以控制的副反应、废物产物的生成等。

因此,对这些工艺进行优化与改进,以提高反应的效率和选择性,成为了当前有机化学研究的热点之一。

一、问题分析:1. 反应产率低:某种有机合成反应在传统条件下产率较低,不利于工业化生产。

2. 副反应产物多:在反应过程中,出现了副反应产物的生成,降低了产品的纯度。

3. 反应条件不理想:反应温度过高、反应时间较长,不利于高效可持续发展。

二、工艺优化与改进策略:1. 寻找新的催化剂:通过寻找新颖、高效和选择性催化剂,可以提高反应的速度和选择性,并减少副反应的生成。

2. 改进反应条件:优化反应温度、反应时间、溶剂体系等反应条件,以实现高效、环境友好的反应工艺。

3. 优化反应步骤:通过减少或精简反应步骤,可降低反应副产物生成的机会,提高反应的效率。

4. 改进废物处理方式:优化废物处理方法,减少废物的生成,实现反应的绿色、环保生产。

三、优化与改进实例:以某有机合成反应为例,进行工艺优化与改进的研究,并对已取得的成果进行分析与评价。

1. 实验设计:确定反应的最佳催化剂和溶剂体系,并优化反应中催化剂的用量与反应时间。

2. 实验结果与分析:通过对比实验结果,确定最佳催化剂和溶剂体系,并得出最佳催化剂用量和反应时间。

3. 产率与选择性的提高:在优化后的工艺条件下,反应的产率显著提高,选择性得到明显改善,副反应产物的生成量大幅降低。

4. 物理条件改善:优化后的反应工艺在反应温度和反应时间上有了明显的改善,反应温度下降,反应时间缩短,有利于节约能源并提高反应的效率。

有机合成中的反应条件优化与工艺研究

有机合成中的反应条件优化与工艺研究

有机合成中的反应条件优化与工艺研究有机合成是化学领域中的重要分支,通过有机反应在实验室条件下,将原料转化为目标产物。

合成有机化合物的过程中,优化反应条件和工艺研究对于提高产物收率、纯度和节约成本具有重要意义。

在有机合成中,反应条件可包括反应温度、反应时间、反应物摩尔比、溶剂选择、催化剂选择、气氛控制等相关因素。

这些条件的优化可以提高反应效率和产品的选择性。

首先,反应温度是有机合成中一个关键的调节因素。

适宜的反应温度可以促进反应物分子碰撞,增加反应的速率,提高产物的收率。

不同反应具有不同的温度要求,需要根据反应物的性质和反应的速率进行选择。

过高的温度可能导致副反应的发生,影响产物的纯度;而过低的温度则可能导致反应速率过慢,造成低产率。

因此,确定适宜的反应温度对于优化反应条件至关重要。

其次,反应时间是有机合成中的另一个重要参数。

合理的反应时间可以确保反应达到平衡,并避免过度反应导致产物的降解。

过短的反应时间可能无法充分完成反应,导致产物收率较低。

反之,过长的反应时间则可能导致副产物生成,影响产物的纯度。

因此,在反应过程中,确定适当的反应时间非常重要。

溶剂选择也对反应条件和工艺具有重要影响。

合适的溶剂可提供适当的介质环境,促进反应物的溶解和反应的进行。

例如,极性溶剂有利于极性反应物的溶解和反应,而非极性溶剂适用于非极性反应物。

此外,溶剂还可以影响反应的速率和选择性。

因此,在有机合成中选择适宜的溶剂对于优化反应条件至关重要。

催化剂在有机合成中起到了重要的作用,它们可以降低活化能,提高反应速率和产物选择性。

选择合适的催化剂需要考虑反应物的性质、反应条件和目标产物的要求。

常见的催化剂包括酸、碱、过渡金属配合物等。

合理选择催化剂有助于提高反应效率和产物质量。

气氛控制也是有机合成工艺研究中需要考虑的一个重要方面。

在某些反应中,需要排除空气中的氧气、水分或其它气体。

这是因为空气中的氧气、水分等物质可能会与反应物发生不可逆反应,降低产物的选择性和收率。

有机合成中的反应条件优化与工艺改进

有机合成中的反应条件优化与工艺改进

有机合成中的反应条件优化与工艺改进有机合成是化学领域中的重要分支,广泛应用于药物合成、材料制备等领域。

在有机合成过程中,合理的反应条件选择和工艺改进能够提高反应效率、降低成本,并且对环境友好。

本文将探讨有机合成中的反应条件优化与工艺改进的方法和应用。

1. 温度优化反应温度是有机合成中重要的参数之一。

通过调整反应温度,可以控制反应速率、产物选择性和产率。

一般来说,较低的温度可以减缓副反应的发生,提高有机物的稳定性,并且对于灵敏的功能团可以提供一定的保护。

而较高的温度则可以加速反应速率,提高产物的产率。

因此,在有机合成中,需要综合考虑反应物的稳定性、反应速率以及产物选择性,选择合适的反应温度。

2. 溶剂选择和催化剂应用溶剂选择和催化剂的应用对有机合成反应有着重要的影响。

溶剂通常用于提供反应介质、促进反应物的溶解以及调控反应速率。

在选择溶剂时,需要考虑其与反应物和产物的相容性、挥发性以及对环境的影响。

同时,合适的催化剂可以加速反应速率、降低反应能量,提高产物选择性。

合理选择溶剂和催化剂,可以有效改进有机合成的工艺,并减少对环境的不良影响。

3. 反应时间控制反应时间是有机合成中的一个重要参数。

过长的反应时间可能导致副反应的发生,从而降低产物的选择性和产率。

通过对反应时间的控制,可以提高有机合成的效率。

一种常用的方法是,在反应初期采用高温快速反应,然后通过调控反应温度或添加抑制剂等方式,延长反应时间来提高产物的选择性。

4. 原料选择和工艺改进在有机合成中,原料的选择和工艺的改进也是关键因素。

合理选择原料可以减少副反应的发生,改善反应的选择性和产率。

同时,工艺的改进可以缩短反应时间,提高反应效率。

例如,采用连续流动合成工艺可以减少废弃物的生成,增加反应物的利用率。

因此,在有机合成中,合理选择原料和改进工艺是优化反应条件的重要手段。

5. 反应监控与优化在有机合成过程中,及时监控反应进程并进行优化是提高合成效率的关键。

有机化合物的合成工艺改进与优化

有机化合物的合成工艺改进与优化

有机化合物的合成工艺改进与优化近年来,有机化合物的合成工艺改进与优化成为了化学领域的热门话题。

有机化合物广泛应用于药物、农药、染料等领域,因此改进和优化有机化合物的合成工艺对于提高产品质量、降低生产成本具有重要意义。

本文将从反应条件的优化、催化剂的选择以及新型合成方法的引入三个方面探讨有机化合物的合成工艺改进与优化的相关内容。

一、反应条件的优化反应条件的优化是有机化合物合成工艺改进的重要环节。

通常情况下,反应温度、反应时间以及反应物的配比等因素都会对反应的效果产生重要影响。

通过合理调整这些反应条件,可以实现反应的高效、高产和高选择性。

以氢化反应为例,氢化反应是有机化学中常用的合成方法之一。

在传统的氢化反应中,常常需要高温和高压条件下才能进行。

然而,这种条件下容易产生副反应,导致产率低下。

为了改进这一问题,研究人员引入了新型催化剂和溶剂,通过优化反应条件,实现了氢化反应的高效、高产和高选择性。

二、催化剂的选择催化剂在有机化合物的合成中起到了至关重要的作用。

通过合理选择催化剂,可以加速反应速率、提高产率和选择性。

目前,常用的催化剂包括金属催化剂、酶催化剂和有机催化剂等。

金属催化剂是有机化合物合成中最常用的催化剂之一。

金属催化剂可以通过提供活性位点来促进反应的进行。

例如,铂催化剂在烯烃氢化反应中具有良好的催化活性,可以将烯烃转化为饱和烃。

此外,还有一些新型金属催化剂如钯、铑等也被广泛应用于有机化合物的合成中。

酶催化剂是一类具有生物催化活性的催化剂。

与传统的化学催化剂相比,酶催化剂具有反应条件温和、选择性高等优点。

例如,脂肪酶作为一种酶催化剂,可以催化酯的水解和合成,广泛应用于食品工业和制药工业。

有机催化剂是近年来发展起来的一类新型催化剂。

与传统的金属催化剂相比,有机催化剂具有催化活性高、废弃物生成少等优点。

例如,有机亲核催化剂可以在不需要金属催化剂的情况下,实现酰胺合成等反应。

三、新型合成方法的引入除了优化反应条件和选择合适的催化剂外,引入新型合成方法也是有机化合物合成工艺改进的重要手段。

4-甲基氨基硫脲的合成工艺优化

4-甲基氨基硫脲的合成工艺优化

4-甲基氨基硫脲的合成工艺优化一、引言4-甲基氨基硫脲(4-Methylthiosemicarbazide)是一种重要的有机合成中间体,广泛应用于农药、医药和染料等领域。

目前,已有多种合成工艺用于制备4-甲基氨基硫脲,但仍存在一些问题,如反应条件苛刻、产率低等。

因此,需要对合成工艺进行优化,以提高产品质量和产率。

二、合成方法常用的合成4-甲基氨基硫脲的方法主要包括醛缩法、硫酸铵法和硫化法等。

以下将分别介绍各种方法的原理和步骤。

1. 醛缩法醛缩法是将甲醛与硫脲反应生成4-甲基氨基硫脲的方法。

该方法的主要步骤包括:(1)将硫脲溶解在适量的溶剂中;(2)加入甲醛溶液,并在适当的温度和pH条件下进行反应;(3)过滤得到沉淀物,经洗涤和干燥后得到目标产物。

2. 硫酸铵法硫酸铵法是以硫酸铵为原料,通过反应生成4-甲基氨基硫脲的方法。

该方法的主要步骤包括:(1)将硫酸铵溶解在适量的溶剂中;(2)加热至一定温度,并在一定的pH条件下进行反应;(3)冷却、过滤、洗涤和干燥后得到目标产物。

3. 硫化法硫化法是将硫和硫脲反应生成4-甲基氨基硫脲的方法。

该方法的主要步骤包括:(1)将硫和硫脲混合均匀;(2)加热至一定温度并保持一定的反应时间;(3)冷却、过滤、洗涤和干燥后得到目标产物。

三、优化方案针对以上合成方法存在的问题,我们提出以下优化方案,以提高合成效率和产率。

1. 优化反应条件针对不同合成方法,通过调整温度、pH值和反应时间等条件,寻找最适宜的反应条件,以提高目标产物的产率和纯度。

2. 优化催化剂选择对于醛缩法和硫化法,合适的催化剂的选择和使用可以提高反应速率和产物的选择性。

因此,我们可以尝试不同的催化剂,并对其催化效果进行评估和比较。

3. 优化溶剂选择合适的溶剂选择对反应的进行有着重要影响。

我们可以尝试不同的溶剂,并评估其对反应效果的影响,以选择最适合的溶剂。

4. 优化工艺流程在实际生产中,合成工艺的流程也会对产物的质量和产率产生影响。

啶虫脒中间体N-(6-氯-3-吡啶甲基)甲胺合成工艺优化

啶虫脒中间体N-(6-氯-3-吡啶甲基)甲胺合成工艺优化

啶虫脒中间体N-(6-氯-3-吡啶甲基)甲胺合成工艺优化啶虫脒中间体N-(6-氯-3-吡啶甲基)甲胺是一种重要的有机合成中间体,广泛用于药物和农药的生产。

本文将介绍啶虫脒中间体N-(6-氯-3-吡啶甲基)甲胺的合成工艺优化。

一、合成路线啶虫脒中间体N-(6-氯-3-吡啶甲基)甲胺的合成路线一般分为以下几步:1. 吡啶磺酰氯与N-甲基-N-(三氯乙酰基)甲胺在异丙醇中反应,得到啶虫脒中间体N-(6-氯-3-吡啶甲基)甲酰胺。

2. 啶虫脒中间体N-(6-氯-3-吡啶甲基)甲酰胺与氨水在异丙醇中反应,得到啶虫脒中间体N-(6-氯-3-吡啶甲基)甲胺。

二、合成工艺优化1. 原料选择和配比优化在合成工艺中,选择优质的原料和合适的配比对于提高反应产率至关重要。

选择优质的吡啶磺酰氯和N-甲基-N-(三氯乙酰基)甲胺作为原料,合理调整它们的配比,可以提高反应的效率和产率。

2. 反应条件优化反应条件的优化包括温度、时间、溶剂选择和反应搅拌速度等。

通过对反应条件的优化,可以提高反应的速率和选择性,从而提高产物的纯度和产率。

3. 反应中间体的分离纯化在合成路线的第一步中,得到啶虫脒中间体N-(6-氯-3-吡啶甲基)甲酰胺后,需要对其进行分离纯化。

合适的分离纯化方法可以提高产物的纯度和收率。

4. 催化剂的选择和优化在合成过程中,添加合适的催化剂可以加速反应速率,降低反应温度和能耗,提高产物的选择性和稳定性。

5. 副产物的控制处理在合成过程中,难免会产生一些副产物,而这些副产物可能会对产物的质量产生不利影响。

对副产物的控制和处理至关重要。

三、实验验证在工艺优化方案确定后,需要进行实验验证。

通过实验,可以验证工艺方案的可行性和有效性,同时也可以进一步优化工艺条件,以达到最佳的合成效果。

在实验验证过程中,需要对产物的纯度、产率、收率、物料的安全性、环境友好性等方面进行综合评价。

只有通过实验验证,才能最终确定合成工艺的优化方案。

有机合成心得(7)工艺优化

有机合成心得(7)工艺优化

有机合成心得(7)工艺优化方法学1.合成工艺的优化主要就是反应选择性研究有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有机合成的实用技术。

首先分清三个基本概念转化率、选择性、收率。

转化率是消耗的原料的摩尔数除于原料的初始摩尔数。

选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。

收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。

可见,收率为转化率与选择性的乘积。

可以这样理解这三个概念,反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,为有效好的原料依然存在于反应体系中。

生成目标产物的那部分原料与消耗的原料之比为选择性,与初始原料之比为收率,消耗的原料与初始原料之比为转化率。

反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。

化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。

只有温度和浓度是影响选择性的主要因素。

在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。

提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。

而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。

因此将研究复杂的收率问题转化为研究选择性和转化率的问题,可简化研究过程。

2.选择性研究的主要影响因素提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。

平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。

主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。

因此选择性取决于温度效应和浓度效应。

可是,活化能与反应级数的绝对值很难确定。

但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。

chapter 5 有机合成工艺优化

chapter 5 有机合成工艺优化

Eas - Eap RT Eas - Eap RT
S* S*
T
T
单元反应优化
实验测定活化能差值的符号
T S*
T
S*
E as - E a p > 0
个 实 验
3
T
S*
T
S*
T T
S*
Eas - Eap < 0
S*
单元反应优化
Eas > Eap
Eas - Ea p
>0
S*
K
Eas < Ea p
Eas - Eap
CH3
NH2 Br2 Cl
NH2
Cl
一锅反应法的条件
1. 前一步原料、辅剂、副产物对后面各步反应没 有负作用。 2. 各步反应使用溶剂相同。 3. 各步反应操作设备相同。
溶剂归一化
Br COCl2 N H 甲苯 N COCl Br2 氯苯 N COCl
HBr 氯苯 N COCl
NH3 氯苯 N CONH2
%
单分子单元反应优化
κp
平行副反应
P
rp =
Kop
e
-
Eap RT
n CA
A
κ
s S
副反应
κp
rs =
Kos
e
-
Eas RT
l CA
串联副反应
A
P
κs
S
rs =
Kos
e
-
Eas
m RT C P
单元反应优化
相对速度
Eap
平行副反应 rp S* = = rs
K op K os
e
-
n RT C A E as RT l CA
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有机合成工艺优化方法学---心得1.合成工艺的优化主要就是反应选择性研究有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有机合成的实用技术。

首先分清三个基本概念转化率、选择性、收率。

转化率是消耗的原料的摩尔数除于原料的初始摩尔数。

选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。

收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。

可见,收率为转化率与选择性的乘积。

可以这样理解这三个概念,反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,为有效好的原料依然存在于反应体系中。

生成目标产物的那部分原料与消耗的原料之比为选择性,与初始原料之比为收率,消耗的原料与初始原料之比为转化率。

反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。

化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。

只有温度和浓度是影响选择性的主要因素。

在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。

提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。

而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。

因此将研究复杂的收率问题转化为研究选择性和转化率的问题,可简化研究过程。

2.选择性研究的主要影响因素提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。

平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。

主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。

因此选择性取决于温度效应和浓度效应。

可是,活化能与反应级数的绝对值很难确定。

但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。

我们知道,升高温度有利于活化能高的反应,降低温度有利于活化能低的反应,因此选择反应温度条件的理论依据是主副反应活化能的相对大小,而不是绝对大小。

(1)温度范围的选择:在两个反应温度下做同一合成实验时,可以根据监测主副产物的相对含量来判断主副反应活化能的相对大小,由此判断是低温还是高温有利于主反应,从而缩小了温度选择的范围。

实际经验中,一般采取极限温度的方式,低温和高温,再加上二者的中间温度,可判断出反应温度对反应选择性的影响趋势。

(2)某一组分浓度的选择:在同一温度下(第一步已经选择好的温度下),将某一组分滴加(此组分为低浓度,其他组分就是高浓度)或一次性加入(此组分为高浓度,其他组分就是低浓度)进行反应,就可根据监测主副产物的相对含量来判断该组分是低浓度还是高浓度有利于主反应。

确定了某一组分的浓度影响,接下来就是研究该组分的最佳配比问题。

相同的条件下,再确定其他组分浓度的影响。

(3)溶剂的影响:(4)酸碱强度的影响:(5)催化剂的影响:3.定性反应产物动力学研究方法要求副反应最小,而其他方法要求主反应最大。

因此研究反应的选择性,搞清副反应的产物结构是必要地前提。

在条件允许的情况下,应尽量分析反应混合物的全部组分,包括主产物,各种副产物,分析他们在气相色谱、液相色谱或薄层色谱上的相对位置和相对大小。

从而可以看出各组分的相对大小及各组分随温度和浓度条件不同的变化。

对不同的副反应采取不同的抑制方法。

(1)首先搞清反应过程中那些副产物生成;(2)重点找出含量较多的副产物的结构,因为只有抑制了主要副反应,才能显著提高主反应的选择性;(3)根据主要副产物的结构,研究其生成的机理,速度方程和对比选择性方程,并据此进行温度效应、浓度效应分析;(4)由对比选择性方程确定部分工艺条件,并据此设计获取活化能相对大小和反应级数相对高低的试验方按。

(5)也应该找出最难除去的杂质的结构,进行(3),(4)的方法研究。

4.跟踪定量反应产物在定分析的基础上,对同一实验不同时刻各组分的含量进行跟踪测试,根据跟踪测试结果认识影响因素,再根据影响因素调整实验方按。

(1)可在同一实验中考察原料、中间体、产物,各副产物在不同条件下的变化趋势,从一个实验中尽可能获取更多的信息,实验效率大大提高。

(2)根据实验过程中的新现象调整和修改预定方按,使每一具体实验的目标多元化,即可使每一次实验的目的在实验中调整和增加,从而提高工作效率和研究开发进度。

(3)将不同时刻、不同组分的相对含量,整理成表格或曲线,从数据表或曲线中观察不同组分的数量,各组分在不同阶段依不同条件的变化趋势和变化率,从而找出宏观动力学影响因素,并根据这些因素去调整温度、浓度因素,以提高选择性。

这里的定量并非真正的含量,只是各组分的相对值。

5.分阶段研究反应过程和分离过程大多数人习惯于每次实验部分都分离提纯产品并计算收率。

然而,除非简单的实验外这是不科学的。

(1)研究开发的初始阶段,分离过程是不成熟的,很难估算分离过程损失,这样,所得产品不能代表反应收率。

(2)实验的最终结果是反应过程与分离过程的总结果,影响因素太多,考察某一影响因素太难。

(3)一个实验真正做到完成分离提纯的程度很难,往往后处理时间多于反应时间,若每个实验都做到提纯分离,则工作效率降低。

(4)为降低科研费用,往往进行微量制备,而微量制备的实验几乎不能完成全过程。

比如精馏,没有一定数量就无法进行。

(5)反应过程中直接取反应液进行中控分析最接近于反应过程的在线测试,最能反映出过程的实际状态,对于某一因素的变化的影响也最敏感,应用起来方便。

(6)做好反应过程是分离过程研究的基础。

副产物越少,则分离过程越简单。

总之,在研究开发的最初阶段,应先回避分离过程而仅研究反应过程。

可以在反应过程中得到一系列的色谱分析谱图和定性分析结果,根据原料、中间体、产品、副产品出峰的相对大小来初步定量,根据不同反应温度条件下不同组分的消涨来判断活化能的相对大小;根据副产物结构机不同的加料方式引起的副产物的消涨来判断活性组分的反应级数的相对高低。

从理论到实践实现了动力学所要求的温度效应、浓度效应,再实现最大转化率,最后研究分离过程。

这是一种循序渐进的、条理清晰的、理性的和简单化的工艺优化程序。

5.程序升温法确定温度范围程序升温法是另一种反应温度的优化方法。

其是在实验的最初阶段采用的。

一般采用微量制备,物料以满足分析测试即可。

为使放热反应的温度可控制,反应物料不必成比例(一般使某一种原料微量)。

在跟踪测试的基础上,采取程序升温大方法,往往一次实验即可测得反应所适合的温度范围,并可得到主反应与某一特定副反应活化能的相对大小和确认反应温度最佳控制条件。

程序升温过程如图所示。

τ在T1温度下反应一段时间,取样a分析;若未发生反应,则升温至T2后反应一段时间后取样b分析;若发现反应已经发生,但不完全,则此时应鉴别发生的是否是主反应;若在温度T2下先发生的是主反应,则继续取样c分析;若反应仍不完全,升温至T3后反应一段时间取样d分析;若仍不完全则升温至T4,取样e分析,直至反应结束。

若样品d中无副产物,e中有副产物,则主反应的活化能小于副反应的活化能,反应温度为T4以下,再在T3上下选择温控范围。

若样品b中发生的是副反应,则应立即升温,并适时补加原料,边升温边取样f,g,h等,直至主反应发生。

若主反应在较高温度时发生了,说明主反应的活化能大于副反应的活化能,反应应避开较低温度段。

此时的程序升温过程应在缺少易发生副反应的那种主原料下进行,即预先加热反应底物至一定温度,再滴加未加入的原料,后滴加的原料用溶剂稀释效果更加。

可见,一次程序升温过程便可基本搞清主副反应活化能的相对大小和反应温度控制的大致范围,取得了事半功倍的效果。

在低温有利于主反应的过程中,随着反应的进行,反应物的浓度逐渐降低,反应速度逐渐减慢,为保持一定的反应速度和转化率以保证生产能力,就必须逐渐缓慢升温以加速化学反应的进行,直至转化率达到目标,这才实现最佳控制。

6.调节加料法滴加的功能有两个,(1)对于放热反应,可减慢反应速度,使温度易于控制。

(2) 控制反应的选择性,对每种原料都应采取是滴加还是一次性加入对反应选择性影响的研究。

如果滴加有利于选择性,则滴加时间越慢越好。

如不利于选择性的提高,则改为一次性的加入。

温度效应、浓度效应对反应选择性的影响是个普遍存在的一般规律,但在不同的具体实例中体现出特殊性,有时某一种效应更重要,而另一种效应不显著。

因此必须具体问题具体分析,在普遍的理论原则指导下解决特殊的问题。

7.反应原料的选择反应原料的选择除了考虑廉价易得的主要因素外,另一个必须考虑的因素是副产物的形成,所用的原料应该尽可能以不过多产生副反应为准,原料的活性应该适当,活性高了相应的副反应形成的速度也就加大了,原料的反应点位应该尽可能少,以防进行主反应的同时进行副反应。

以阿立哌唑的中间体合成为例。

不同的原料产生不同的副反应从而形成不同的杂质,原料的性质不同,产生杂质的数量也就不同。

图1 为以1,4-二溴丁烷为原料反应形成的杂质。

在该实例中,a 是所需要的中间体,但因为1,4-二溴丁烷及另一原料的双重反应部位,产生了大量的杂质,给后处理带来了极大的麻烦。

因而是不合适的。

但是如以4-溴丁醇为原料(图2),则反应形成的杂质数量大大减少,给提纯及后续反应带来极大的方便。

可见原料的选择对抑制副反应也有者重要的作用。

NHO OBr N H OO Br N HO O N H O O OH N O N O O Br N O O O H N O Br abc d e BrBrN OH O N O HO N OH O O HN O f g 图1 N HO O OH N H O O HO N HO ON O OHO h ig OHHO图2。

相关文档
最新文档