江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编10:平面向量

合集下载

江苏省2014届一轮复习数学试题选编11:平面向量(教师版)

江苏省2014届一轮复习数学试题选编11:平面向量(教师版)
【答案】3
.(江苏省泰兴市2013届高三上学期期中调研考试数学试题)如图,已知正方形 的边长为3, 为 的中点, 与 交于点 .则 __________.
【答案】 .
.(2012-2013学年度苏锡常镇四市高三教学情况调研(二)数学试题)已知向量 , 满足 , ,且对一切实数 , 恒成立,则 与 的夹角大小为______.
.(江苏省苏州市五市三区2013届高三期中考试数学试题)已知向量 与 的夹角为 , ,则 在 方向上的投影为____________.
【答案】
.(江苏省扬州市2013届高三上学期期中调研测试数学试题)△ABC中, , , ,则 ____.
【答案】5
.(江苏省徐州市2013届高三期中模拟数学试题)已知平面上的向量 . 满足 , ,设向量 ,则 的最小值是________________.
(3)∵ = , cos ·sin θ-cos(10- ) ·sin[(10- ) ]
=cos ·sin -cos( - )·sin( - )
=cos ·sin -sin ·cos =0,
∴ ∥
.(江苏省连云港市2013届高三上学期摸底考试(数学)(选修历史))如图,已知 的长为 ,求GA、GC的长.
江苏省2014届一轮复习数学试题选编11:平面向量
填空题
.(江苏省泰州、南通、扬州、宿迁、淮安五市2013届高三第三次调研测试数学试卷)在平面四边形ABCD中,点E,F分别是边AD,BC的中点,且AB , ,CD .
若 ,则 的值为______.
【答案】
.(江苏省2013届高三高考压轴数学试题)△ABC外接圆的半径为 ,圆心 为 ,且 , ,则 的值是______.
【答案】
.(2013江苏高考数学)设 分别是 的边 上的点, , ,若 ( 为实数),则 的值为__________.

江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编19:函数的极值与导数

江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编19:函数的极值与导数

江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编19:函数的极值与导数一、填空题1 .(江苏省盐城市2014届高三上学期期中考试数学试题)已知函数()2(1)ln f x f x x '=-,则()f x 的极大值为________.【答案】2ln 22-2 .(江苏省涟水中学2014届高三上学期(10月)第一次统测数学(理)试卷)设函数32()2ln f x x ex mx x =-+-,记()()f x g x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是______. 【答案】21(,]e e -∞+ 3 .(江苏省涟水中学2014届高三上学期(10月)第一次统测数学(理)试卷)对于三次函数32()f x ax bx cx d =+++,定义''()y f x =是函数'()y f x =的导函数.若方程''()0f x =有实数解0x ,则称点00(,())x f x 为函数()y f x =的“拐点”.有同学发现:任何一个三次函数既有拐点,又有对称中心,且拐点就是对称中心.根据这一发现,对于函数32()26322013sin(1)g x x x x x =-+++-, 则 (2011)(2010)(2012)g g g -+-+++…(2013)g 的值为_______________.【答案】4025二、解答题4 .(江苏省梁丰高级中学2014届第一学期阶段性检测一)已知函数()223241234--++-=x ax x x x f 在区间[]1,1-上单调递减,在区间[]2,1上单调递增. (1)求实数a 的值;(2)若关于x 的方程()m f x =2有三个不同的实数解,求实数m 的取值范围;(3)若函数()[]p x f y +=2log 的图像与x 轴无交点,求实数p 的取值范围.【答案】解:(1)由 ()2101'=⇒=a f 经检验符合 ;(不写检验扣1分) (2)()()()()211'-+--=x x x x f 易知函数在()()()()↓+∞↑↓-↑-∞-,22,11,1,1,所以,函数有极大值()()382,1251-=-=-f f ,有极小值()12371-=f , 结合图像可知:⎪⎭⎫ ⎝⎛--∈38,1237m ; (3)若函数()[]p x f y +=2log 的图像与x 轴无交点,则必须有()()⎩⎨⎧=+>+无解有解10p x f p x f ,即()[]()⎩⎨⎧+=>+的值域内不在p x f y p x f 10max而()[]p p x f +-=+125max ,函数()p x f y +=的值域为⎥⎦⎤ ⎝⎛+-∞-p 125, 所以有:⎪⎪⎩⎪⎪⎨⎧+->>+-p p 12510125,解之得:1217125<<p 5 .(江苏省宿迁市2014届高三上学期第一次摸底考试数学试卷)已知函数()ln 3()f x a x ax a =--∈R .(1)当0a >时,求函数()f x 的单调区间;(2)若函数()y f x =的图象在点(2(2))f ,处的切线的倾斜角为45︒,且函数21()()()2g x x nx mf x m n '=++∈R ,当且仅当在1x =处取得极值,其中()f x '为()f x 的导函数,求m 的取值范围;(3)若函数()y f x =在区间1(3)3,内的图象上存在两点,使得在该两点处的切线相互垂直,求a 的取值范围.【答案】解:(1)(1)()(0)a x f x x x-'=>, 当0a >时,令()0f x '>得01x <<,令()0f x '<得1x >,故函数()f x 的单调增区间为(01),,单调减区间为(1)+∞,; (2)函数()y f x =的图象在点(2(2))f ,处的切线的倾斜角为45︒,则(2)1f '=,即2a =-; 所以212()(2)2g x x nx m x=++-,所以322222()m x nx m g x x n x x ++'=++=, 因为()g x 在1x =处有极值,故(1)0g '=,从而可得12n m =--, 则322222(1)(22)()x nx m x x mx m g x x x ++---'==,又因为()g x 仅在1x =处有极值, 所以2220x mx m --≥在(0)+∞,上恒成立, 当0m >时,由20m -<,即0(0)x ∃∈+∞,,使得200220x mx m --<, 所以0m >不成立,故0m ≤,又0m ≤且(0)x ∈+∞,时,2220x mx m --≥恒成立, 所以0m ≤;(注:利用分离变量方法求出0m ≤同样给满分.)(3)由(1)()(0)a x f x x x-'=>得(01),与(1)+∞,分别为()f x 的两个不同的单调区间, 因为()f x 在两点处的切线相互垂直,所以这两个切点一定分别在两个不同单调区间内故可设存在的两点分别为1122(,())(,())x f x x f x ,,其中121133x x <<<<, 由该两点处的切线相互垂直,得1212(1)(1)1a x a x x x --⋅=-,。

2014年数学一轮复习试题_平面向量的应用

2014年数学一轮复习试题_平面向量的应用

第二十六讲 平面向量的应用一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.(2010·全国Ⅰ)已知圆O 的半径为1,P A 、PB 为该圆的两条切线,A 、B 为两切点,那么P A ·PB 的最小值为( )A .-4+2B .-3+ 2C .-4+2 2D .-3+2 2解析:设|||PA PB = ,∠APB =θ,则tan θ2=1x ,cos θ=x 2-1x 2+1,则P AP B =x 2·x 2-1x 2+1=x 4-x 2x 2+1=(x 2+1)2-3(x 2+1)+2x 2+1=x 2+1+2x 2+1-3≥22-3,当且仅当x 2+1=2,即x 2=2-1时,取“=”,故PA PB的最小值为22-3,故选D. 答案:D2.设△ABC 的三个内角为A ,B ,C ,向量m =(3sin A ,sin B ),n =(cos B ,3cos A ),若m ·n =1+cos(A +B ),则C =( )A.π6B.π3C.2π3D.5π6解析:依题意得3sin A cos B +3cos A sin B =1+cos(A +B ),3sin(A +B )=1+cos(A +B ),3sin C +cos C =1,2sin ⎝⎛⎭⎫C +π6=1,sin ⎝⎛⎭⎫C +π6=12.又π6<C +π6<7π6,因此C +π6=5π6,C =2π3,选C.答案:C3.已知两点M (-3,0),N (3,0),点P 为坐标平面内一动点,且||||0,MN MP MNoNP +==0,则动点P (x ,y )到点M (-3,0)的距离d 的最小值为( )A .2B .3C .4D .6解析:因为M(-3,0),N(3,0),所以(6,0),||6,MN MN MP ===(x+3,y),NP =(x-3,y).由||||MN MP MN NP + =0得化简得y 2=-12x,所以点M 是抛物线y 2=-12x 的焦点,所以点P 到M 的距离的最小值就是原点到M(-3,0)的距离,所以d min =3.答案:B4.在△ABC 中,已知a 、b 、c 分别为角A 、B 、C 所对的边,且a 、b 、c 成等比数列,a +c =3,cos B =34,则AB BC 等于( )A.32B .-32C .3D .-3解析:由已知b 2=ac ,a +c =3,cos B =34,得34=a 2+c 2-b 22ac =(a +c )2-3ac2ac,解得ac =2.则AB ·BC =ac ·cos 〈AB ,BC 〉=2×⎝⎛⎭⎫-34=-32. 答案:B5.一质点受到平面上的三个力F 1,F 2,F 3(单位:牛顿)的作用而处于平衡状态,已知F 1,F 2成60°角,且F 1,F 2的大小分别为2和4,则F 3的大小为( )A .6B .2C .2 5D .27解析:F 23=F 21+F 22+2|F 1||F 2|cos60°=28,所以|F 3|=27,选D. 答案:D6.若O 为△ABC 所在平面内一点,且满足()(2)0,OB OC OB OC OA -+-= =0,则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰三角形D .以上都不对解析:由已知得()0,CB AB AC += =0,设BC 中点为D , 则0CB AD =,即中线AD 与高线重合,∴△ABC 为等腰三角形.答案:C二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)7.若等边△ABC 的边长为23,平面内一点M 满足CM =16CB +23,CA 则MA MB =_____.解析:建立如图所示的直角坐标系,根据题设条件可知A (0,3),B (-3,0),M (0,2),∴MA =(0,1),MB =(-3,-2).∴MA MB=-2.答案:-28.在长江南岸渡口处,江水以12.5 km/h 的速度向东流,渡船的速度为25 km/h.渡船要垂直地渡过长江,则航向为________.解析:如图所示,渡船速度为OB ,水流速度为OA ,船实际垂直过江的速度为,OD依题意知|OA |=12.5=252,|OB|=25. ∵OD OB OA =+ ,∴OD OA OB OA OA =+ 2, ∵OD ⊥OA ,∴OD ·OA =0,∴25×252cos(∠BOD +90°)+⎝⎛⎭⎫2522=0,∴cos(∠BOD +90°)=-12,∴sin ∠BOD =12,∴∠BOD =30°,∴航向为北偏西30°.答案:北偏西30°9.△ABC 的外接圆的圆心为O ,两条边上的高的交点为H ,()OH m OA OB OC =++则实数m =________.解析:取BC 的中点D ,则2,OB OC OD +=,且OD ⊥BC ,AH ⊥BC . 由()OH m OA OB OC =++ ,可得(2)OA AH m OA OD +=+ , ∴(1)2.AH m OA mOD =-+ .(1)2,AH BC m OA BC m OD BC =-+即0=(m -1)·OA BC+0,故m =1.答案:110.已知|a |=2,|b |=4,a 与b 的夹角为π3,以a ,b 为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为________.解析:画图可知,较短一条对角线的长度为 |a |2+|b |2-2|a ||b |cos π3=22+42-2×2×4×12=2 3.答案:2 3三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)11.已知a =(1,x ),b =(x 2+x ,-x ),m 为实数,求使m (a ·b )2-(m +1)a ·b +1<0成立的x 的取值范围.解:∵a ·b =x 2+x -x 2=x . ∴m (a ·b )2-(m +1)a ·b +1<0⇔mx 2-(m +1)x +1<0. (1)当m =0时,x >1.(2)当m ≠0时,m (x -1m)(x -1)<0,①当m <0时,x >1或x <1m . ②当0<m <1时,1<x <1m .③当m =1时,x ∈∅. ④当m >1时,1m<x <1.12.在▱ABCD 中,A (1,1),AB=(6,0),点M 是线段AB 的中点,线段CM 与BD 交于点P .(1)若AD=(3,5),求点C 的坐标;(2)当|AB |=|AD|时,求点P 的轨迹.解:(1)设点C 的坐标为(x 0,y 0),又AC AD AB =+=(3,5)+(6,0)=(9,5),即(x 0-1,y 0-1)=(9,5),∴x 0=10,y 0=6,即点C (10,6).(2)设P (x ,y ),则BP AP AB =-=(x -1,y -1)-(6,0)=(x -7,y -1),AC AM MC =+ =123AB MP + =1113()222AB AP AB =+-=3AP AB -=(3(x -1),3(y -1))-(6,0)=(3x -9,3y -3).∵||||AB AD =,∴▱ABCD 为菱形.∴BP ⊥AC ,∴(x -7,y -1)·(3x -9,3y -3)=0,即(x -7)(3x -9)+(y -1)(3y -3)=0.∴x 2+y 2-10x -2y +22=0(y ≠1). 故点P 的轨迹是以(5,1)为圆心,2为半径的圆且去掉与直线y =1的两个交点.13.已知OM =(cos α,sin α),ON =(cos x ,sin x ),PQ =⎝⎛⎭⎫cos x ,-sin x +45cos α. (1)当cos α=45sin x时,求函数y =ON PQ 的最小正周期;(2)当OM ON =1213,OM PQ ∥,α-x ,α+x 都是锐角时,求cos2α的值.解:(1)∵cos α=45sin x ,∴y =cos 2x -sin 2x +4sin x5cos α=cos2x +sin 2x =cos2x +1-cos2x 2=12cos2x +12,∴该函数的最小正周期是π. (2)∵OM ON=cos αcos x +sin αsin x =cos(α-x )=1213,且α-x 是锐角, ∴sin (α-x )=1-cos 2(α-x )=513,∵OM PQ ∥,∴-cos αsin x +45-sin αcos x =0,即sin(α+x )=45.∵α+x 是锐角,∴cos(α+x )=1-sin 2(α+x )=35,∴cos2α=cos[(α+x )+(α-x )]=cos (α+x )cos(α-x )-sin(α+x )sin(α-x )=35×1213-45×513=1665,即cos2α=1665.。

江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编17:简易逻辑

江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编17:简易逻辑

江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编17:简易逻辑一、填空题1 .(江苏省梁丰高级中学2014届第一学期阶段性检测一)命题“若实数a 满足2a ≤,则24a <”的否命题是______命题(填“真”、“假”之一).【答案】真2 .(江苏省淮安市车桥中学2014届高三9月期初测试数学试题)命题“x R ∃∈,10x +≥”的否定为______.【答案】,10x R x ∀∈+<3 .(江苏省无锡市洛社高级中学2014届高三10月月考数学试题)给出下列四个命题:①命题1sin ,:≤∈∀x R x p ,则1sin ,:<∈∃⌝x R x p .②当1≥a 时,不等式a x x <-+-34的解集为非空.③当1>x 时,有2ln 1ln ≥+xx . ④设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的充分而不必要条件.其中真命题的个数是______________【答案】24 .(江苏省灌云县陡沟中学2014届高三上学期第一次过关检测数学试题)命题“存在00,20x x R ∈≤”的否定是__________________;【答案】任意00,20x x R ∈>5 .(江苏省宿迁市2014届高三上学期第一次摸底考试数学试卷)写出命题“2010x x ∃->≤,”的否定:______.【答案】2001x x ∀->>,6 .(江苏省无锡市洛社高级中学2014届高三10月月考数学试题)若[]1,2x ∃∈,使不等式240x mx -+>成立,则m 的取值范围是______________.【答案】(,5)-∞7 .(江苏省沛县歌风中学(如皋办学)2014届高三第二次调研数学试题)由命题“存在x ∈R,使x 2+2x +m ≤0”是假命题,求得m 的取值范围是(a ,+∞),则实数a 的值是_________.【答案】18 .(江苏省泰兴市第三高级中学2014届高三上学期期中调研测试数学理试题)若命题“x R ∃∈,使210x ax ++<”的否定是假命题,则实数a 的取值范围是_____【答案】22a a ><-或9 .(江苏省诚贤中学2014届高三上学期第一次月考数学试题)命题“等腰三角形的两个底角相等”的否定是____________________________.【答案】存在等腰三角形的两个底角不相等10.(江苏省南莫中学2014届高三10月自主检测数学试题)若命题“R x ∈∀,02≥+-a ax x ”为真命题,则实数a 的取值范围是________.【答案】[0,4];11.(江苏省泰兴市第三高级中学2014届高三上学期期中调研测试数学理试题)给出下列几个命题:①||||a b = 是a b = 的必要不充分条件;②若A 、B 、C 、D 是不共线的四点,则AB DC = 是四边形ABCD 为平行四边形的充要条件;③若a b a c ⋅=⋅ 则b c = ④a b = 的充要条件是//||||a b a b ⎧⎪⎨=⎪⎩ ;⑤若,i j 为互相垂直的单位向量,2a i j =- ,b i j λ=+ ,则,a b 的夹角为锐角的充要条件是1,2λ⎛⎫∈-∞ ⎪⎝⎭ 其中,正确命题的序号是______【答案】(1),(2)12.(江苏省连云港市赣榆县清华园双语学校2014届高三10月月考数学试题)命题“若12<x ,则11<<-x ”的逆否命题是_________________________.【答案】命题“若12<x ,则11<<-x ”的逆否命题是 若1≥x 或1-≤x ,则12≥x13.(江苏省启东市2014届高三上学期第一次检测数学试题)命题“若a b >,则22ac bc >(∈b a ,R)”否命题的真假性为______(从真、假中选一个)【答案】真.分析 :否命题“若a ≤b ,则2ac ≤2bc ”14.(江苏省涟水中学2014届高三上学期(10月)第一次统测数学(理)试卷)命题:13p x -≤,命题:2q x ≥-,或4x ≤-, p 是q ___________________(“充分不必要条件”、“必要不充分”、“充要条件”、“既不充分也不必要条件”).【答案】充分不必要条件;15.(江苏省丰县中学2014届高三10月阶段性测试数学(理)试题)给出下列命题:①命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1”;②“x =-1”是“x 2-5x -6=0”的必要不充分条件;③命题“∃x ∈R,使得x 2+x -1<0”的否定是:“∀x ∈R,均有x 2+x -1>0”;④命题“若x =y ,则sin x =sin y ”的逆否命题为真命题.其中所有正确命题的序号是_____________.【答案】 ④16.(江苏省涟水中学2014届高三上学期(10月)第一次统测数学(理)试卷)命题“32,10x R x x ∀∈-+<”的否定是______________(用数学符号表示).【答案】32,10x R x x ∃∈-+≥;17.(江苏省阜宁中学2014届高三第一次调研考试数学(理)试题)“33log log M N >”是“M N >”成立的_____________条件.。

江苏省2014届高三数学一轮复习考试试题精选1分类汇编2:函数的定义域、解析式

江苏省2014届高三数学一轮复习考试试题精选1分类汇编2:函数的定义域、解析式
江苏省 2014 届高三数学一轮复习考试试题精选(1)分类汇编 2:函数的定义域、解析式
一、填空题
1 .(江苏省诚贤中学 2014 届高三上学期第一次月考数学试题)设 f(x)是定义在 R 上的奇函数,当 x≤0 时,f(x)=2x2-x,则 f(1)等于_______. 【答案】-3
2 .( 江 苏 省 沛 县 歌 风 中 学 ( 如 皋 办 学 ) 2014 届 高 三 第 二 次 调 研 数 学 试 题 ) 已 知 函 数
f(x)=
,当 t∈[0,1]时,f(f(t))∈[0,1],则实数 t 的取值范围是__________.
【答案】
3
.( 江 苏 省 沛 县 歌 风 中 学 ( 如 皋 办 学 ) 2014
届高三第二次调研数学试题)设
g(x)

ex, x

Hale Waihona Puke 0.则lnx, x 0.
g(g(1)) __________ 2
是_____________.
【答案】 (1, 2)
1
8 .(江苏省泰州市姜堰区 2014 届高三上学期期中考试数学试题)函数 f (x) x 2 的定义域为________.
【答案】 [0,)
9 .(江苏省涟水中学 2014 届高三上学期(10 月)第一次统测数学(理)试卷)函数 y=ln(x-1)的定义域为 ___________ 【答案】{x|x>1}
若 P(x, y) 满足 d(P, l1 ) d(P, l2 ) ,则 y 关于 x 的函数解析式为______.
0
【答案】
y

1


4 x
x2 1
(x 0) (0 x 2)

2014届高三数学一轮复习考试试题精选(1)分类汇编10:平面向量

2014届高三数学一轮复习考试试题精选(1)分类汇编10:平面向量

2014届高三数学一轮复习考试试题精选(1)分类汇编10:平面向量一、填空题 1 .(江苏省宿迁市2014届高三上学期第一次摸底考试数学试卷)已知非零向量,a b 满足(2)(2)-⊥-⊥,,a b a b a b 则向量a 与b 的夹角为______.【答案】π32 .(江苏省南京市2014届高三9月学情调研数学试题)如图,在△ABC 中,D,E 分别为边BC,AC的中点. F 为边AB 上. 的,且,则x+y 的值为____【答案】523 .(江苏省徐州市2014届高三上学期期中考试数学试题)已知O 是ABC ∆的外心,10,6==AC AB ,若ACy AB x AO ⋅+⋅=且5102=+y x ,则=∠BAC cos _____________.【答案】314 .(江苏省盐城市2014届高三上学期期中考试数学试题)在ABC ∆中,若22()||5CA CB AB AB +⋅= ,则tan tan AB= ________. 【答案】735 .(江苏省兴化市2014届高三第一学期期中调研测试)已知在ABC∆中,3==BC AB ,4=AC ,设O 是ABC ∆的内心,若AC n AB m AO +=,则=n m :__★__.【答案】3:4 提示一:利用夹角相等,则有ACAC AO AB AB AO ⋅=⋅||.提示二:利用角平分线定理,根据相似比求得AC AB AO 103104+=6 .(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)已知非零向量a ,b 满足|a |=|a +b |=1,a 与b 夹角为120°,则向量b 的模为________.【答案】17 .(江苏省启东中学2014届高三上学期期中模拟数学试题)如图, 在等腰三角形ABC 中, 底边2=BC , DC AD =, 12AE EB = , 若12BD AC ⋅=- , 则AB CE ⋅=_____.【答案】43-8 .(江苏省无锡市2014届高三上学期期中调研考试数学试题)在ABC ∆中,M 为AB 的的三等分点,:1:3,AM AB N =为AC 的中点,BN 与CM 交于点E ,,AB m AC n ==,则AE =_____________________.【答案】1255m n +9 .(江苏省常州市武进区2014届高三上学期期中考试数学(理)试题)在平面直角坐标系中,O是坐标原点,()2,0A ,()0,1B ,则点集{},1,,P OP OA OB R λμλμλμ=++≤∈所表示的平面区域的面积是________.【答案】410.(江苏省兴化市2014届高三第一学期期中调研测试)设向量a 、b 满足:|a |3=,|b |1=,a·b 23=,则向量a 与b 的夹角为__★__. 【答案】6π 11.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)向量b n a m b a --==若),3,2(),2,1(与b a 2+共线(其中,,0m m n R n n∈≠且)则等于_.【答案】21-12.(江苏省无锡市市北高中2014届高三上学期期初考试数学试题)已知a 、b 、c都是单位向量,且a b c += ,则a c ⋅的值为_________.【答案】1213.(江苏省盐城市2014届高三上学期期中考试数学试题)在ABC ∆中,6BC =,BC 边上的高为2,则AB AC ⋅的最小值为________.【答案】5-14.(江苏省无锡市市北高中2014届高三上学期期初考试数学试题)已知ABC ∆是边长为4的正三角形,D 、P 是ABC ∆内部两点,且满足11(),48AD AB AC AP AD BC =+=+,则APD ∆的面积为__________.【答案】3415.(江苏省南京市第五十五中学2014届高三上学期第一次月考数学试题)P 是ABC ∆所在平面内一点,若PB PA CB +=λ,其中R ∈λ,则P 点一定在(A)ABC ∆内部 (B)AC 边所在直线上 (C)AB 边所在直线上 (D)BC 边所在直线上【答案】B16.(江苏省启东中学2014届高三上学期期中模拟数学试题)已知)2s i n ,2(),sin ,1(2x b x a ==,其中()0,x π∈,若a b a b ⋅=⋅,则tan x =_____. 【答案】1;17.(江苏省泰州中学2014届第一学学期高三数学摸底考试)在平面直角坐标系x O y 中,已知=(3,﹣1),=(0,2).若•=0,=λ,则实数λ的值为__________.【答案】218.(江苏省泰州市姜堰区2014届高三上学期期中考试数学试题)如图,,,A B C 是直线上三点,P 是直线外一点,1==BC AB ,︒=∠90APB ,︒=∠30BPC ,则PA PC ⋅=________.【答案】74-19.(江苏省南莫中学2014届高三10月自主检测数学试题)已知向量a 的模为2,向量e 为单位向量,)(e a e -⊥,则向量a 与e 的夹角大小为_______.【答案】3π; 20.(江苏省诚贤中学2014届高三上学期摸底考试数学试题)已知向量a 与b 的夹角为60º,300lABCP且|a |=1,|b |=2,那么2()+a b 的值为________.【答案】721.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)已知O 为△ABC 的外心,,120,2,20=∠==BAC aAC a AB 若AC AB AO βα+=,则βα+的最小值为____【答案】222.(江苏省泰州市姜堰区张甸中学2014届高三数学期中模拟试卷)已知平面向量(1,2)a = ,(1,3)b =-,则a 与b 夹角的余弦值为___________【答案】22; 23.(江苏省常州市武进区2014届高三上学期期中考试数学(理)试题)已知b a ,是非零向量且满足a b a ⊥-)(2,b a b ⊥-)(2,则a 与b 的夹角是________.【答案】3π24.(江苏省扬州中学2014届高三开学检测数学试题)已知正方形ABCD 的边长为1,若点E 是AB 边上的动点,则DC DE ⋅的最大值为 ▲ .【答案】125.(江苏省淮安市车桥中学2014届高三9月期初测试数学试题)若向量→a 、→b 满足|→a |=1,|→b|=2,且→a 与→b 的夹角为π3,则|→a +2→b |=_______【答案】2126.(江苏省连云港市赣榆县清华园双语学校2014届高三10月月考数学试题)已知向量a =(2,1),a ·b =10,|a +b |52=,则|b |=__________【答案】527.(江苏省盐城市2014届高三上学期期中考试数学试题)设向量(1,),(3,4)a x b ==- ,若//a b,则实数x 的值为________.【答案】43-28.(江苏省常州市武进区2014届高三上学期期中考试数学(理)试题)已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k =________. 【答案】1-29.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)若等腰梯形ABCD中,//AB CD ,3AB =,2BC =,45ABC ∠=,则AC BD ⋅的值为____________【答案】330.(江苏省苏州市2014届高三暑假自主学习测试(9月)数学试卷)设x ∈R,向量(,1),(3,2)x ==-a b 且⊥a b ,则x = ______. 【答案】2331.(江苏省无锡市洛社高级中学2014届高三10月月考数学试题)设平面向量(1,2)a =,与向量(1,2)a =共线的单位向量坐标为_______.【答案】525(,)55或255(,)55-- 32.(江苏省扬州市扬州中学2014届高三10月月考数学试题)已知向量(12,2)a x =-,()2,1b - =,若→→b a //,则实数x =______.【答案】25 二、解答题33.(江苏省南莫中学2014届高三10月自主检测数学试题)设(,1)a x = ,(2,1)b =- ,(,1)c x m m =--(,x m ∈∈R R ). (Ⅰ)若a 与b的夹角为钝角,求x 的取值范围; (Ⅱ)解关于x 的不等式a c a c +<- .【答案】(1)由题知:210a b x ⋅=-< ,解得12x <;又当2x =-时,a 与b 的夹角为π,所以当a 与b 的夹角为钝角时, x 的取值范围为1(,2)(2,)2-∞-⋃-(2)由a c a c +<-知,0a c ⋅< ,即(1)[(1)]0x x m ---<;当2m <时,解集为{11}x m x -<<; 当2m =时,解集为空集;当2m >时,解集为{11}x x m <<-34.(江苏省徐州市2014届高三上学期期中考试数学试题)设向量(2,sin ),(1,cos ),a b θθθ==为锐角.(1)若136a b ⋅= ,求sin cos θθ+的值;(2)若//a b ,求sin(2)3πθ+的值.【答案】解:(1)因为a ·b =2 + sin θcos θ =136 , 所以sin θcos θ = 16, 所以(sin θ +cos θ)2= 1+2sin θcos θ = 34 .又因为θ为锐角,所以sin θ + cos θ =233(2)因为a ∥b ,所以tan θ = 2,所以sin2θ = 2sin θcos θ = 2sin θcos θsin 2θ+cos 2θ = 2tan θtan 2θ+1 = 45 , cos2θ = cos 2θ-sin 2θ = cos 2θ-sin 2θsin 2θ+cos 2θ = 1-tan 2θtan 2θ+1 = — 35所以sin(2θ+ π3 ) = 12 sin2θ + 32 cos2θ = 12 ×45+32 ×(-35) = 4-331035.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)已知在等边三角形ABC中,点P 为线段AB 上一点,且(01)AP AB =≤≤λλ.(1)若等边三角形边长为6,且13=λ,求CP ; (2)若CP AB PA PB ⋅≥⋅,求实数λ的取值范围.【答案】(1)当13=λ时,13AP AB = , 2222221()262622282CP CA AP CA CA AP AP =+=+⋅+=-⨯⨯⨯+= .∴||27CP =(2)设等边三角形的边长为a ,则221()()2CP AB CA AP AB CA AB AB a a ⋅=+⋅=+λ⋅=-+λ ,222()()PA PB PA AB AP AB AB AB a a ⋅=⋅-=λ⋅-λ=-λ+λ即2222212a a a a -+λ≥-λ+λ,∴21202λ-λ+≤,∴222222-+≤λ≤. 又00≤λ≤,∴2212-≤λ≤. 36.(江苏省无锡市2014届高三上学期期中调研考试数学试题)已知向量,m n的夹角为45︒,则||1,||2m n == ,又2,3a m n b m n =+=-+ .(1)求a 与b 的夹角;(2)设,2c ta b d m n =-=-,若//c d ,求实数t 的值.【答案】37.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)设(cos ,(1)sin ),(cos ,sin ),(0,0)2a b παλαββλαβ=-=><<< 是平面上的两个向量,若向量a b + 与a b -互相垂直.(Ⅰ)求实数λ的值;(Ⅱ)若45a b ⋅= ,且4tan 3β=,求tan α的值.【答案】(Ⅰ)由题设可得()()0,a b a b +⋅-=即220,a b -= 代入,a b 坐标可得22222cos +(1)sin cos sin 0αλαββ---=.222(1)sin sin 0,λαα∴--=0,0,22παλλ<<>∴= .(Ⅱ)由(1)知,4cos cos sin sin cos(),5a b αβαβαβ⋅=+=-=02παβ<<<∴ 02παβ-<-<33sin(),tan()54αβαβ∴-=--=-.34tan()tan 743tan tan[()]=341tan()tan 241()43αββααββαββ-+-+∴=-+==--⋅--⨯. 7tan 24α∴= 38.(江苏省淮安市车桥中学2014届高三9月期初测试数学试题)已知平面向量a =(1,2sin θ),b =(5cos θ,3).(1)若a ∥b ,求sin2θ的值; (2)若a ⊥b ,求tan(θ+π4)的值.【答案】 (1)因为a ∥b ,所以1×3-2sin θ×5cos θ=0,即5sin2θ-3=0,所以sin2θ=35(2)因为a ⊥b ,所以1×5cos θ+2sin θ×3=0 所以tan θ=-56所以tan(θ+π4)=tan θ+tanπ41-tan θtanπ4=11139.(江苏省启东中学2014届高三上学期期中模拟数学试题)已知,,a b c是同一平面内的三个向量,其中(1,2)a =(1)若||25c =,且//c a ,求:c 的坐标(2)若5||2b = ,且2a b + 与2a b - 垂直,求a 与b 的夹角【答案】解:设(,)c x y = 由//||25c a c =及得2212022,4420y x x x y y x y ⋅-⋅===-⎧⎧⎧∴⎨⎨⎨==-+=⎩⎩⎩或 所以,(2,4)(2,4)c c ==-- 或 (2)∵2a b + 与2a b - 垂直,∴(2)(2)0a b a b +⋅-=即222320a a b b +⋅-= ;∴52a b ⋅=-∴cos 1||||a ba b θ⋅==- ,∵[0,]θπ∈∴θπ=40.(江苏省泰州市姜堰区2014届高三上学期期中考试数学试题)设平面向量)23,21(),1,3(=-=b a ,若存在实数)0(≠m m 和角θ,其中)2,2(ππθ-∈,使向量θθtan ,)3(tan 2⋅+-=-+=b a m d b a c ,且d c ⊥.(Ⅰ)求)(θf m =的关系式; (Ⅱ)若]3,6[ππθ-∈,求)(θf 的最小值,并求出此时的θ值. 【答案】解: (Ⅰ)∵dc ⊥,且1,2,0===⋅b a b a ,∴0)tan 3(tan 232=-+-=⋅b a m d c θθ∴)2,2(),tan 3(tan 41)(3ππθθθθ-∈-==f m (Ⅱ)设θtan =t ,又∵]3,6[ππθ-∈,∴]3,33[-∈t ,则)3(41)(3t t t g m -== )1(43)(''2-==t t g m 令0)('=t g 得1-=t (舍去) 1=t ∴)1,33(-∈t 时0)('<t g ,)3,1(∈t 时0)('>t g ,∴1=t 时,即4πθ=时, )1(g 为极小值也是最小值,)(t g 最小值为21- 41.(江苏省如皋中学2014届高三上学期期中模拟数学试卷)如图,在△OAB 中,已知P 为线段AB 上的一点,.OP x OA y OB =⋅+⋅(1)若BP PA =,求x ,y 的值;(2)若3BP PA = ,||4OA = ,||2OB =,且OA 与OB 的夹角为60°时,求OP AB ⋅ 的值.【答案】(1)∵BP PA =,∴BO OP PO OA +=+ ,即2OP OB OA =+ ,∴1122OP OA OB =+ ,即12x =,12y =(2)∵3BP PA = ,∴33BO OP PO OA +=+,即43OP OB OA =+∴3144OP OA OB =+∴34x =,14y =31()()44OP AB OA OB OB OA ⋅=+⋅-131442OB OB OA OA OA OB =⋅-⋅+⋅221311244294422=⨯-⨯+⨯⨯⨯=-。

江苏省2014届高三数学一轮复习 考试试题精选(1)分类汇编14 解析几何

江苏省2014届高三数学一轮复习 考试试题精选(1)分类汇编14 解析几何

江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编14:解析几何一、填空题1 .(江苏省扬州中学2014届高三开学检测数学试题)已知实数0p >,直线3420x y p -+=与抛物线22x py =和圆222()24p p x y +-=从左到右的交点依次为,A B C D 、、、则AB CD的值为 ▲ .【答案】1162 .(江苏省淮安市车桥中学2014届高三9月期初测试数学试题)如果圆x 2+y 2-2ax-2ay+2a 2-4=0与圆x 2+y 2=4总相交,则a 的取值范围是___.【答案】220022a a -<<<<或3 .(江苏省常州市武进区2014届高三上学期期中考试数学(理)试题)若实数x 、y 满足()222x y x y +=+,则x y +的最大值是_________. 【答案】44 .(江苏省无锡市市北高中2014届高三上学期期初考试数学试题)椭圆中有如下结论:椭圆22221x y a b+=上斜率为1的弦的中点在直线0by a x 22=+上,类比上述结论得到正确的结论为:双曲线22221x y a b -=上斜率为1的弦的中点在直线_______________上.【答案】22x y0a b -=5 .(江苏省泰州中学2014届第一学学期高三数学摸底考试)设中心在原点的双曲线与椭圆+y 2=1有公共的焦点,且它们的离心率互为倒数,则该双曲线的方程是__________. 【答案】2x 2﹣2y 2=1 6 .(江苏省连云港市赣榆县清华园双语学校2014届高三10月月考数学试题)我们把形如()0,0b y a b x a=>>-的函数称为“莫言函数”,并把其与y 轴的交点关于原点的对称点称为“莫言点”,以“莫言点”为圆心,凡是与“莫言函数”图象有公共点的圆,皆称之为“莫言圆”.当1=a ,1=b 时,在所有的“莫言圆”中,面积的最小值______. ) 【答案】π3.7 .(江苏省无锡市2014届高三上学期期中调研考试数学试题)直线1y kx =+与圆22(3)(2)9x y -+-=相交于A B 、两点,若4AB >,则k 的取值范围是____________________. 【答案】1(,2)2-8 .(江苏省连云港市赣榆县清华园双语学校2014届高三10月月考数学试题)设F 是椭圆x 2a 2+y 2b2=1(a >b >0)右焦点,A 是其右准线与x 轴的交点.若在椭圆上存在一点P ,使线段PA 的垂直平分线恰好经过点F ,则椭圆离心率的取值范围是 ___________.]【答案】[12,1)9 .(江苏省南京市第五十五中学2014届高三上学期第一次月考数学试题)抛物线212y x =-的准线与双曲线22193x y -=的两条渐近线所围成的三角形的面积等于 (A)33 (B)23 (C)2 (D)3 【答案】A10.(江苏省苏州市2014届高三暑假自主学习测试(9月)数学试卷)已知双曲线221(0)y x m m-=>的离心率为2,则m 的值为 ______. 【答案】311.(江苏省诚贤中学2014届高三上学期摸底考试数学试题)若双曲线221y x k-=的焦点到渐近线的距离为22,则实数k 的值是________. 【答案】812.(江苏省宿迁市2014届高三上学期第一次摸底考试数学试卷)已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为12F F ,,以12F F 为直径的圆与双曲线在第一象限的交点为P .若1230PF F ∠=,则该双曲线的离心率为______. 【答案】31+13.(江苏省宿迁市2014届高三上学期第一次摸底考试数学试卷)已知过点(25),的直线l 被圆22240C x y x y +--=:截得的弦长为4,则直线l 的方程为______.【答案】20x -=或4370x y -+=14.(江苏省无锡市2014届高三上学期期中调研考试数学试题)若中心在原点,以坐标轴为对称轴的圆锥曲线C ,离心率为2,且过点(2,3),则曲线C 的方程为________. 【答案】225x y -=15.(江苏省苏州市2014届高三暑假自主学习测试(9月)数学试卷)已知P 是直线l :40(0)kx y k ++=>上一动点,PA ,PB 是圆C :2220x y y +-=的两条切线,切点分别为A ,B .若四边形PACB 的最小面积为2,则k =______.【答案】216.(江苏省南京市2014届高三9月学情调研数学试题)如图,已知过椭圆的左顶点A(-a,0)作直线1交y 轴于点P,交椭圆于点Q.,若△AOP 是等腰三角形,且,则椭圆的离心率为____【答案】25517.(江苏省扬州市扬州中学2014届高三10月月考数学试题)当且仅当m r n ≤≤时,两圆2249x y +=与22268250(0)x y x y r r +--+-=>有公共点,则n m -的值为______________.【答案】10 二、解答题18.(江苏省南京市2014届高三9月学情调研数学试题)已知椭圆C 的中心在坐标原点,右准线为32x =,离心率为63学科网.若直线y=t(t>o)与椭 圆C 交于不同的两点A,B,以线段AB 为直径作圆M. (1)求椭圆C 的标准方程;(2)若圆M 与x 轴相切,求圆M 被直线310x y -+=截得的线段长. 【答案】19.(江苏省泰州中学2014届第一学学期高三数学摸底考试)给定圆P :222x y x +=及抛物线S :24y x =,过圆心P 作直线l ,此直线与上述两曲线的四个交点,自上而下顺次记为A B C D 、、、,如果线段AB BC CD 、、的长按此顺序构成一个等差数列,求直线l 的方程.【答案】解:圆P 的方程为()2211x y -+=,则其直径长2BC =,圆心为()1,0P ,设l 的方程为1ky x =-,即1x ky =+,代入抛物线方程得:244y ky =+,设()()1122,, ,A x y D x y ,有121244y y k y y +=⎧⎨=-⎩,则222121212()()416(1)y y y y y y k -=+-=+.故222222212121212||()()()()4y y AD y y x x y y -=-+-=-+ 22221212()[1()]16(1)4y y y y k +=-+=+,因此2||4(1)AD k =+ 据等差,2BC AB CD AD BC =+=-,所以36AD BC ==,即()2416k +=,22k =±, 即:l 方程为220x y --=或220x y +-=xyoABCDP20.(江苏省扬州市扬州中学2014届高三10月月考数学试题)已知椭圆:2222:1(0)x y C a b a b+=>>的离心率为22,一条准线:2l x =. (1)求椭圆C 的方程;(2)设O 为坐标原点,M 是l 上的点,F 为椭圆C 的右焦点,过点F 作OM 的垂线与以OM 为直径的圆交于P Q 、两点.①若6PQ =,求圆D 的方程;②若M 是l 上的动点,求证:P 在定圆上,并求该定圆的方程. 【答案】解:(1)由题设:2222c a a c⎧=⎪⎪⎨⎪=⎪⎩,21a c ⎧=⎪∴⎨=⎪⎩,2221b a c ∴=-=,椭圆C 的方程为:2212x y +=(2)①由(1)知:(1,0)F ,设(2,)M t ,则圆D 的方程:222(1)()124t t x y -+-=+, 直线PQ 的方程:220x ty +-=,6PQ ∴=2222222(1)()644t t t +-∴+-=+,24t ∴=,2t ∴=±∴圆D 的方程:22(1)(1)2x y -+-=或22(1)(1)2x y -++=②解法(一):设00(,)P x y ,由①知:2220000(1)()124220t t x y x ty ⎧-+-=+⎪⎨⎪+-=⎩,即:2200000020220x y x ty x ty ⎧+--=⎪⎨+-=⎪⎩, 消去t 得:2200x y +=2,∴点P 在定圆22x y +=2上. 解法(二):设00(,)P x y ,则直线FP 的斜率为001FP y k x =-, ∵FP ⊥OM ,∴直线OM 的斜率为001OM x k y -=-, ∴直线OM 的方程为:001x y x y -=-,点M 的坐标为002(1)(2,)x M y --. ∵MP ⊥OP ,∴0OP MP ⋅=, ∴000002(1)(2)[]0x x x y y y ∂--++= ,∴2200x y +=2,∴点P 在定圆22x y +=2上. 21.(江苏省梁丰高级中学2014届第一学期阶段性检测一)如图:一个城市在城市改造中沿市内主干道国泰路修建的圆形广场圆心为O,半径为100m ,其与国泰路一边所在直线l 相切于点M,A 为上半圆弧上一点,过点A 作l 的垂线,垂足为 B.市园林局计划在ABM ∆内进行绿化,设ABM ∆的面积为S(单位:2m )(1)以θ=∠AON 为参数,将S 表示成θ的函数;(2)为绿化面积最大,试确定此时点A 的位置及面积的最大值.【答案】22.(江苏省南京市第五十五中学2014届高三上学期第一次月考数学试题)已知A 为椭圆)0(12222>>=+b a by a x 上的一个动点,弦AB 、AC 分别过焦点F 1、F 2,当AC 垂直于x 轴时,恰好有13||||21::=AF AF .(Ⅰ)求椭圆离心率;(Ⅱ)设C F AF B F AF 222111,λλ==,试判断21λλ+是否为定值?若是定值,求出该定值并证明;若不是定值,请说明理由.O国 泰 路B M l AN【答案】解:(Ⅰ)当AC 垂直于x 轴时,a b AF 22||=,13||||21::=AF AF ,∴a b AF 213||=∴a ab 242=,∴222b a =,∴22c b =,故22=e .(Ⅱ)由(Ⅰ)得椭圆的方程为22222b y x =+,焦点坐标为)0,(),0,(21b F b F -.①当弦AC 、AB 的斜率都存在时,设),(),,(),,(221100y x C y x B y x A ,则AC 所在的直线方程为)(00b x bx y y --=, 代入椭圆方程得0)(2)23(20200202=--+-y b y b x by y bx b .∴02222023bx b y b y y --=,C F AF 222λ=,b x b y y 020223-=-=λ.同理bx b 0123+=λ,∴621=+λλ ②当AC 垂直于x 轴时,则bbb 23,112+==λλ,这时621=+λλ; 当AB 垂直于x 轴时,则5,121==λλ,这时621=+λλ. 综上可知21λλ+是定值 【D 】6.23.(江苏省苏州市2014届高三暑假自主学习测试(9月)数学试卷)已知椭圆22221(0)x y a b a b+=>>的长轴两端点分别为A ,B ,000(,)(0)P x y y >是椭圆上的动点,以AB 为一边在x 轴下方作矩形ABCD ,使(0)AD kb k =>,PD 交AB 于点E ,PC 交AB 于点F .(Ⅰ)如图(1),若k =1,且P 为椭圆上顶点时,PCD ∆的面积为12,点O 到直线PD 的距离为65,求椭圆的方程;(Ⅱ)如图(2),若k =2,试证明:AE ,EF ,FB 成等比数列.图(1) 图(2)【答案】解:(Ⅰ)如图,当k =1时,CD 过点(0,-b ),CD =2a ,∵PCD ∆的面积为12,∴122122a b ⨯⨯=,即6ab =.①此时D (-a ,-b ),∴直线PD 方程为20bx ay ab -+=.∴点O 到PD 的距离d =65. ② 由①②解得3,2a b ==∴所求椭圆方程为22194x y +=(Ⅱ)如图,当k =2时,(,2),(,2)C a b D a b ---,设12(,0),(,0)E x F x,由D ,E ,P 三点共线,及1(,2)DE x a b =+,00(,2)DP x a y b =++ (说明:也可通过求直线方程做) 得100()(2)2()x a y b b x a ++=⋅+,∴0102()2b x a x a y b ⋅++=+,即002()2b x a AE y b⋅+=+由C ,F ,P 三点共线,及2(,2)CF x a b =-,00(,2)CP x a y b =-+得200()(2)2()x a y b b x a -+=⋅-, ∴0202()2b a x a x y b ⋅--=+,即002()2b a x FB y b⋅-=+又2200221x y a b+=,∴222220022004()4(2)(2)b a x a y AE FB y b y b ⋅-⋅==++而00000002()2()242222222b x a b a x ay abEF a AE FB a a y b y b y b y b⋅+⋅-=--=--=-=++++ ∴2EF AE FB =⋅,即有AE ,EF ,FB 成等比数列24.(江苏省扬州中学2014届高三开学检测数学试题)如图,已知椭圆14:22=+y x C 的上、下顶点分别为B A 、,点P 在椭圆上,且异于点B A 、,直线BP AP 、与直线2:-=y l 分别交于点N M 、, (Ⅰ)设直线BP AP 、的斜率分别为1k 、2k ,求证:21k k ⋅为定值; (Ⅱ)求线段MN 的长的最小值;(Ⅲ)当点P 运动时,以MN 为直径的圆是否经过某定点?请证明你的结论.【答案】解(Ⅰ))1,0(A ,)1,0(-B ,令),(00y x P ,则由题设可知00≠x ,∴ 直线AP 的斜率0011x y k -=,PB 的斜率0021x y k +=,又点P 在椭圆上,所以 142020=+y x ,(00≠x ),从而有411112020000021-=-=+⋅-=x y x y x y k k 。

江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编10:平面向量

江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编10:平面向量

江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编10:平面向量一、填空题1 .(江苏省宿迁市2014届高三上学期第一次摸底考试数学试卷)已知非零向量,a b 满足(2)(2)-⊥-⊥,,a b a b a b 则向量a 与b 的夹角为______.【答案】π32 .(江苏省南京市2014届高三9月学情调研数学试题)如图,在△ABC 中,D,E 分别为边BC,AC 的中点. F 为边AB 上. 的,且,则x+y 的值为____【答案】523 .(江苏省徐州市2014届高三上学期期中考试数学试题)已知O 是ABC ∆的外心,10,6==AC AB ,若AC y AB x AO ⋅+⋅=且5102=+y x ,则=∠BAC cos _____________.【答案】314 .(江苏省盐城市2014届高三上学期期中考试数学试题)在ABC ∆中,若22()||5CA CB AB AB +⋅=,则tan tan AB= ________. 【答案】735 .(江苏省兴化市2014届高三第一学期期中调研测试)已知在ABC ∆中,3==BC AB ,4=AC ,设O 是ABC ∆的内心,若AC n AB m AO +=,则=n m :__★__.【答案】3:4 提示一:利用夹角相等,AB =||.提示二:利用角平分线定理,根据相似比求得AC AB AO 103104+=6 .(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)已知非零向量a ,b 满足|a |=|a +b |=1,a与b 夹角为120°,则向量b 的模为________.【答案】17 .(江苏省启东中学2014届高三上学期期中模拟数学试题)如图, 在等腰三角形ABC 中, 底边2=BC,=, 12AE EB = , 若12BD AC ⋅=- , 则⋅=_____.【答案】43-8 .(江苏省无锡市2014届高三上学期期中调研考试数学试题)在ABC ∆中,M 为AB 的的三等分点,:1:3,AM AB N =为AC 的中点,BN 与CM 交于点E ,,AB m AC n ==,则AE =_____________________. 【答案】1255m n +9 .(江苏省常州市武进区2014届高三上学期期中考试数学(理)试题)在平面直角坐标系中,O 是坐标原点,()2,0A ,()0,1B ,则点集{},1,,P OP OA OB R λμλμλμ=++≤∈所表示的平面区域的面积是________.【答案】410.(江苏省兴化市2014届高三第一学期期中调研测试)设向量a 、b 满足:|a |3=,|b |1=,a·b 23=,则向量a 与b 的夹角为__★__.【答案】6π 11.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)向量n m --==若),3,2(),2,1(与2+共线(其中,,0mm n R n n∈≠且)则等于_ .【答案】21-12.(江苏省无锡市市北高中2014届高三上学期期初考试数学试题)已知a 、b 、c 都是单位向量,且a b c += ,则a c ⋅的值为_________.【答案】1213.(江苏省盐城市2014届高三上学期期中考试数学试题)在ABC ∆中,6BC =,BC 边上的高为2,则AB AC ⋅的最小值为________.【答案】5-14.(江苏省无锡市市北高中2014届高三上学期期初考试数学试题)已知ABC ∆是边长为4的正三角形,D 、P是ABC ∆内部两点,且满足11(),48AD AB AC AP AD BC =+=+,则APD ∆的面积为__________.【答案】15.(江苏省南京市第五十五中学2014届高三上学期第一次月考数学试题)P 是ABC ∆所在平面内一点,若+=λ,其中R ∈λ,则P 点一定在(A)ABC ∆内部 (B)AC 边所在直线上 (C)AB 边所在直线上 (D)BC 边所在直线上【答案】B16.(江苏省启东中学2014届高三上学期期中模拟数学试题)已知)2sin ,2(),sin,1(2x x ==,其中()0,x π∈,若a b a b ⋅=⋅,则tan x =_____. 【答案】1;17.(江苏省泰州中学2014届第一学学期高三数学摸底考试)在平面直角坐标系x O y 中,已知=(3,﹣1),=(0,2).若•=0,=λ,则实数λ的值为__________.【答案】218.(江苏省泰州市姜堰区2014届高三上学期期中考试数学试题)如图,,,A B C 是直线上三点,P 是直线外一点,1==BC AB ,︒=∠90APB ,︒=∠30BPC ,则PA PC ⋅=________.【答案】74-19.(江苏省南莫中学2014届高三10月自主检测数学试题)已知向量a 的模为2,向量e 为单位向量,)(-⊥,则向量a 与e 的夹角大小为_______.【答案】3π; 20.(江苏省诚贤中学2014届高三上学期摸底考试数学试题)已知向量a 与b 的夹角为60º,且|a |=1,|b |=2,那么2()+a b 的值为________.【答案】721.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)已知O 为△ABC 的外心,,120,2,20=∠==BAC aAC a AB 若AC AB AO βα+=,则βα+的最小值为____ 300lABCP【答案】222.(江苏省泰州市姜堰区张甸中学2014届高三数学期中模拟试卷)已知平面向量(1,2)a = ,(1,3)b =-,则a与b夹角的余弦值为___________【答案】22; 23.(江苏省常州市武进区2014届高三上学期期中考试数学(理)试题)已知,是非零向量且满足a b a ⊥-)(2,b a b ⊥-)(2,则a 与b 的夹角是________.【答案】3π24.(江苏省扬州中学2014届高三开学检测数学试题)已知正方形ABCD 的边长为1,若点E 是AB 边上的动点,则DC DE ⋅的最大值为 ▲ .【答案】125.(江苏省淮安市车桥中学2014届高三9月期初测试数学试题)若向量→a 、→b 满足|→a |=1,|→b |=2,且→a 与→b的夹角为π3,则|→a +2→b |=_______【答案】26.(江苏省连云港市赣榆县清华园双语学校2014届高三10月月考数学试题)已知向量a =(2,1),a ·b =10,|a +b |=则|b |=__________【答案】527.(江苏省盐城市2014届高三上学期期中考试数学试题)设向量(1,),(3,4)a x b ==- ,若//a b ,则实数x 的值为________.【答案】43-28.(江苏省常州市武进区2014届高三上学期期中考试数学(理)试题)已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k =________. 【答案】1-29.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)若等腰梯形ABCD中,//AB CD ,3AB =,BC =45ABC ∠=,则AC BD ⋅的值为____________【答案】330.(江苏省苏州市2014届高三暑假自主学习测试(9月)数学试卷)设x ∈R,向量(,1),(3,2)x ==-a b 且⊥a b ,则x = ______.【答案】2331.(江苏省无锡市洛社高级中学2014届高三10月月考数学试题)设平面向量(1,2)a = ,与向量(1,2)a =共线的单位向量坐标为_______.【答案】(,55或(55-- 32.(江苏省扬州市扬州中学2014届高三10月月考数学试题)已知向量(12,2)a x =-,()2,1b - =,若→→b a //,则实数x =______.【答案】25二、解答题33.(江苏省南莫中学2014届高三10月自主检测数学试题)设(,1)a x = ,(2,1)b =- ,(,1)c x m m =--(,x m ∈∈R R ).(Ⅰ)若a 与b的夹角为钝角,求x 的取值范围; (Ⅱ)解关于x 的不等式a c a c +<-.【答案】(1)由题知:210a b x ⋅=-< ,解得12x <;又当2x =-时,a 与b 的夹角为π,所以当a 与b 的夹角为钝角时, x 的取值范围为1(,2)(2,)2-∞-⋃-(2)由a c a c +<-知,0a c ⋅< ,即(1)[(1)]0x x m ---<;当2m <时,解集为{11}x m x -<<; 当2m =时,解集为空集;当2m >时,解集为{11}x x m <<-34.(江苏省徐州市2014届高三上学期期中考试数学试题)设向量(2,sin ),(1,cos ),a b θθθ== 为锐角.(1)若136a b ⋅= ,求sin cos θθ+的值;(2)若//a b ,求sin(2)3πθ+的值.【答案】解:(1)因为a ·b =2 + sin θcos θ =136 , 所以sin θcos θ = 16, 所以(sin θ +cos θ)2= 1+2sin θcos θ = 34 .又因为θ为锐角,所以sin θ + cos θ = 233(2)因为a ∥b ,所以tan θ = 2,所以sin2θ = 2sin θcos θ = 2sin θcos θsin 2θ+cos 2θ = 2tan θtan 2θ+1 = 45 , cos2θ = cos 2θ-sin 2θ = cos 2θ-sin 2θsin 2θ+cos 2θ = 1-tan 2θtan 2θ+1 = — 35所以sin(2θ+ π3 ) = 12 sin2θ + 32 cos2θ = 12 ×45+32 ×(-35) = 4-331035.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)已知在等边三角形ABC 中,点P 为线段AB 上一点,且(01)AP AB =≤≤λλ.(1)若等边三角形边长为6,且13=λ,; (2)若CP AB PA PB ⋅≥⋅,求实数λ的取值范围. 【答案】(1)当13=λ时,13AP AB = ,2222221()262622282CP CA AP CA CA AP AP =+=+⋅+=-⨯⨯⨯+= .∴||CP =(2)设等边三角形的边长为a ,则221()()2CP AB CA AP AB CA AB AB a a ⋅=+⋅=+λ⋅=-+λ ,222()()PA PB PA AB AP AB AB AB a a ⋅=⋅-=λ⋅-λ=-λ+λ即2222212a a a a -+λ≥-λ+λ,∴21202λ-λ+≤,∴2222≤λ≤.又00≤λ≤,∴212≤λ≤. 36.(江苏省无锡市2014届高三上学期期中调研考试数学试题)已知向量,m n的夹角为45︒,则||1,||m n = 又2,3a m n b m n =+=-+.(1)求a 与b 的夹角;(2)设,2c ta b d m n =-=-,若//c d ,求实数t 的值.【答案】37.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)设(cos ,(1)sin ),(cos ,sin ),(0,0)2a b παλαββλαβ=-=><<< 是平面上的两个向量,若向量a b + 与a b -互相垂直.(Ⅰ)求实数λ的值;(Ⅱ)若45a b ⋅= ,且4tan 3β=,求tan α的值.【答案】(Ⅰ)由题设可得()()0,a b a b +⋅-=即220,a b -=代入,a b坐标可得22222cos +(1)sin cos sin 0αλαββ---=.222(1)sin sin 0,λαα∴--=0,0,22παλλ<<>∴= .(Ⅱ)由(1)知,4cos cos sin sin cos(),5a b αβαβαβ⋅=+=-=02παβ<<< ∴ 02παβ-<-<33sin(),tan()54αβαβ∴-=--=-.34tan()tan 743tan tan[()]=341tan()tan 241()43αββααββαββ-+-+∴=-+==--⋅--⨯. 7tan 24α∴=38.(江苏省淮安市车桥中学2014届高三9月期初测试数学试题)已知平面向量a =(1,2sin θ),b =(5cos θ,3).(1)若a ∥b ,求sin2θ的值; (2)若a ⊥b ,求tan(θ+π4)的值.【答案】 (1)因为a ∥b ,所以1×3-2sin θ×5cos θ=0,即5sin2θ-3=0,所以sin2θ=35(2)因为a ⊥b ,所以1×5cos θ+2sin θ×3=0 所以tan θ=-56所以tan(θ+π4)=tan θ+tanπ41-tan θtanπ4=11139.(江苏省启东中学2014届高三上学期期中模拟数学试题)已知,,a b c是同一平面内的三个向量,其中(1,2)a =(1)若||c =,且//c a ,求:c 的坐标(2)若||b = 且2a b + 与2a b - 垂直,求a 与b 的夹角【答案】解:设(,)c x y =由//||c a c =及2212022,4420y x x x y y x y ⋅-⋅===-⎧⎧⎧∴⎨⎨⎨==-+=⎩⎩⎩或 所以,(2,4)(2,4)c c ==-- 或 (2)∵2a b + 与2a b - 垂直,∴(2)(2)0a b a b +⋅-=即222320a a b b +⋅-= ;∴52a b ⋅=-∴cos 1||||a ba b θ⋅==- ,∵[0,]θπ∈∴θπ=40.(江苏省泰州市姜堰区2014届高三上学期期中考试数学试题)设平面向量)23,21(),1,3(=-=b a ,若存在实数)0(≠m m 和角θ,其中)2,2(ππθ-∈,使向量θθtan ,)3(tan 2⋅+-=-+=m ,且⊥.(Ⅰ)求)(θf m =的关系式; (Ⅱ)若]3,6[ππθ-∈,求)(θf 的最小值,并求出此时的θ值. 【答案】解: (Ⅰ)∵d c⊥,且1=⋅,∴0)tan 3(tan 232=-+-=⋅m θθ∴)2,2(),tan 3(tan 41)(3ππθθθθ-∈-==f m (Ⅱ)设θtan =t ,又∵]3,6[ππθ-∈,∴]3,33[-∈t ,则)3(41)(3t t t g m -== )1(43)(''2-==t t g m 令0)('=t g 得1-=t (舍去) 1=t ∴)1,33(-∈t 时0)('<t g ,)3,1(∈t 时0)('>t g ,∴1=t 时,即4πθ=时, )1(g 为极小值也是最小值,)(t g 最小值为21-41.(江苏省如皋中学2014届高三上学期期中模拟数学试卷)如图,在△OAB 中,已知P 为线段AB 上的一点,.OP x OA y OB =⋅+⋅(1)若BP PA =,求x ,y 的值;(2)若3BP PA = ,||4OA = ,||2OB =,且OA 与OB 的夹角为60°时,求OP AB ⋅ 的值.【答案】(1)∵BP PA =,∴BO OP PO OA +=+ ,即2OP OB OA =+ ,∴1122OP OA OB =+ ,即12x =,12y =(2)∵3BP PA = ,∴33BO OP PO OA +=+,即43OP OB OA =+∴3144OP OA OB =+∴34x =,14y =31()()44OP AB OA OB OB OA ⋅=+⋅-131442OB OB OA OA OA OB =⋅-⋅+⋅221311244294422=⨯-⨯+⨯⨯⨯=-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编10:平面向量
一、填空题
1 .(江苏省宿迁市2014届高三上学期第一次摸底考试数学试卷)已知非零向量,
a b 满足(2)(2)-⊥-⊥,,a b a b a b 则向量a 与b 的夹角为______. 【答案】π3
2 .(江苏省南京市2014届高三9月学情调研数学试题)如图,在△ABC 中,D,E 分别为边BC,AC 的中点. F 为
边AB 上. 的,且,则x+y 的值为____
【答案】52
3 .(江苏省徐州市2014届高三上学期期中考试数学试题)已知O 是ABC ∆的外心,10,6==AC AB ,若
AC y AB x AO ⋅+⋅=且5102=+y x ,则=∠BAC cos _____________. 【答案】3
1 4 .(江苏省盐城市2014届高三上学期期中考试数学试题)在ABC ∆中,若22()||5
CA CB AB AB +⋅= ,则tan tan A B
= ________. 【答案】73
5 .(江苏省兴化市2014届高三第一学期期中调研测试)已知在ABC ∆中,3==BC AB ,4=AC ,设O 是
ABC ∆的内心,若AC n AB m AO +=,则=n m :__★__.
【答案】3:4 提示一:利用夹角相等,
AB =||.
提示二:利用角平分线定理,根据相似比求得AC AB AO 10
3104+= 6 .(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)已知非零向量a ,b 满足|a |=|a +b |=1,a
与b 夹角为120°,则向量b 的模为________.
【答案】1
7 .(江苏省启东中学2014届高三上学期期中模拟数学试题)如图, 在等腰三角形ABC 中, 底边2=BC ,
=, 12AE EB = , 若12
BD AC ⋅=- , 则⋅=_____.
【答案】43- 8 .(江苏省无锡市2014届高三上学期期中调研考试数学试题)在ABC ∆中,M 为AB 的的三等分
点,:1:3,AM AB N =为AC 的中点,BN 与CM 交于点E ,,AB m AC n == ,则
AE = _____________________. 【答案】1255
m n + 9 .(江苏省常州市武进区2014届高三上学期期中考试数学(理)试题)在平面直角坐标系中,O 是坐标原
点,()2,0A ,()0,1B ,则点集
{}
,1,,P OP OA OB R λμλμλμ=++≤∈ 所表示的平面区域的面积是________. 【答案】4
10.(江苏省兴化市2014届高三第一学期期中调研测试)设向量a 、b 满足:|a |3=,|b |1=,a·b 2
3=,则向量a 与b 的夹角为__★__. 【答案】6
π 11.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)向量n m --==若),3,2(),2,1(与2+共线(其中,,0m m n R n n
∈≠且)则
等于_ . 【答案】21-
12.(江苏省无锡市市北高中2014届高三上学期期初考试数学试题)已知a 、
b 、
c 都是单位向量,且a b c += ,则a c ⋅ 的值为_________. 【答案】12
13.(江苏省盐城市2014届高三上学期期中考试数学试题)在ABC ∆中,6BC =,BC 边上的高为2,则
AB AC ⋅ 的最小值为________.
【答案】5-。

相关文档
最新文档