电缆散热量计算书
通信综合楼电源机房的散热量计算

通信综合楼电源机房的散热量计算通信综合楼常设有高低压变配电机房、电力室、电池室、油机房等电源机房,各机房内的电源设备对环境温度和进风量有不同要求。
本文结合工程实例,提出高低压变配电机房、电力室、电池室的散热量计算方法,以供参考。
一、通风设计的重要性出于综合造价等成本因素的考虑,近年来新建高层建筑的变配电机房多位于主楼地下层,随之带来机房内通风散热困难的问题。
如不加以妥善解决,将直接影响变配电设备的工作效率,甚至对设备造成严重损坏,发生停电事故。
以变压器为例:变压器的允许温度主要决定于绕组的绝缘材料。
若变压器的温度长时间超过允许值,则绝缘材料将因长期受热而老化,且温度越高,老化越快,变压器的使用寿命相应缩短。
使用年限的减少一般可按"八度规则"计算,即温度每升高8℃,使用年限将减少1/2。
当绝缘老化到一定程度时,在运行振动和电动力作用下,绝缘容易破裂,且易发生电气击穿而造成故障。
因此,变压器必须在其允许的温度范围内运行,以保证供电安全。
而工程中普遍采用的密封阀控铅酸蓄电池也对环境温度有较高要求。
低温,会使得电池容量降低,充电接收能力下降,充放电循环寿命下降;高温,会加快电池失水,甚至产生热失控效应,加剧板栅腐蚀,极板变形膨胀、电池外壳鼓胀或开裂,从而导致电池容量快速下降,电池寿命缩短。
蓄电池的工作温度可以在-5℃~40℃,但其最佳工作温度在20~25℃。
在25℃的环境下蓄电池可获得较长的寿命,长期运行温度若升高10℃,使用寿命约减少一半。
工程设计中,工程设计人员需对通信综合楼内各电源机房的散热量进行较准确估算,以便合理地解决机房内电源设备的通风散热问题。
二、各电源机房的散热量估算电力设备的电能的损耗转化为热量散发到机房内,排风量应以能排除这些余热来确定。
1.高低压变配电机房(1)变压器的散热量:变压器损耗为空载损耗和负载损耗之和,即:⊿P=⊿PO+⊿PB。
变压器的空载损耗(⊿PO)是固定值,只与变压器的容量以及电压的高低有关,一般在产品说明书或出厂试验报告中注明。
散热器散热量计算

散热器散热量计算散热器散热量计算;散热量是散热器的一项重要技术参数,每一种散热器出;现介绍几种简单的计算方法:;(一)根据散热器热工检验报告中,散热量与计算温差;铜铝复合74×60的热工计算公式(十柱)是:;Q=5.8259×△T(十柱);1.标准散热热量:当进水温度95℃,出水温度70;十柱散热量:;Q=5.8259×64.5=1221.4W;每柱散热量;1224.4W÷散热器散热量计算散热量是散热器的一项重要技术参数,每一种散热器出厂时都标有标准散热量(即△T=64.5℃时的散热量)。
但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度、出水温度和室内温度,计算出温差△T,然后根据各种不同的温差来计算散热量,△T的计算公式:△T=(进水温度+出水温度)/2-室内温度。
现介绍几种简单的计算方法:(一)根据散热器热工检验报告中,散热量与计算温差的关系式来计算。
在热工检验报告中给出一个计算公式Q=m×△Tn,m和n在检验报告中已定,△T可根据工程给的技术参数来计算,例:铜铝复合74×60的热工计算公式(十柱)是:Q=5.8259×△T (十柱)1.标准散热热量:当进水温度95℃,出水温度70℃,室内温度18℃时:△T =(95℃+70℃)/2-18℃=64.5℃十柱散热量:Q=5.8259×64.5 =1221.4W每柱散热量1224.4 W÷10柱=122 W/柱2.当进水温度80℃,出水温度60℃,室内温度18℃时:△T =(80℃+60℃)/2-18℃=52℃十柱散热量:Q=5.8259×52 =926W每柱散热量926 W÷10柱=92.6W/柱3.当进水温度70℃,出水温度50℃,室内温度18℃时:△T =(70℃+50℃)/2-18℃=42℃十柱散热量:Q=5.8259×42 =704.4W每柱散热量704.4W ÷10柱=70.4W/柱(二)从检验报告中的散热量与计算温差的关系曲线图像中找出散热量:我们先在横坐标上找出温差,例如64.5℃,然后从这一点垂直向上与曲线相交M点,从M点向左水平延伸与竖坐标相交的那一点,就是它的散热量(W)。
散热量计算公式

一、标准散热量标准散热量是指供暖散热器按我国国家标准(GB/T13754-1992),在闭室小室内按规定条件所测得的散热量,单位是瓦(W)。
而它所规定条件是热媒为热水,进水温度95摄氏度,出水温度是70摄氏度,平均温度为(95+70)/2=82.5摄氏度,室温18摄氏度,计算温差△T=82.5摄氏度-18摄氏度=64.5摄氏度,这是散热器的主要技术参数。
散热器厂家在出厂或售货时所标的散热量一般都是指标准散热量。
那么现在我就要给大家讲解第二个问题,我想也是很多厂商和经销商存在疑问的地方。
二、工程上采用的散热量与标准散热量的区别标准散热量是指进水温度95摄氏度,出水温度是70摄氏度,室内温度是18摄氏度,即温差△T=64.5摄氏度时的散热量。
而工程选用时的散热量是按工程提供的热媒条件来计算的散热量,现在一般工程条件为供水80摄氏度,回水60摄氏度,室内温度为20摄氏度,因此散热器△T=(80摄氏度+60摄氏度)÷2-20摄氏度=50摄氏度的散热量为工程上实际散热量。
因此,在对工程热工计算中必须按照工程上的散热量来进行计算。
在解释完上面的术语以后,下面我介绍一下采暖散热器的欧洲标准(EN442)。
欧洲标准(EN442)是由欧洲标准化委员会/技术委员会CEN所编制.按照CEN内部条例,以下国家必须执行此标准,这些国家是:澳大利亚、比利时、丹麦、芬兰、法国、意大利、荷兰、西班牙、瑞典、英国等18个国家。
而欧洲标准(EN442)的标准散热量与我国标准散热量是不同的,欧洲标准所确定的标准工况为:进水温度80摄氏度,出水温度65摄氏度,室内温度20摄氏度,所对应的计算温差△T=50摄氏度。
欧洲标准散热量是在温差△T=50摄氏度的散热量。
那么怎么计算散热器在不同温差下的散热量呢?散热量是散热器的一项重要技术参数,每一个散热器出厂时都标有标准散热量(即△T=64.5摄氏度时的散热量)。
但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度,出水温度和室内温度,来计算出温差△T,然后计算各种温差下的散热量。
附表三:各工部设备散热量计算表

喷砂室 抛光室 发电机部
0.4 10.8 0.025 室温 50 室温 80 不定 不定 室温 50 70 室温 50 70 90 70 120 室温 室温 室温 室温 70
0.025
17 17
0.25 0.3
13.38 13.73
0.48 1.2
1.96 3.68
0.60317 0.1061 0.7093 1.162107 0.5218 1.6839
部分工部电动设备、热槽散热量计算表 部分工部电动设备、
设备外 室内平 室内空 表面积 溶液表 溶液温 均计算 气流速 传热系 面面积 v 度 温度 数α (m2) (m/s (℃) tnp W/(m2 ) (℃) ·℃) 设备外 设备外表 溶液表 各工部 设备总 设备台 表面积 面积的散 面的散 设备散 数 散热量 热量 A 热量 热量 (KW) (台) (m2) (KW) (KW) (KW)
17 17 17 17 17 17 17
0.25 0.3 0.35 0.3 0.3 0.3 0.3
13.38 13.73 14.08 13.73 13.73 13.73 13.73
0.48 0.6 0.6 0.3 0.8 0.3 0.3
1.96 2.56 2.56 1.54 2.88 1.54 1.54
编号
工部名称
设备编号
设备名称
设备规格
Ⅱ Ⅲ Ⅳ
Ⅴ
Ⅸ
Ⅷ
*1、2 喷砂室 φ1000×650×750 *3、4 抛光机 布轮φ200,N=0.8KW 5、6 电动发电机 ZJ1500/750 N=9KW 机组效率η=0.625 7 去毛滚筒 重量50Kg N=0.1KW 8、11 冷水槽 800×600×700 *9 有色金属腐蚀槽 1500×800×800 准备工部 10、14 热水槽 800×600×700 *12 黑色金属腐蚀槽 1500×800×800 *13 化学去油槽 1500×800×800 *15 溶液配置槽 600×500×700 溶液配置室 *16 溶液配置槽 600×500×700 *17、23 酸洗槽 1000×600×800 18、40、32 热水槽 800×600×700 19、22、24、29、33、37、39 冷水槽 800×600×700 *20、21 电解除油槽 1000×600×800 25 回收槽 800×600×700 *26 镀铬槽 1000×600×800 *27 苏打槽 600×500×700 电镀部 *28 磷化槽 1000×800×800 Vx=0.3m/s *30 皂液槽 600×500×700 31 油槽 600×500×700 *34 镀镍槽 1000×800×800 *35 镀铜槽 1000×800×800 36 中和槽 800×600×700 *38 镀锌槽 1000×800×800 *41 镀锡槽 1000×800×800
电缆直径和电缆流过电流计算以及对照表分享

电缆直径和电缆流过电流计算以及对照表分享1、综述铜芯线的压降与其电阻有关,其电阻计算公式:20℃时:17.5÷截面积(平方毫米)=每千米电阻值(Ω)75℃时:21.7÷截面积(平方毫米)=每千米电阻值(Ω)其压降计算公式(按欧姆定律):V=R×A线损是与其使用的压降、电流有关。
其线损计算公式: P=V×AP-线损功率(瓦特)V-压降值(伏特)A-线电流(安培)2、铜芯线电源线电流计算法1平方毫米铜电源线的安全载流量--17A。
1.5平方毫米铜电源线的安全载流量--21A。
2.5平方毫米铜电源线的安全载流量--28A。
4平方毫米铜电源线的安全载流量--35A6平方毫米铜电源线的安全载流量--48A10平方毫米铜电源线的安全载流量--65A。
16平方毫米铜电源线的安全载流量--91A25平方毫米铜电源线的安全载流量--120A。
单相负荷按每千瓦4.5A(COS">3、铜芯线与铝芯线的电流对比法2.5平方毫米铜芯线等于4平方毫米铝芯线4平方毫米铜芯线等于6平方毫米铝芯线6平方毫米铜芯线等于10平方毫米铝芯线即:2.5平方毫米铜芯线=20安培=4400 瓦;4平方毫米铜芯线=30安培=6600 瓦;6平方毫米铜芯线=50安培=11000 瓦土方法是铜芯线1个平方1KW,铝芯2个平方1KW.单位是平方毫米就是横截面积(平方毫米)电缆载流量根据铜芯/铝芯不同,铜芯你用2.5(平方毫米)就可以了其标准:0.75/1.0/1.5/2.5/4/6/10/16/25/35/50/70/95/120/150/185/240/300/400...还有非我国标准如:2.0铝芯1平方最大载流量9A,铜芯1平方最大载流量13.5A二点五下乘以九,往上减一顺号走。
三十五乘三点五,双双成组减点五。
条件有变加折算,高温九折铜升级。
穿管根数二三四,八七六折满载流。
1、“二点五下乘以九,往上减一顺号走”说的是:2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。
散热量计算公式

一、标准散热量标准散热量是指供暖散热器按我国国家标准(GB/T13754-1992),在闭室小室内按规定条件所测得的散热量,单位是瓦(W)。
而它所规定条件是热媒为热水,进水温度95摄氏度,出水温度是70摄氏度,平均温度为(95+70)/2=82.5摄氏度,室温18摄氏度,计算温差△T=82.5摄氏度-18摄氏度=64.5摄氏度,这是散热器的主要技术参数。
散热器厂家在出厂或售货时所标的散热量一般都是指标准散热量。
那么现在我就要给大家讲解第二个问题,我想也是很多厂商和经销商存在疑问的地方。
二、工程上采用的散热量与标准散热量的区别标准散热量是指进水温度95摄氏度,出水温度是70摄氏度,室内温度是18摄氏度,即温差△T=64.5摄氏度时的散热量。
而工程选用时的散热量是按工程提供的热媒条件来计算的散热量,现在一般工程条件为供水80摄氏度,回水60摄氏度,室内温度为20摄氏度,因此散热器△T=(80摄氏度+60摄氏度)÷2-20摄氏度=50摄氏度的散热量为工程上实际散热量。
因此,在对工程热工计算中必须按照工程上的散热量来进行计算。
在解释完上面的术语以后,下面我介绍一下采暖散热器的欧洲标准(EN442)。
欧洲标准(EN442)是由欧洲标准化委员会/技术委员会CEN所编制.按照CEN内部条例,以下国家必须执行此标准,这些国家是:澳大利亚、比利时、丹麦、芬兰、法国、意大利、荷兰、西班牙、瑞典、英国等18个国家。
而欧洲标准(EN442)的标准散热量与我国标准散热量是不同的,欧洲标准所确定的标准工况为:进水温度80摄氏度,出水温度65摄氏度,室内温度20摄氏度,所对应的计算温差△T=50摄氏度。
欧洲标准散热量是在温差△T=50摄氏度的散热量。
那么怎么计算散热器在不同温差下的散热量呢?散热量是散热器的一项重要技术参数,每一个散热器出厂时都标有标准散热量(即△T=64.5摄氏度时的散热量)。
但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度,出水温度和室内温度,来计算出温差△T,然后计算各种温差下的散热量。
保温伴热(电伴热)

根据安装环境和条件进行结构选择
1)在塑料或表面涂有油漆,而不能可靠接地的容器和管道上选用屏蔽型产品。
2)在易燃易爆地区,或管内介质是易燃易爆介质,应选用屏蔽型防爆电伴热产品。
3)管道内介质如有腐蚀性,或电缆有可能接触腐蚀屏蔽层的化学品,则应采用防护型产品。
3.5 其他事项
1)电伴热带的电源接线截面要大于伴热电缆导体截面。
3)列出管内介质的名称、操作温度,维持温度,可能最高温度,最低环境温度、温差、散热损
失、危险区域分类;
4) 列出电伴热带的规格,数量及其在维持温度时的发热量以及电器设备的数量、规格、型号及其他附件。
五:电伴热设施的安装
5.1 安装前的准备
1) 所有电伴热带均须进行电路连续性和绝缘性能的测试,不符合规定的不能使用。
14) 多回路电热带从同一接线盒接出时,各母线都要有绝缘套隔离,以防短路。
15) 接线盒应密封,防止雨水进入。
5.4电伴热系统的现场测试与检查
1) 电热带的连续性和绝缘电阻,用1000V摇表检查,系统绝缘电阻大于50MΩ为合格。
2) 电热带安装完毕,每个电伴热回路的测试结果应有记录和报告。
3) 检查人员应按照工程规定对伴热系统的安装进行中间检查和最终核实、验收。
4.1 电伴热系统图绘制原则
1)每个单一电源电的电伴热系统,应绘制各自的电伴热系统图。
2)电伴热系统图以该被伴热管道配管图为依据,用轴侧投影图表示。
3)电伴热系统图是示意图,可以不按比例绘制。
4.2 电伴热系统图图示要求
1)电伴热系统图应列出管道编号、管径、材质,保温材质和保温厚度;
2)应标出管道上的阀门、管件、支架、法兰的位置及管道的长度,同时标出接线盒的位置;
电缆载流量计算书

电缆载流量计算书1、载流量计算使用条件及必要系数:具体计算公式如下:()[]()()()4321211432115.0T T nR T nR RT T T T n T W I d +++++++++-∆=λλλθ其中:I:载流量(A)△θ:导体温度与环境温度之差(℃)R:90℃时导体交流电阻(Ω/m)n:电缆中载流导体数量W d:绝缘介质损耗λ1:护套和屏蔽损耗因数λ2:金属铠装损耗因数T1:导体与金属护套间绝缘层热阻(k·m/w)T2:金属护套与铠装层之间内衬层热阻(k·m/w) T3:电缆外护层热阻(k·m/w)T4:电缆表面与周围媒介之间热阻(k·m/w) 1.导体交流电阻R的计算R=R'(1+y s+y p)R'=R0[1+α20(θ-20)]其中:R':最高运行温度下导体直流电阻(Ω/m)y s:集肤效应因数y p:邻近效应因数R0:20℃时导体直流电阻(Ω/m)θ:最高运行温度90℃α20:20℃时铜导体的温度系数448.0192sss X X y +=s s k R fX 72108-⨯=π其中:对于分割导体ks=0.435。
⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+++⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+=27.08.019218.1312.08.0192442244p p c c p p s X X s d s d X X ys p k R fX 72108-⨯=π其中:d c :导体直径(mm ) s:各导体轴心之间距离(mm ) 对于分割导体ks=0.37。
2.介质损耗W d 的计算W d =ωCU 02tg δ 其中:ω=2πf C:电容F/m U 0:对地电压(V )91018-⨯⎪⎪⎭⎫ ⎝⎛=c id D Ln c ε其中:ε=2.3D i 为绝缘外径(mm ) d c 为内屏蔽外径(mm )3.金属屏蔽损耗λ1的计算λ1=λ1'+λ1〃 其中:λ1'为环流损耗 λ1〃为涡流损耗 λ1〃的计算:()()⎥⎦⎤⎢⎣⎡⨯+∆+∆+=1241210110121s s st g RR βλλ()6.11013174.1-⎪⎪⎭⎫⎝⎛+=-ss s s D D t g βsρπϖβ71104=其中:ρ:金属护套电阻率(Ω·m) R :金属护套电阻(Ω/m) D :金属护套外径,对于皱纹铝护套sitoc t D D D ++=2(mm)t :金属护套厚度(mm) D oc :皱纹铝套最大外径(mm) D it :皱纹铝套最小内径(mm) a.三角形排列时2220213⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+=s d m m λ()66.192.045.21233.014.1+⎪⎭⎫⎝⎛+=∆m s d m△2=0 b.平行排列时1)中心电缆2220216⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+=s d m m λ7.04.108.31286.0+⎪⎭⎫⎝⎛=∆m s d m△2=0其中:710-=sR m ϖ2)外侧超前相2220215.1⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛+=s d m m λ216.07.0127.4+⎪⎭⎫⎝⎛=∆m s d m 06.547.13.32221+⎪⎭⎫⎝⎛=∆m s d m3)外侧滞后相2220215.1⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛+=s d m m λ()()125.0123.02274.0+⎪⎭⎫⎝⎛-++=∆m s d m m m27.32292.0+⎪⎭⎫⎝⎛=∆m s d m4.铠装损耗λ2的计算λ2=05.热阻的计算5.1热阻T 1的计算热阻⎪⎪⎭⎫⎝⎛+=c Td t Ln T 112121πρ式中:ρT1—绝缘材料热阻系数(k ·m/w) d c —导体直径(mm)t 1—导体和护套之间的绝缘厚度(mm)5.2热阻T2的计算热阻T2=05.3外护套热阻T3的计算()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=s it oc oc T t D D t D Ln T s 22233πρ其中:t s -外护套厚度ρT3-外护套(非金属)热阻系数5.4外部热阻T4计算5.4.1空气中敷设()25.0*41s e h D T θπ∆=()ED Zh ge +=*其中:D e *:电缆外径(mm) h:散热系数()41θ∆计算:()()41141411⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆+∆+∆=∆+n s A dn K θθθθ⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++-⎪⎪⎭⎫ ⎝⎛-++=∆212212112111λλλλλθT n T W d d()()⎥⎦⎤⎢⎣⎡+++++++=21312121*111λλλλλπT T n T hD K e A令()241=∆n s θ,求出()411+∆n s θ,反复叠代直至()411+∆n s θ-()41n s θ∆≤0.001时为止,此时的()411+∆n s θ值即为()41n s θ∆值。