《鸡兔同笼》教学案例

合集下载

鸡兔同笼教学设计 《鸡兔同笼》教学设计(精选5篇)

鸡兔同笼教学设计 《鸡兔同笼》教学设计(精选5篇)

鸡兔同笼教学设计《鸡兔同笼》教学设计(精选5篇)鸡兔同笼,是中国古代有名典型趣题之一,记载于《孙子算经》之中。

鸡兔同笼问题,是小学奥数的常见题型。

下面这5篇《鸡兔同笼》教学设计是作者为您整理的鸡兔同笼教学设计范文模板,欢迎查阅参考。

鸡兔同笼教案篇一【教学目标】1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。

3、在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。

【重点难点】用假设法和列方程的方法解决“鸡兔同笼”问题。

【教学指导】1、要注重解题策略的多样化教学中,教师通过组织学生采取讨论,自主探索等方式,多手段、多层面、多角度地探索问题,引导学生运用列表法、画图法、假设法、代数法等方法分析和解决问题,从而使学生获得分析问题和解决问题的基本方法,体验解决问题策略的多样性,发展创新意识。

在注重解决问题策略多样化的同时,教师还应注重解决问题策略的自主优化(如列表法中的从两边开始,从中间开始,依据数据跳跃猜测等),并注重不同策略间的相互联系和影响,注重解决问题策略的局限性和一般性。

2、要注重逻辑思维能力的培养让学生在参与观察、猜想、证明、归纳等数学活动中,发展合情推理和演绎推理能力,用数学语言清晰地表达自己的想法是培养学生思维能力的重要途径。

从课初随意、无序的猜想到表格中的有序、有目的的猜想;从一般验证到表格中数据变化规律的发现;从列表法(8只兔0只鸡或8只鸡0只兔这两种情况中)很快自然联想到假设法(通过假设——计算——推理——解答的过程,掌握假设法的独特的特点)、代数法。

学生的思维经历了从无序到有序、从特殊到一般、从借鉴到创新、从肤浅到深刻等方面的巨大变化,学生的思维能力也随之得到了极大的提升。

3、要注重数学思想的渗透“数学广角”是人教版课程标准实验教科书中新增的教学内容之一,主要渗透一些基本的数学思想和方法。

《鸡兔同笼》教学设计

《鸡兔同笼》教学设计

《鸡兔同笼》教学设计《鸡兔同笼》教学设计篇一【教学目标】1、知识与技能初步认识鸡兔同笼的数学趣题,了解有关的数学史。

能用列表法和画图法解决相关的实际问题,结合图解法理解假设的方法解决鸡兔同笼问题。

2、过程与方法通过画图分析、列表举例、假设计算等方法理解数量关系,体会数形结合的方便性,体验解决问题方法的多样化,提高解决实际问题的能力。

3、情感、态度与价值观培养学生的合作意识,在现实情景中,在交流的过程中,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,受到多种数学思想方法的熏陶,进而让学生体会数学的价值。

【教学重点】用画图法和列表法解决相关的实际问题。

【教学难点】体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。

【教学准备】课件。

【教学流程】问题引入,揭示课题。

师:大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。

书中说:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”问:这段话是什么意思?谁能说说?师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。

问笼中鸡和兔各有几只?这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。

主动探究、合作交流、学习新知。

师:说明为了研究方便,我们先将题目的条件做一个简化。

例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?师:同学们先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。

学生初步交流,教师提炼:可以用画图法、列表法、假设的方法。

师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法。

鸡兔同笼教案优秀7篇

鸡兔同笼教案优秀7篇

鸡兔同笼教案优秀7篇小学数学《鸡兔同笼》教案篇一教学目标知识与技能:通过复习“鸡兔同笼”问题,感受中国古代数学问题的趣味性。

过程与方法:能熟练用列表、假设等不同的方法解决“鸡兔同笼”问题,体验解决问题的方法的多样性,提高解决实际问题的能力。

情感态度价值观:通过复习,培养学生的合作意识和逻辑推理能力,在解决问题的过程中,提高迁移思维的能力,进而体会数学的价值。

教学重点:熟练理解和掌握解决问题的不同思路和方法,让学生再一次亲历列表法、假设法等解题的过程,深刻体会解决问题的一般性策略。

教学难点:建构解决“鸡兔同笼”问题的数学模型,运用学到的解题策略熟练解决生活中的实际问题。

教具学具:多媒体教学过程一、情境导入师:“鸡兔同笼”是一道有名的中国古算题。

最早出现在《孙子算经》中。

许多小数数学问题都可以转化成这类问题。

师:你知道解决“鸡兔同笼”问题有几种方法吗?通过比较发现它们有什么特点?生1:列表法,适合数据较小的问题。

生2:假设法,一般情况都适合,数量关系比较容易理解。

师:今天我们复习“鸡兔同笼”问题。

二、自主探究师:摆三角形和正方形一共用了19根小棒。

(任意两个图形之间没有公共边)你能算出分别摆了多少个三角形和多少个正方形吗?(学生回答)师:星期日,小英一家八口人到博物馆参观,博物馆的票价是成人每人30元,儿童每人15元,买门票共花去210元钱,其中儿童有几人?(学生回答)师:三年级(4)班48人去北海公园划船,租了大船和小船共10条,每6人克坐满一条大船,每4人可坐满一条小船,且每条船都没有空位,他们租大船和小船各几条?(学生回答)三、探究结果汇报师:通过复习“鸡兔同笼”问题,你有哪些收获?生1:借助列表的。

方法,解决简单的实际问题。

生2:我学会了化繁为简的学习方法。

生3:用“假设”法解决问题的一般性。

四、师生总结收获师:通过本课的学习,你有哪些收获?师生总结得出:解决数学问题时,可以先提出假设,如果假设后的情况与实际不符,这时就需要进行调整。

《鸡兔同笼》优秀教学设计优秀

《鸡兔同笼》优秀教学设计优秀

《鸡兔同笼》优秀教学设计优秀《鸡兔同笼》优秀教学设计优秀作为一名教学工作者,通常会被要求编写教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。

你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是店铺整理的《鸡兔同笼》优秀教学设计优秀,欢迎大家借鉴与参考,希望对大家有所帮助。

《鸡兔同笼》优秀教学设计优秀1教学目标:本活动的目的是通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

在“鸡兔同笼”的活动中,通过列表枚举方法,解决鸡与兔的数量问题。

教学重点:尝试用不同的方法解决鸡兔同笼问题,对尝试法有所了解和体验,并使学生体会假设方法解决此类问题的优越性。

教学难点:在解决问题的过程中培养学生的逻辑推理能力。

教具准备:电脑课件教学过程:一、创设问题情景师:同学们今天老师带来2幅动物的图片请你们欣赏一下,看这是什么?(出示公鸡图片)这幅呢?(出示兔子图片)师;这是两种同学们很熟悉的小动物。

师:一只鸡有几个头,几只脚?一只兔子有几个头?几只脚?一只兔子比一只鸡多几只脚,一只鸡比一只兔子多几只脚?师:看来这几个问题对于你们来说太简单了。

老师这儿还有一个有关于鸡兔的有趣问题我们一起来看看。

课件出示:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”师:这个有趣的问题出自于我国大约在1500年前唐代的一部算书《孙子算经》。

谁来读一读?师:你们明白这句话的意思吗?(如果学生说不出师可说,师:这句话的意思是,有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。

问笼中鸡和兔各有几只?这就是我们通常所说的鸡兔同笼问题,“鸡兔同笼”问题是我国古代数学名题之一。

这节课我们就一起来研究鸡兔同笼问题。

(板书课题)同学们一起来比一比看谁能把这个古代数学名题解决,有没有信心!如果生能说出这句话的意思。

师:看来你了解的知识可真多。

“鸡兔同笼”问题是我国古代数学名题之一。

这节课我们就一起来研究鸡兔同笼问题。

鸡兔同笼教案优秀7篇

鸡兔同笼教案优秀7篇

鸡兔同笼教案优秀7篇作为一无名无私奉献的教育工作者,总归要编写教案,教案有助于学生理解并掌握系统的知识。

那么大家知道正规的教案是怎么写的吗?为了让大家更好的写作鸡兔同笼相关内容,作者精心整理了7篇鸡兔同笼教案,欢迎查阅与参考。

《鸡兔同笼》教案篇一一、教学目标:1、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

2、应用假设的数学思想,在解题中数形结合,提高学生分析问题和解决问题的能力;3、在解决“鸡兔同笼”的活动中,通过列表举例、画图分析、尝试计算等方法解决鸡兔的数量问题。

二、教材分析本课时向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一列表法、跳跃式列表法、取中列表法等来解决问题。

学生在具体的解决问题过程中,他们可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

三、学校及学生状况分析五年级学生在三年级时已初步学习了简单的“鸡兔同笼”问题,他们已经初步尝试了应用逐一列表法解决问题,还有一些学生在校外的奥数班中已经学习了相关的内容。

因此,教学在这一内容时,学生的程度参差不齐。

本班的学生思维活跃,敢想,敢说,有一定的小组合组经验。

四、教学设计(一)创设情境师:今天这一节课,我们要共同研究鸡兔同笼问题。

(板书:鸡兔同笼)你们知道鸡兔同笼是什么意思?生:鸡兔同笼就是鸡兔在一个笼子里。

(媒体出示课本第80页的情景图)师:请你猜一猜,图中大约有几只兔子,几只鸡?生1:我猜大约是7只,兔子5只鸡。

生2:不一定。

因为有一棵树把鸡和兔子挡住了,所以我不知道各有几只。

(二)探求新知师:如果告诉你:鸡兔同笼,有20个头,54条脚,鸡、兔各多少?能求出几只兔子,几只鸡吗?(媒体出示题目的条件)师:想一想,要解决这个问题可以用什么方法?想好了,可以写在作业纸上。

鸡兔同笼教案优秀6篇

鸡兔同笼教案优秀6篇

鸡兔同笼教案优秀6篇鸡兔同笼教学设计篇一教学目标:1 、对日常生活中的现象进行观察和思考,引导学生从中发现特殊规律,使学生掌握用列表的方法来解决“鸡兔同笼”的问题。

2 、从不同的角度分析问题,掌握解题的策略与方法,从而感受到数学思想的运用和解决实际问题的联系。

3 、培养学生分析问题的能力,渗透假设的数学思想,在解题中数形结合,提高学生对数据的再认识,再分析,将列表的过程更优化。

教学重点:从不同的角度分析,掌握解题的策略与方法。

教学流程:一、创设情境,明确目标1、谈话:“同学们,自我介绍一下,我姓周,你们可以称呼我?今天需要我们共同配合,在这里上一节数学课,为了表达谢意,我为你们带来了一些礼物,快来猜一猜,有多少?(5…)太少了?(50…)多了,(40…)少了(45…)差不多了,(46…)恭喜你,答对了,下课就由你发给同学们。

2、喜欢数学吗?数学不但可以开阔我们的视野,增长我们的知识,还可以锻炼我们的思维。

在我国古代就有许多有趣的数学名题,你们了解吗?今天,。

老师就向你们推荐一种有趣的问题------鸡兔同笼。

二、自主探索,合作交流1 出示问题:“鸡兔同笼,有5个头,14条腿,鸡兔各有几只?”(1)你从中获取什么信息?……(2)请你们猜一猜将鸡、兔可能是几只?(……)(3)把你猜的过程给大家说一说(4)板书学生的过程鸡1 2 3兔4 3 2腿18 16 14(4)评价:从尝试简单的开始,一个一个的试,最终找到了正确的答案,方法多么简单啊?如果我们再横竖加上几条线,就成了美观的表格。

看来,列表来解决这类问题还确实简单,如果现在将鸡兔的数量增加,还能解决吗?(重点引入列表)2、出示:“鸡兔同笼,有20个头,54条腿,鸡兔各几只?”(1)自己先想一想如何利用列表来解决?(2)小组内交流一下自己的想法。

(3)独立完成列表。

(4)汇报想法和过程小组1:逐一列表------假设鸡有1只,兔子有19只,那么就有78条腿,(腿多了,说明什么?兔子多了,怎么办?)鸡有2只,兔子有18只,那么就有76条腿,一只一只地试,学生把试的结果列成表格。

鸡兔同笼教学设计一等奖3篇

鸡兔同笼教学设计一等奖3篇

1、鸡兔同笼教学设计一等奖教学目标:1、在解决鸡兔同笼的活动中,通过列表枚举解决鸡兔的数量问题。

2、在解决鸡兔同笼的活动中,通过列表尝试和不断调整的过程从中体会解决问题的一般策略——列表,让学生学会从不同角度分析,掌握解题的策略与方法。

3、运用学到的解题策略——列表解决生活中的实际问题。

4、培养学生分析问题的能力,渗透假设的数学思想。

教学重点让学生经历列表、尝试和不断调整的过程,体会解决问题的一般策略—列表。

教学难点运用学到的解题策略解决生活中的实际问题。

教学过程:一、情境引入,激发兴趣今天老师给同学们带来一本书《孙子算经》,其中有这样一道题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?谁来读一读,你见过这类题吗?今天我们就来研究这类问题(板书鸡兔同笼)二、探索问题1、课件出示:(教材中的情景图)鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?从图中你能知道哪些数学信息:(有鸡、有兔、20个头、54只腿,鸡有2条腿、兔有4条腿)现在同学们就来猜一猜鸡、兔各有多少只?把你猜想的结果跟你的同桌同学交流交流。

学生交流后:请学生汇报猜想的情况教师随机板书看到这么多种猜测,你知道哪种答案是正确的吗?你又想说什么?生:可以按照一定的顺序把他们排列起来看就很清楚。

师:对,按照一定的顺序把他们排列在表格里那会看得更清楚。

那么列表先做什么。

生:(1)画表(2)填写第一行师:请你们把猜测的结果按一定的顺序填在表格中,并验证,哪种猜测正确。

出示学习要求:1、先独立尝试猜测。

2、把尝试的数据在表格中表达出来。

3、在小组内交流自己的想法。

生:尝试列表展示学生的表格请学生说一说是怎样做的。

师:一共尝试了几次。

生:13次,尝试出了这道题的答案。

师:我发现刚才同学们在写腿的只数时特别快,观察这张表格,你发现了什么?生:在头数相同的情况下,增加一只鸡,减少一只兔,腿就少2只。

师:给这种列表法起个名字。

生:起名字。

鸡兔同笼5篇教案实例

鸡兔同笼5篇教案实例

鸡兔同笼5篇教案实例由于生活中有很多的数学实际问题与“鸡兔同笼”的数量关系相类似,而这些问题都可以通过“鸡兔同笼”的解题思路得到有效地解决,下面给大家带来一些关于鸡兔同笼心得,希望对大家有所帮助。

鸡兔同笼心得1在磨课中我上的是鸡兔同笼问题,本节课我安排用三种方法解决鸡兔同笼问题,通过本节课的教学,不仅让学生感受到了先辈们的聪明才智,而且体会到解题策略的多样性以及其中蕴含的丰富的数学思想方法,培养了学生的学习兴趣和数学能力。

如:用容易探究的小数量替代《孙子算经》原题中的大数量的“替换法”解决问题,渗透了转化的思想和方法;用“列表法”解决问题,渗透了函数的思想和方法;用“算术法”解决问题,渗透了假设的思想和方法等等。

总之,本节课以数形结合为探究基础,以小组合作、师生互动为探究方式,以课件动态演示为探究辅助手段,巧妙地将认知经验和思维过程转化成了数学语言,即数学算式,从而形成了解决问题的全新的一般策略,发展了学生的思维水平和推理能力。

反思这节课的教学,我有如下一些感受: 第一,先“猜想”再“列表”是探究“鸡兔同笼”问题的有效方法。

让学生自己先独立完成,采用探究法,探究的目的不只是为了得到探究的结果,更是为了强调过程,因此对学生进行合适的引导对于在有限的时间内确保探究的顺利展开非常重要。

第二,用数形结合的方法探究假设法是理解算法算理的重要手段。

数形结合是把问题中的数量关系与形象直观的几何图形有机地结合起来,在解题方法上相互转化,使问题化难为易,化繁为简,从而达到解决问题的目的。

由于“鸡兔同笼”在以前是属于奥赛典型题,如今编入新课程教材六年级上册中,对学生尤其是基础不好的学生来说有一定的难度,特别是用假设法解答,学生理解起来更是不容易,为了帮助学生理解算法算理,我将抽象的算式溶入到直观形象的图形之中,并通过数形结合一步一步地引导进行推理,帮助学生理解假设法的思维过程,由于非常直观形象,所以学生理解得比较透彻,真正达到了知其然又知其所以然的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《鸡兔同笼》教学案例
[设计说明]:
“鸡兔同笼”问题是人教版《义务教育课程标准实验教科书》数学六年级上册第七单元《数学广角》中的内容。

在传统教材中,这一问题都是以提高题出现,面对的是少部分学有余力的学生,在新教材中,此问题成为面向全体学生的教学内容。

“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。

“鸡笼同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。

在设计《鸡免同笼》一课时,我注重从以下几个方面进行数学思想的渗透。

一、由《孙子算经》中的“鸡兔同笼”问题引入,激发学生的解题兴趣。

首先通过富有情趣的古代课堂,生动地呈现了在《孙子算经》中记载的“鸡兔同笼”问题,并通过小精灵的提问激发学生解答我国古代著名数学问题的兴趣。

二、注重体现解决“鸡兔同笼”问题的不同思路和方法。

考虑到《孙子算经》中原理数据较大,不利于首次接触该类问题的学生进行探究,因此教材中先编排了例1;通过化繁为简的思想,帮助学生先探索出解决该类问题的一般方法后,再解决《孙子算经》中数据比较大的原题。

在教学例1时,教材展示了学生逐步解决问题的过程。

既猜测、列表、假设或方程解。

其中假设和列方程是解决该类问题的一般方法。

“假设法”有利于培养学生的逻辑推理能力,列方程则有助于学生体会代数方法的一般性。

因此在解决“鸡兔同笼”问题时,学生选用哪种方法均匀,不强求用某一种方法。

除例1中运用的方法外,在阅读材料中也介绍了一种古人常用的解决该类问题的方法,让学生感受古人巧妙的解题思路。

三、拓宽对“鸡兔同笼”问题的认识,明确其在生活中的应用。

配合“鸡兔同笼”问题,教材在“做一做”和练习中安排了类似的一些问题,比如“龟鹤”问题,生活中的一些实际问题等,让学生进一步体会到这类问题在日常生活中的应用,并巩固用“假设法”或方程的方法来解决这类问题。

四、在教学中体现新思路、新理念、新方法。

“鸡兔同笼”向学生提供了现实、有趣、富有挑战性的学习素材,借助我国
古代趣题“鸡兔同笼”问题,使学生展开讨论,应用列表法,画图法、假设法,方程等方法,从多角度思考运用多种方法解题,使学生在具体情境中,根据自己的经验,逐步探索不同的方法,找到解决问题的策略,并在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

意图在给多种方法寻找一个“接点”,这样不至于被多种方法所困,体现“教是为了不教”,数学不在于求多而是求联,从而使学生共同学习,共同进步,共同提高,把所学的数学知识应到生活中去,用数学的眼光看待身边的事物,体会数学的价值。

[教学过程]:
教学内容:人教版小学数学六年级上册112-115页内容
知识与技能:1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、尝试用不同的方法解决“鸡兔同笼”问题,并使学生体会代数方法的一般性。

过程与方法:让学生在自主探索、尝试、合作学习的过程中,经历用不同方法解决鸡兔同笼问题的过程,在解决问题的过程中培养学生的逻辑推理能力。

情感态度与价值观:1、让学生体会到数学问题在日常生活中的应用,进而让学生体会数学的价值。

2、了解我国古代数学的光辉成就,增强民族自豪感,增强学生学习数学的信心。

教学重点:用假设法来解决鸡兔同笼问题。

教学难点:在解决问题的过程中培养学生的逻辑推理能力。

教具学具准备:多媒体课件
一、激趣导入
1、简要介绍我国古代数学名著《孙子算经》
2、课件展示主题图(配音)今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
3、这段话是什么意思呢?学生回答后,课件出示:笼子里有若干只鸡和兔,从上面数,有35个头,从下面数,有94只脚。

鸡和兔各有几只?
4、揭示课题:在今天的数学广角里,我们来研究中国古代的这道数学趣
题――鸡兔同笼。

二、教学新知
1、化繁为简。

(1)这是一个比较复杂的问题,为了研究的方便,我们可以先从简单的问题入手。

(2)课件变换数据,出示例1,笼子里有若干只鸡和兔。

从上面数,有8个头,从下面数,有26只脚,鸡和兔各有几只?
2、探究鸡兔同笼问题的一般解法
(1)列表法解决“鸡兔同笼”问题
①学生们猜一猜鸡和兔可能有多少只?将可能的情况列成表格。

②我们应该怎样判断哪种情况是正确的呢?
③学生经过计算找到正确的结果并在全班进行交流。

(2)假设法解决“鸡兔同笼”问题
①当笼子里有8只鸡时,一共有几只脚?
②用一幅图表示出这种情况,将这种情况与实际的26只脚相比较,你能不能算出鸡与兔的只数。

③学生以小组为单位进行讨论,并在全班进行交流,这种情况少10只脚,把一只鸡换成一只兔子可以补2只脚,把5只鸡换成5只兔子可以补10只脚,因此笼子里有5只兔,3只鸡。

④根据这幅图,我们该怎样列出算式呢?
⑤教师小结:可以通过假设笼子里全部都是鸡的方法解决这个问题。

⑥如果假设笼子里都是兔,怎样解决这个问题呢,学生独立解答,并在全班进行交流。

(3)列方程解决“鸡兔同笼”问题
①如果用列方程的方法解决这个问题,该怎样设呢?
(设鸡有x只,兔有(8-x)只)
②学生独立尝试列方程解决问题。

③学生将列方程解决问题的过程在全班进行交流。

3、介绍古人解决“鸡兔同笼”问题的方法。

三、应用拓展
1、教科书第115页做一做的第1题。

2、教科书第115页做一做的第2题。

提问:根据图中你能了解什么信息?(一条大船乘6人,一条小船乘4人)
四、课堂小结:通过今天的学习,你有哪些收获?
五、布置作业:练习二十六第一、二、三题。

[教学反思]
鸡兔同笼问题,过去是少数精英学生竞赛的内容,如今编入了六年级数学广角,成为全体学生学习的内容。

对学生尤其是基础不好的学生来说有一定的难度,特别是用假设法解答,学生理解起来很难,如何能较好地完成教学目标,让全体学生学习得好、学得乐。

我特别注重了以下几个方面:
1、注重解题策略的多样性
教学中,教师组织学生多手段、多层面、多角度地探索问题,学生先后运用列表法、假设法,列方程解等分析和解决问题,从而获得了分析问题和解决问题的基本方法和一般方法,体验了解决问题策略的多样性,发展了创新意识。

在注重解决问题策略多样化的同时,教师还注重解决问题策略的自主优化,注重了不同策略间的相互联系和影响,注重了解决问题策略的局限性和一般性。

2、注重思维能力的培养
当新的问题提出后,我并没有急于讲解如何做的方法,而是先让学生独立思考,再在小组内交流,最后全班共同研究讨论。

使同学们在民主、和谐的氛围中开拓了思维,实现了运用多种方法解决问题的目的。

让学生在参与观察、实验、猜想、证明、综合实践等教学活动中,发展合情推理和演绎推理能力,用数学语言清晰地表达自己的想法是培养学生思维能力的重要途径。

从一般验证到表格中数据变化规律的发现,从列表法很快自然联想到假设法、列方程解法,学生的思维经历了从无序到有序,从特殊到一般,从借鉴到创新、从肤浅到深刻等方面的巨大变化,学生的思维能力也随之得到了极大的提升。

3、注重数学思想的渗透
如:用容易探究的小数量替代《孙子算经》原题中的大数量的“替换法”解决问题,渗透了转化的思想和方法,用“列表法”解决问题,渗透了函数的思想和方法;用“算术法”解决问题,渗透了假设的思想和方法;用“方程法”解决问题,渗透了代数的思想和方法等等。

这些对于学生而言,无疑奠定了可持续发
展的坚实基础。

4、注重数学变化的传承
鸡兔同笼问题是《孙子算经》中一道影响较大的名题,一直流传至日本等国,引起了许多国家的众多数学爱好者的广泛关注。

教学中,教师把《孙子算经》中的原题再现于课堂,让学生选择自己喜欢的方法来解决,极大地激发和调动学生的探究兴趣,充分地传承和弘扬了经典的数学文化,较好地体出和提升了课堂的教学品味。

反思本节课,在整个课堂中,在问题得到解决的同时,体验到了成功的喜悦,感受到数学知识的价值和数学学习的乐趣。

但在教学时间的控制上还略显紧张,一些环节的处理还应该在以主次的角度更好地进行设计,以便让学生有更多的时间来解决生活中类似鸡兔同笼的问题。

相关文档
最新文档