平方根提高专题练习
沪科版七年级下册数学 平方根、算术平方根素养提升练习(含解析)

第6章实数单元大概念素养目标单元大概念素养目标对应新课标内容了解平方根、算术平方根、立方根的相关概念了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根【P55】掌握平方根的运算了解乘方与开方互为逆运算,会用平方运算求百以内完全平方数的平方根【P55】掌握立方根的运算会用立方运算求千以内完全立方数(及对应的负整数)的立方根【P55】会用计算器计算平方根和立方根会用计算器计算平方根和立方根【P55】了解实数及其分类,了解实数与数轴的关系,能比较实数的大小了解无理数和实数,知道实数由有理数和无理数组成,了解实数与数轴上的点一一对应【P54】.能用数轴上的点表示实数,能比较实数的大小【P55】掌握实数的运算能借助数轴理解相反数和绝对值的意义,会求实数的相反数和绝对值【P55】掌握估算有理数大小的方法能用有理数估计一个无理数的大致范围【P55】6.1平方根、立方根第1课时平方根、算术平方根基础过关全练知识点1平方根1.(安徽合肥五十中模拟)16的平方根是()A.-4B.±4C.4D.±22.(安徽合肥庐江月考)5的平方根等于()A.-√5B.√5C.±√5D.253.【教材变式·P5T3】下列各数没有平方根的是()A.0B.(-2)2C.√4D.-|-5|4.(安徽亳州月考)一个数的平方根是a,比这个数大2的数是()A.a+2B.√a+2C.√a-2D.a2+25.已知2x+3的一个平方根是-5,则x的值为.6.【新独家原创】一个数的两个平方根分别为a和b,若|a-b|=6,则该数为.7.【易错题】已知100-(2x 2+4y 2-6)2=0,则x 2+2y 2= .8.求下列各数的平方根:(1)64;(2)11;(3)0.36;(4)49121;(5)|-214|; (6)1-1625;(7)132-122;(8)(-279)2.9.(山东德州月考)求下列各式中x 的值.(1)x 2-49=0; (2)-64x 2+125=0;(3)(1-2x)2=1; (4)9(3x+1)2=64.10.【分类讨论思想】(安徽芜湖期中)【观察】|-2|=2,|2|=2;(-3)2=9,32=9.【推理】(1)若|x|=1,则x= .(2)若y 2=16,则y= .【应用】(3)已知|a+1|=2,b 2=25.①求a,b 的值;②若a,b 同号,求a-b 的值.知识点2 算术平方根11.(甘肃金昌中考)9的算术平方根是( )A.±3B.±9C.3D.-312.(安徽安庆期中)下列各式中没有算术平方根的是( ) A.(-14)2 B.0 C.(±10)2 D.-|-9|13.【易错题】(安徽合肥一模)√(-4)2的算术平方根是()A.±2B.±4C.2D.414.【新独家原创】下列说法正确的是()A.-2是-4的算术平方根B.-4是(-4)2的一个平方根C.-1是(-1)3的一个平方根D.±5是(-5)2的算术平方根15.用计算器求下列各式的值:(1)√25.7≈(精确到0.1);(2)√102≈(精确到0.1);(3)√0.364≈(精确到0.01);(4)√2235≈(精确到0.001).16.【易错题】√36的算术平方根是;√256625的算术平方根是.17.计算:(1)√(-3)2×√49;(2)√50−1;(3)√144-√81;(4)√102-62.18.(安徽淮北月考)当a取什么值时,√2a+1+1的值最小?请求出这个最小值.第6章 实数6.1 平方根、立方根第1课时 平方根、算术平方根答案全解全析基础过关全练1.B 因为±4的平方是16,所以16的平方根是±4.2.C 因为(±√5)2=5,所以5的平方根为±√5.3.D 负数没有平方根,-|-5|=-5,故该数没有平方根.4.D 因为一个数的平方根是a,所以这个数是a 2,所以比这个数大2的数是a 2+2.5. 答案 11解析 由题意,得2x+3=(-5)2=25,解得x=11.6. 答案 9解析 由题意可知|a|=|b|,因为|a-b|=6,所以|a|=|b|=3,且a,b 异号,所以这个数是32=9.7. 答案 8解析 本题易忽视x 2+2y 2的值是非负数导致错误.移项,得(2x 2+4y 2-6)2=100,两边同时开方,得2x 2+4y 2-6=10或2x 2+4y 2-6=-10(不符合题意,舍去),故x 2+2y 2=8.8. 解析 (1)因为(±8)2=64,所以64的平方根是±8.(2)因为(±√11)2=11,所以11的平方根是±√11.(3)因为(±0.6)2=0.36,所以0.36的平方根是±0.6.(4)因为(±711)2=49121,所以49121的平方根是±711. (5)因为|-214|=94,(±32)2=94,所以|-214|的平方根是±32. (6)因为1-1625=925,(±35)2=925,所以1-1625的平方根是±35. (7)因为132-122=25,(±5)2=25,所以132-122的平方根是±5.(8)因为(-279)2=(±279)2,所以(-279)2的平方根是±279. 9. 解析 (1)移项,得x 2=49,两边同时开方,得x=±7.(2)移项,得64x 2=125,系数化为1,得x 2=125×64,两边同时开方,得x=±140. (3)两边同时开方,得1-2x=±1,即1-2x=-1或1-2x=1,解得x=1或0. (4)两边都除以9,得(3x+1)2=649,两边同时开方,得3x+1=±83,即3x+1=83或3x+1=-83,解得x=59或 -119. 10. 解析 (1)因为|1|=1,|-1|=1,所以x=±1.故答案为±1.(2)因为42=16,(-4)2=16,所以y=±4.故答案为±4.(3)①因为|a+1|=2,b 2=25,所以a+1=±2,b=±5,即a=1或a=-3.②由a,b 同号得,当a=1,b=5时,a-b=1-5=-4;当a=-3,b=-5时,a-b=-3-(-5)=2.综上,a-b 的值为-4或2.11.C 9的平方根是±3,其中正的平方根是算术平方根,故9的算术平方根是3.12.D 负数没有算术平方根,(-14)2、0和(±10)2都是非负数,而-|-9|是负数,故它没有算术平方根. 13.C 本题容易将根号与平方运算直接抵消,又忽视两次计算算术平方根导致错误,应先化简根号,再求它的算术平方根,故√(-4)2=√16=4,4的算术平方根为2.14.B -4<0,负数没有算术平方根,故选项A 错误;(-4)2的平方根是±4,故选项B 正确;(-1)3<0,负数没有平方根,故选项C 错误;一个非负数的算术平方根只有一个,并且也是非负数,(-5)2的算术平方根是5,故选项D 错误.15. 答案 (1)5.1 (2)10.1 (3)0.60 (4)0.09216. 答案 √6;45 解析 本题要先化简根号,再进一步求算术平方根,易忽视两次计算数的算术平方根导致错误.√36=6,6的算术平方根是√6,即√36的算术平方根是√6.√256625=1625,1625的算术平方根是45,即√256625的算术平方根是45. 故答案为√6;45.17. 解析 (1)原式=3×23=2. (2)原式=√49=77=1. (3)原式=12-9=3.(4)原式=√100−36=√64=8.18. 解析 因为√2a+1≥0,所以当a=-12时,√2a +1有最小值,为0,所以√2a +1+1的最小值为1.。
平方根(巩固篇)(专项练习)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

专题6.3平方根(巩固篇)(专项练习)一、单选题1)A .7±B .7-C .D2.若实数x 10x +≤,则()A .x =2或-1B .2≥x ≥-1C .x =2D .x =-13.下列说法中,正确的是()A .64的平方根是8B4和-4C .()23-没有平方根D .4的平方根是2和-24.下列各数中,不一定有平方根的是()A .x 2+1B .|x |+2C 1D .|a |-15.如果一个自然数的算术平方根是n ,则下一个自然数的算术平方根是()A .n +1B .21n +C D6.若有理数a 和b 在数轴上所表示的点分别在原点的右边和左边,-a b 等于()A .a-B .aC .2b a+D .2b a-7.已知{}min ,,a b c 表示取三个数中最小的那个数,例加:min{1,2,3}3---=-,当}21min,81x x =时,则x 的值为()A .181B .127C .13D .198.如下表,被开方数a律可得m ,n 的值分别为()A .=0.025m ,7.91n ≈B . 2.5m =,7.91n ≈C .7.91m ≈, 2.5n =D . 2.5m =,0.791n ≈9.如图,将一张长方形纸片按如图所示的方式沿虚线折叠,得到两个面积分别为16和5的正方形,则阴影部分的面积为()A .5B .C .4D .410.设12211112S =++,22211123S =++,32211134S =++,⋯,22111(1)n S n n =+++,则的值为()A .62425B C .2425D .57524二、填空题11()21-=______.12.写出一个比____.13a,小数部分为b ,则________,_________a b ==.14.如果a ,b 是2020的两个平方根,则a + b - 2021的值是__________.15.如图,每个小正方形的边长为1,可通过“剪一剪”“拼一拼”,将10个小正方形拼成一个大正方形,若10个小正方形的面积之和等于大正方形的面积,则这个大正方形的边长是__________.16.如图是一个数值运算的程序,若输出y 的值为4,则输入的值为__.17.把如图①中的长方形分割成A ,B 两个小长方形,现将小长方形B 的一边与A 重合,另一边对齐恰好组成如图②的大正方形,(空余部分C 是正方形).若拼接后的大正方形的面积为5,则图①中原长方形的周长为_________.18.将自然数的算术平方根如右图排列,第3行第2则第101行第100列是______.三、解答题19.求满足条件的的值:(1)23126x -=;(2)()21218x -=20.(1)已知某正数的平方根为3a +和215a -,求这个数是多少?(2)已知m ,n 320n -=,求22m n +的平方根.21.如图,有一只蚂蚁从点B 沿数轴向左爬了2个单位长度到达点A ,若点B设点A 所表示的数为m .(1)实数m 的值是_________;(2)求()221m m +++的值.(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有24c +238c d ++的平方根.22.(1)如图1,分别把两个边长为1dm 的小正方形沿一条对角线裁成4个小三角形,可以拼成一个大正方形,由此可知,小正方形的对角线长为______dm .(2)若一个圆的面积与一个正方形的面积都是22cm π,则圆的周长C 圆,正方形的周长C 正的大小关系是:C 圆______C 正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为216cm ,李明同学想沿这块正方形边的方向裁出一块面积为212cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?23.探究题:(1的值.对于任意实数a 等于多少?(2)求222222,,,,,的值.对于任意非负实数2等于多少?24.【初步感知】(1)直接写出计算结果.=___________;=_______;=________;=________;…【深入探究】观察下列等式.①(12)2122+⨯+=;②(13)31232+⨯++=;③(14)412342+⨯+++=;④(15)5123452+⨯++++=;…根据以上等式的规律,在下列横线上填写适当内容.(2)_________(12022)20222+⨯=;(3)123(1)++++++= n n _______,【拓展应用】计算:(5)333331112131920+++++ .参考答案1.C【分析】先求出49的算术平方根,再根据一个正数有两个平方根,它们互为相反数解答即可.【详解】7=,7的平方根是,故选:C.【点睛】本题考查了算术平方根和平方根,熟练掌握算术平方根的性质,一个正数有两个平方根,它们互为相反数,先求出49的算术平方根,是解题关键.2.A【分析】根据非负数性质求解即可.x+≤,10≥,|x+1|≥0,∴x-2=0或x+1=0,解得:x=2或x=-1,故选:A.【点睛】本题考查非负数的性质,熟练掌握算术平方根的非负数,绝对值的非负数是解题的关键.3.D【详解】A.64的平方根是±8,故本选项不符合题意;4=,4的平方根是±2,故本选项不符合题意;-=,9的平方根是±3,故本选项不符合题意;C.()239D.4的平方根是±2,故本选项符合题意.故选:D.【点睛】本题考查了平方根的知识,如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.注意,一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.4.D【分析】根据平方根的性质解答即可.【详解】A、∵x2+1>0,∴该数有平方根;B 、∵|x |+2>0,∴该数有平方根;C 1>0,∴该数有平方根;D 、∵0a ≥,∴|a |-1不一定大于0,故该数不一定有平方根;故选:D.【点睛】此题考查了平方根的性质:正数有两个平方根,0有一个平方根是0,负数没有平方根,正确掌握实数的大小估算确定其为正数、负数或是0是解题的关键.5.D【分析】根据算术平方根的平方等于这个这个自然数,得出下一个自然数,可得答案.【详解】解:这个自然数是2n ,则和这个自然数相邻的下一个自然数是21n +,.故选:D .【点睛】本题考查了算术平方根,掌握一个数算术平方根的平方等于这个数是解题关键.6.A【分析】先根据数轴的性质可得0,0a b ><,从而可得0a b ->,再根据算术平方根的性质、化简绝对值、整式的加减法即可得.【详解】解:由题意得:0,0a b ><,所以0a b ->,()a b b a b -=---b a b =--+a =-,故选:A .【点睛】本题考查了数轴、算术平方根、绝对值、整式的加减,熟练掌握数轴的性质是解题关键.7.D2,x x 都小于1且大于0,根据平方根求得x 的值即可求解.【详解】解:∵}21min,81x x =2,x x 都小于1且大于02x x ∴<<2181x ∴=19x ∴=(负值舍去)故选D2,x x 的范围是解题的关键.8.B【分析】根据算术平方根的定义解决此题.【详解】解:由题意得:从0.0625开始,小数点每向右移动两位,对应算术平方根扩大10倍,从0.625开始,小数点每向右移动两位,对应算术平方根扩大10倍,∴可得:6.25的算术平方根为2.5,62.5的算术平方根约为7.91,故选B .【点睛】本题主要考查数字类规律探索,算术平方根,熟练掌握原数和平方根的变化规律是解决本题的关键.9.A【分析】首先根据面积确定大长方形的长和宽,然后再利用长方形的面积减去两个小正方形的面积.【详解】解: 两个面积分别为16和5的正方形,∴大正方形的边长为4∴阴影部分的长方形的宽为4∴5=,故选:A .【点睛】此题主要考查了算术平方根,关键是正确理解题意,确定长方形的长和宽.10.A【分析】观察第一步的几个计算结果,得出一般规律.3111112122===+=+-⨯,71111162323===+=+-⨯,1311111123434===+=+-⨯,2111111204545===+=+-⨯,⋯,1111n n=+-+,+⋯+1111111112232425=+-++-+⋯++-124125=+-62425=.故选A.【点睛】本题考查了数字算式的变化规律.关键是观察几个结果的结果,由特殊到一般,得出规律.11.2【分析】按顺序先分别进行算术平方根和平方运算,然后再进行减法运算即可.2(1)-=3-1=2,故答案为:2.【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键.12.答案不唯一,如:1【详解】解:∵<2∴-2<x<2,(x为整数)故答案为:-1,0,1(答案不唯一)【点睛】本题考查算术平方根的估值.理解算术平方根的定义是关键.13.【答题空1】3【答题空23【详解】∵9<10<16∴3<4,∴a=3,-3,故答案为3﹣3.14.2021-【分析】利用平方根的性质可知0a b +=,代入题中代数式直接求值即可得到答案.【详解】解:如果a ,b 是2020的两个平方根,则0a b +=,2021020212021a b ∴+-=-=-,故答案为:2021-.【点睛】本题考查平方根的性质及代数式求值,熟练掌握一个正数的两个平方根互为相反数是解决问题的关键.15【分析】由题可知,每个小正方形的边长为1,面积为1,可得出拼成的大正方形的面积为11.【详解】解:由题意可知,每个小正方形的边长为1,∴每个小正方形的面积为1,∴10个小正方形拼成的大正方形的面积为1×10=10,.【点睛】本题考查图形的剪拼和算术平方根,熟练掌握“如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根”.16.±3【分析】设输入的数是x ,根据题意得出方程(x 2-1)÷2=4,求出即可.【详解】解:设输入的数是x ,则根据题意得:(x 2-1)÷2=4,x 2-1=8,x=±3,故答案为±3.【点睛】本题考查了对平方根的应用,关键是能根据题意得出方程.17.【分析】设矩形B的长为a,宽为b,表示大正方形边长:a+b,进而求出a+b 得出图①中原长方形的周长.【详解】解:设矩形B的长为a,宽为b,∵C是正方形,∴C的边长为b,∴大正方形边长:a+b,∵大正方形的面积为5,∴a+b∵图①中的长方形的周长为:(a+b+b+a)×2=4(a+b),∴图①中原长方形的周长为:故答案为:18【分析】根据所给数据排列的顺序,找出规律即可解答.【详解】解:根据题意知:第2行,第1第3行,第2第4行,第3第5行,第4…n-列的数为:故第n行,第()1当n当n故当n =101时,第101行第100【点睛】本题考查了数字类规律问题,根据题意找出规律是解决本题的关键.19.(1)3x =±;(2)54x =或34x =【分析】(1)先求出x 2,然后再运用直接开平方法解答即可;(2)先求出(x -1)2,再运用直接开平方法求得x -1,最后求得x 即可.【详解】解:(1)23126x -=2327x =29x =3x =±;(2)()21218x -=()21116x -=即114x -=±所以54x =或34x =.【点睛】本题主要考查了解一元二次方程,掌握运用直接开平方法解一元二次方程成为解答本题的关键.20.(1)49;(2)56±【分析】(1)根据一个正数的两个平方根互为相反数建立方程求解即可;(2)根据非负数的性质求出m 、n 的值,然后代值计算即可.【详解】解:(1)∵某正数的平方根为3a +和215a -,∴32150a a ++-=,∴4a =,∴这个数为()223749a +==;(2320n -=0320n ≥-≥,,320n =-=,∴210320m n +=-=,,∴1223m n =-=,∴222212523263m n ⎛⎫++ ⎪⎛⎫=-= ⎝⎪⎝⎭⎭,∴22m n +的平方根是56±.【点睛】本题主要考查了平方根,非负数的性质,熟知一个平方根的定义是解题的关键.21.2;(2)2+(3)4±【分析】(1)根据两点间的距离公式,直接右边的数减去距离即得左边的数;(2)代入m 求值即可;(3)根据非负数的性质,求得c,d 的值,代入即可求解.【详解】(1)解:(1)2m =,2;(2)解:()221m m +++=)22221+++=31=2,故答案为:2.(3)解:∵24c +∴|24|c +=0,∵24|0|c ≥+,∴|2|40c +=,∴24c d -=,=,∴()2382234816c d ++=⨯-+⨯+=,∴4=±.【点睛】本题考查的是两点间的距离公式、非负数的性质,关键是要会理解两点间的距离,最后求的平方根有两个.22.(12)<;(3)不能,理由见解析【分析】(1)根据勾股定理即可得到结论;(2)设圆的半径为r cm ,正方形的边长为a cm ,求得C 圆π,C 正,于是得到结论;(3)设长方形的长为3x cm ,宽为2x cm ,令3x •2x =12,得到x 求得长方形的长为,正方形的边长为4cm ,由于>4,于是得到结论.【详解】解:(1)∵小正方形的边长为1dm ,(dm ),(2)设圆的半径为r cm ,正方形的边长为a cm ,∵一个圆的面积与一个正方形的面积都是2πcm 2,∴r a∴C 圆,C 正,∵8π2<32π,∴C 圆<C 正,故答案为:<;(3)不能裁出,理由:设长方形的长为3x cm ,宽为2x cm ,令3x •2x =12,解得:x ∵x >0,∴x∴长方形的长为cm ,,∴正方形的边长为4cm ,∵4,∴不能裁出这样的长方形纸片.【点睛】本题考查了算术平方根的应用,圆的面积公式,正确地理解题意是解题的关键.23.(12=3=5=6=7=0=,对于任意实数a a =;(224=29=,225=236=249=,20=,对于任意非负实数a ,2a =.【分析】(1)直接计算各式进而得出一般规律;(2)直接计算各式进而得出一般规律.【详解】(12=,3=,5=,6=,7=,0=,对于任意实数a a ;(2)24=,29=,225=,236=,249=,20=,对于任意非负实数a ,2a =.【点评】本题主要考查了二次根式的性质与化简,正确得出变化规律是解题关键.24.(1)①1②3③6④10(2)12320212022+++++ (3)()()122n n ++(4)5050(5)41075【分析】(1)直接计算即可;(2)根据前4个式子的规律填空即可;(3)根据规律可得1+2+3+⋯+n +(n +1)=()()122n n ++;(4)根据(1)的计算可得原式=1+2+3+ (100)(5)根据规律可得原式=(13+23+33+⋯+193+203)-(13+23+33+⋯+93+103),再根据规律计算即可.(1=1=3=6=10;故答案为:①1②3③6④10(2)解:由规律可得:1+2+3+ (2022)()1202220222+⨯,故答案为:1+2+3+…+2022;(3)解:1+2+3+⋯+n +(n +1)=()()122n n ++.故答案为:()()122n n ++;(4)解:原式=1+2+3+…+100=()10011002+⨯=5050;(5)解:原式=(13+23+33+⋯+193+203)-(13+23+33+⋯+93+103)=)2-2=(1+2+…+20)2-(1+2+…+10)2=(21202⨯)2-(11102⨯)2=2102-552=41075.【点睛】本题考查规律型:数字的变化类,能够根据式子的变化得到规律是解题关键.。
北师版八年级数学上册 2.2.2平方根 能力提升卷

北师版八年级数学上册2.2.2平方根能力提升卷一、选择题(共10小题,3*10=30)1.一个数的平方根就是这个数的算术平方根,这个数是( )A.1 B.0 C.-1 D.1或02.下列数没有平方根的是( )A.34 B.(-4)2C.5-2D.-93.下列说法错误的是()A.4是16的平方根B.16的平方根是±4C.-5是25的平方根D.25的平方根是54.9的平方根是±3,用数学符号表示,正确的是()A.9=3B.±9=3C.9=±3D.±9=±35.下列说法正确的有()①-2是-4的一个平方根;②a2的平方根是a;③2是4的一个平方根;④4的平方根是-2.A.1个B.2个C.3个D.4个6. (-2)2的平方根是()A.2 B.-2 C.±2 D.27.若方程(x-5)2=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a-5是19的算术平方根D.b+5是19的平方根8.若有理数x ,y 满足y =x -2+2-x +1,则x -y 的平方根是( )A .1B .±1C .-1D .无法确定9.若8x m y 与6x 3y n 的和是单项式,则(m +n)3的平方根为( )A .4B .8C .±4D .±810.有理数a ,b 在数轴上对应的点的位置如图所示,化简|a|+(a -b )2的结果是( )A .-2a +bB .2a -bC .-bD .b二.填空题(共8小题,3*8=24)11.(-3)2的平方根是__________,±2是4的__________.12. 计算:-49=_____;±925=______; 1.69=____. 13. 下列说法:①9是(-9)2的算术平方根;②|-16|的平方根是±4;③-5是25的平方根;④16的平方根是±4.正确的序号是__________. 14.16的平方根是__________, 81的平方根是__________.15.若x 2=1625,则x =_______;)若(-x)2=25,则x =____;若x 2=7,则x =____. 16.设a 为16的平方根,b =-22,则a +b 的值为__________. 17.若(a -2)2=2-a ,则a 的取值范围是__________.18. a ,b 的位置如图,化简:a 2-(b)2-(a -b )2=__________.三.解答题(共7小题, 46分)19.(6分) 求下列各数的平方根和算术平方根:(1)225;(2)⎪⎪⎪⎪-214.20.(6分) (1)当a =9,b =12时,求a 2+b 2的值;(2)当c =41,b =40时,求(c +b )(c -b )的值.21.(6分) 已知2a +1的平方根是±3,5a +2b -2的算术平方根是4,求3a -4b 的平方根.22.(6分) 求下列各数的平方根:1.44,0,8,10049,441,196,10-4.23.(6分) 已知(1-a )2+(a -3)2=2,求a 的取值范围.24.(8分)已知a,b,c在数轴上对应点的位置如图所示,化简a2-(a+b)2+(c-a)2+(b+c)2.25.(8分) 求下列各式中x的值:(1)25x2=81;(2)(x-3)2-4=0;(3)9(3x+1)2=64.参考答案1-5BDDDA 6-10CCBDA11. ±3,平方根12. -23,±35,1.3 13. ①②③14. ±2,±315. ±45,±5,±7 16. 0或-817. a≤218.数a ,b 在数轴上18. -2b19. 解:(1)因为(±15)2=225,所以225的平方根是±15.因为152=225,所以225的算术平方根是15.(2)⎪⎪⎪⎪-214=94. 因为⎝⎛⎭⎫±322=94, 所以⎪⎪⎪⎪-214的平方根是±32. 因为⎝⎛⎭⎫322=94,所以⎪⎪⎪⎪-214的算术平方根是32. 20. 解:(1)a 2+b 2=92+122=15 (2)(c +b )(c -b )=(41+40)(41-40)=81=921. 解:由题意得2a +1=(±3)2=9,5a +2b -2=42=16,解得a =4,b =-1.所以3a -4b 的平方根是±16=±4.22. 解:1.44的平方根是±1.2,即± 1.44=±1.2;0的平方根是0;8的平方根是±8;10049的平方根是±107,即±10049=±107; 441的平方根是±21,即±441=±21;196的平方根是±14,即±196=±14;10-4的平方根是±10-2,即±10-4=±10-2. 23. 解:根据题意,得|1-a|+|a -3|=2.①当a≤1时,1-a +3-a =2,解得a =1;②当1<a <3时,a -1+3-a =2,即等式恒成立;③当a≥3时,a -1+a -3=2,解得a =3.综上所述,a 的取值范围为1≤a≤3.24. 解:由a ,b ,c 在数轴上对应点的位置可知a <0,a +b <0,b +c <0, 所以原式=|a|-|a +b|+(c -a)+|b +c|=-a +(a +b)+(c -a)-(b +c)=-a +a +b +c -a -b -c=-a.25. 解:(1) x 2=8125,解得x =±8125=±95. 所以x 1=95,x 2=-95.(2) (x -3)2=4,(x -4)=±(4)=±2.解得x =±2+3.所以x 1=5,x 2=1.(3) (3x+1)2=649,(3x+1)=±649=±83.解得3x =±83-1.所以x 1=59或x 2=-119。
100道平方根计算练习题

100道平方根计算练习题平方根习题精选班级::学号1.正数a的平方根是A.B.±C.?D.±a;④±都是32.下列五个命题:①只有正数才有平方根;②?2是4的平方根;③5的平方根是2的平方根;⑤的平方根是?2;其中正确的命题是A.①②③B.③④⑤C.③④D.②④3.若=.291,=.246,那么=A.22.91B.2.46C.229.1D.724.64.一个自然数的算术平方根是a,则下一个自然数的算术平方根是A.a+1 B.a+1C..下列命题中,正确的个数有①1的平方根是1 ;②1是1的算术平方根;③的平方根是?1;④0的算术平方根是它本身A.1个B.2个C.3个D.4个.若=.449,=.746,=44.9,= 0.7746,则x、y的值分别为22+1 D.A.x =0000,y = 0.6B.x =00,y = 0.6C.x =000,y = 0.06D.x =0000,y = 0.06二、填空题1.①若m的平方根是±3,则m =______;②若5x+4的平方根是±1,则x =______2.要做一个面积为π米的圆形桌面,那么它的半径应该是______23.在下列各数中,?2,,?3,.在?.若和22,?,有平方根的数的个数为:______之间的整数是____________的算术平方根是3,则a =________三、求解题1.求下列各式中x的值①x =61;②81x?4= 0;③49 =0;④ =2.小刚同学的房间地板面积为16米,恰好由64块正方形的地板砖铺成,求每块地板砖的边长是多少?222222第十二章:数的开方1、如果一个数的等于a,那么这个数叫做a的平方根,正数的平方根有系是,0的平方根是,负数。
正数a的,叫做a的算术平方根。
3、如果一个数的a,那么这个数就叫做a的立方根,正数有的立方根,负数有的立方根,0的立方根为。
11一、平方根的概念及性质例题分析:1、________的平方等于25,所以25的平方根是_____________的平方等于,所以4的平方根是________ 9121的平方根_____,所以它的算术平方根是____的平方根______,所以它的算术平方根16是_______2、下列说确的个数是①0.25的平方根是0.5;②-2是4的平方根;③只有正数才有平方根;④负数没有平方根A、1 B、C、D、4、下列说法中不正确的是A、9的算术平方根是B、的平方根是?2C、27的立方根是?3D、立方根等于-1的实数是-19154、求下列各数的平方根11)、100 )、03)、4)、1)、96)、0.09、若2m-4与3m-1是同一个数的平方根,则m的值是A、-B、1 C、-或1 D、-16、若一个正数的平方根是2a-1和-a+2,则a=________15,那么这个数是多少?、某数的平方根是a+3和2a-二、算术平方根的概念及性质一个正数的平方根有两个,它们互为相反数,而一个正数的算术平方根只能是一个正数1、的算术平方根是A、?B、C、? D、2、9的算术平方根是A、-B、C、? D、812??94??23、下列计算不正确的是A、B、C、.064?0.4D、?216??64、下列叙述正确的是A、0.4的平方根是±0.2B、-的立方根不存在C、±6是36的算术平方根D、-27的立方根是-35、不使用计算器,你能估算出126的算术平方根的大小在哪两个整数之间吗?A、10-11之间B、11-12之间C、12-13之间D、13-14之间6、如果一个数的平方根与立方根相同,那么这个数是A、0B、±1C、0和1D、0或±12a?16,则a=________?1.2,则a=________、若8、-2的相反数是________;3-2的绝对值是________29、求下列各数的算术平方根1)、0.002)、)、04)3三、立方根的概念及性质11?1、下列说确的是①12是1728的立方根;②的立方根是;③64的立方根是?4;④0273的立方根是0A、①④B、②③C、①③D、②④、下列说法中错误的是42)2A、是5的平方根B、-16是256的平方根C、-15是4、若a是的平方根,则a=A、-3B、3C、3D、3和3D、立方根等于它本身的-35、已知x的平方根是2a+3和1-3a ,y的立方根为a ,求x+y的值6、的平方根是______________;的立方根是_________________818、计算:11)、?)、?8)、164562x四、能力点:会用若?|y|?z?0,则x?0,y?0,z?0去解决问题例题分析:2x?4??0,则xy的值是1、已知x,y是实数,且99A、B、-C、D、-42、若x?4?x?y?5?0,则x?________,y?________25x?3?|y?1|??0,求xyz=________、已知4、已知| x ? y ? |+x?y?10 ? 0 ,求x 、y 的值273x?2?0?169?04?1?05、1););3)4;)2213?42无理数常见的三种形式:1)开方开不尽的数,如0.010010001??2,)特定意义的数,如? )有特定结构的数,如3?1、下列各数:2,-3,3.1415926,125,19,?8,3.101001000??中无理数有2、若无理数a满足不等式1 223、下列各数:7,0,-?,,64,2-中无理数有__________22?3272、下列各数:,-,?27,1.414,-3,3.1212,?9中无理数有___________;有理数有______ _________;负数有______ _________;整数有_______________;3、设a是实数,则|a|-a的值A、可以是负数B、不可能是负数C、必是正数D、可以是正数也可以是负数1?4、下列实数:19,-2,,,9,0中无理数有A、B、C、D、15、下列说法中正确的是A、有限小数是有理数B、无限小数是无理数C、数轴上的点与有理数一一对应D、无理数就是带根号的数116、下列各数中,互为相反数的是A、-3和B、|-3|与-C、|-3|与D、|-3|与-37、边长为1的正方形的对角线的长是A、整数B、分数C、有理数D、无理数、写出一个3和4之间的无理数__________、数轴上表示1?3的点到原点的距离是__________510、比较大小:2__________52;3__________??51311、在下列各数中,0.5,4,,-0.03745,3,0.12,1-,其中无理数的个数为A、B、3C、D、512、一个正方形的面积扩大为原来的n倍,则它的边长扩大为原来的nA、n倍B、2n倍C、n倍D、2倍6.的平方根是A. ±B. C. ± D.321、x为何值时,下列各式有意义:①?x②?x22、解下列方程1)x2=)x3-27=0)x?)2=493、1的平方根是;27的立方根是4-27的立方根是的平方根是____。
100道平方根练习题

100道平方根练习题一、填空题1.如果x的平方等于a,那么x就是a的,所以a的平方根是2.非负数a的平方根表示为3.因为没有什么数的平方会等于,所以负数没有平方根,因此被开方数一定是或者4的平方根是5.非负的平方根叫平方根二、选择题6.9的算术平方根是A.- B. C.± D.817.下列计算不正确的是A=±2B? .下列说法中不正确的是A.9的算术平方根是B29. 4的平方根是A.±B.± C.± D10.的平方的倒数的算术平方根是A. B.三计算题11.计算:100; 0;159;1;1;0.092513_______;9的平方根是_______.四、能力训练14.一个自然数的算术平方根是x,则它后面一个数的算术平方根是A.x+1 B.x2+1 C+1 D- 1 -15.若2m-4与3m-1是同一个数的平方根,则m的值是 A.- B.1 C.-3或1 D.-116.已知x,y2=0,则xy的值是A.4B.- C.五、综合训练17.利用平方根、立方根来解下列方程.2-169=0;42-1=0;99D.-42731x-2=0;3=4.2六、提高题18、x?3??y?5??0,求?x?y?的平方根219、4a2?b2?4a?10b?26?0,求ba的平方根20、a2?b2?2a?8b?17?0,a、b为实数,求ab?的平方根 ba- -6.1平方根练习题一、选择题1. 下列各式中正确的是 A.=±B. =-C. ±36=±D. ?100=102. 当x=-6时,x的值为A. B. - C.3 D.33. 下列说法正确的是 A.的平方根是±2B. -a一定没有平方根C. 0.9的平方根是±0.3D. a-1一定有平方根4. 已知正方形的边长为a,面积为S,则 A. S=a B. S 的平方根是aC. a是S的算术平方根 D. a=±5. 下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a的算术平方根是a;④的算术平方根是π-4;⑤算术平方根不可能是负数。
平方根(基础篇)(专项练习)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

专题6.2平方根(基础篇)(专项练习)一、单选题1.4的平方根是()A .2B .2-C .16D .2±2.)A .﹣2B .2C .﹣12D .123的值().A .在3到4之间B .在4到5之间C .在5到6之间D .在6到7之间4.下列计算正确的是()A2=B 5=±C .4D .7=±5.平方根是13±的数是()A .13B .16C .19D .19±6.若是169的算术平方根,是121的负的平方根,则(+)2的平方根为()A .2B .4C .±2D .±47.下列命题是真命题的是()A .25的平方根是5B .0.01的平方根是0.001±C .只有正数才有算术平方根D .平方根是其本身的数只有08.实数a ,b ,c 在数轴上的对应点如图所示,化简a b a -+-+的结果是()A .b c --B .c b -C .222a b c -+D .2a b c++9.将边长分别为1和2的长方形如图剪开,拼成一个与长方形面积相等的正方形,则该正方形的边长是()A B .2C .1.5D .110.有一个如图的数值转换器,当输出值是4时,输入的是()A .8B .16C .D .二、填空题11.如果0x <,0y >且24x =,29y =,则x y +=___________.12.若2y ,则yx =________.13a ,小数部分为b ,则=a _________,b =_________.14 3.873≈ 1.225≈≈___.151=,则2x +6的平方根是______.16.某正数的平方根是a 和5a -,则这个数为_________.17.()29-的四次方根是______.18.七巧板被西方人称为“东方魔术”,下面的两幅图是由同一个七巧板拼成的.已知七巧板拼成的正方形(如图1边长为a (cm ).若图2的“小狐狸”图案中阴影部分面积为162cm ,那么a 的值为__.三、解答题19.求下列各式中的x .(1)29250x -=;(2)24(2)90x --=.20.计算:(1)()()2202131---;(2)233--21.已知2a b +(1)求2a -3b 的平方根;(2)解关于x 的方程2420ax b +-=.22.(1=__________;(2=__________;(3)实数a 、b 、c 在数轴上的位置如图所示,请化简:a -23.定义:若A B m -=,则称A 与B 是关于m 的关联数.例如:若2A B -=,则称A 与B 是关于2的关联数.(1)若49与a 是关于2的关联数,则=a ________;(2)若21x -与53x -是关于2的关联数,求51x +的平方根;(3)若M 与N 是关于m 的关联数,53M mn n =++,N 的值与m 无关,求N 的值.24.发现:(1)面积为249cm 的正方形纸片,它的边长是______cm ;拓展:(2)面积为226cm 的长方形纸片,如果它的长是宽的2倍,则长和宽各是多少cm ?延伸:(3)在面积为249cm 的正方形纸片中能否沿着边的方向(如图所示)裁出一块面积为226cm 的长方形纸片,使它的长是宽的2倍?说明理由.参考答案1.D【分析】根据平方根的意义,一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.【详解】∵()22=4±∴4的平方根为2±.故选:D.【点拨】本题考查了平方根的定义,掌握一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根是解题的关键.2.C【分析】先化简,再计算倒数.【详解】解:=−2,-2的倒数是1 2-.故选:C.【点拨】本题考查了倒数,算术平方根,熟练掌握相关知识是解题的关键.3.C【分析】根据题意可直接进行求解.【详解】解:∵56<,5到6之间.故选C.【点拨】本题主要考查算术平方根,熟练掌握求一个算术平方根的整数部分与小数部分是解题的关键.4.D【分析】A、根据负数没有平方根即可判定;B、根据算术平方根的定义即可判定;C、根据算术平方根的定义即可判定;D、根据平方根的定义即可判定.【详解】解:AB5=,故选项错误;C、4==-,故选项错误;D、7=±,故选项正确.故选:D.【点拨】此题考查了平方根、算术平方根的定义.此题比较简单,注意熟记定义是解此题的关键.5.C【分析】根据平方根的定义求解即可.【详解】解:∵211 39⎛⎫±=⎪⎝⎭,∴平方根是13±的数是19.故选C.【点拨】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根.6.C【分析】求出m、n的值,求出m+n的值,再根据平方根定义求出即可.【详解】解:∵m是169的算术平方根,n是121的负的平方根,∴m=13,n=-11,∴m+n=2,∴(m+n)2的平方根是,故答案为C.【点拨】本题主要考查了平方根的定义和性质,以及根据平方根求被开方数;注意:一个正数有两个平方根,它们互为相反数.7.D【分析】根据平方根的概念判断即可.【详解】解:A、25的平方根是±5,故本选项命题是假命题;B、0.01的平方根是±0.1,故本选项命题是假命题;C、正数和0都有算术平方根,故本选项命题是假命题;D、平方根是其本身的数只有0,故本选项命题是真命题;故选:D.【点拨】本题考查的是平方根及算术平方根的概念,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.A【分析】先判断0b c a <<<,可得0b a -<,再结合算术平方根的含义可得0c <c =-,再化简绝对值即可.【详解】解:∵0b c a <<<,∴0b a -<,∴a b a -+-+()()a b a c =---+-a b a c=--+-b c =--.故选A .【点拨】本题考查的是算术平方根的含义,化简绝对值,整式的加减运算,掌握“算术平方根的含义与化简绝对值”是解本题的关键.9.A【分析】求出长方形的面积,即为正方形的面积,开方即可求出正方形边长.【详解】解:根据题意得:故选:A .【点拨】此题考查了算术平方根,弄清题意是解本题的关键.10.B【分析】设输入的数为x ,根据输出值是4即可求出答案.【详解】解:设输入的数为x ,∴4=,16x ∴=,故选:B .【点拨】本题考查的是算术平方根的概念和性质,解题的关键是掌握一个正数的正的平方根是这个数的算术平方根是解题的关键,注意有理数的概念.11.1【分析】24x =即x 是4的平方根,29y =即y 是9的平方根,因而根据0x <,0y >且24x =,29y =就可确定x ,y 的值,进而求解.【详解】解:∵24x =,29y =,∴2x =±,3=±y ,又∵0x <,0y >,∴2x =-,3y =,∴231x y +=-+=.故答案为:1.【点拨】本题考查平方根的意义,求代数式的值,有理数的加法运算.根据条件正确确定x ,y 的值是解题关键.12.94【分析】根据算术平方根的非负性求得,x y 的值,代入代数式即可求解.【详解】解:∵2y ,∴230,320x x -≥-≥,∴230x -=,解得32x =,∴2y =,∴23924yx ⎛⎫== ⎪⎝⎭,故答案为:94.【点拨】本题考查了算术平方根的非负性,掌握算术平方根的非负性是解题的关键.13.33【分析】根据34<首先确定a 的值,则小数部分即可确定.【详解】解:34<< ,3a ∴=,则3b =.故答案是:33.【点拨】本题主要考查了无理数的估算,解题的关键是确定无理数的整数部分即可解决问题.14.12.25【分析】根据算术平方根与被开方数的关系:“被开方数每向左或向右移动2个位数,则它的算术平方根就向左向右移动1个位数”可知答案.1.225≈,≈12.25故答案为:12.25【点拨】本题考查了求算术平方根,掌握规律是解题的关键.15.±21=,解得=1x -,继而计算264x +=,再根据平方根的定义解答.【详解】解:1=,21x ∴+=1x ∴=-264x ∴+=4的平方根是±2故答案为:±2.【点拨】本题考查平方根与算术平方根,是基础考点,掌握相关知识是解题关键.16.254【分析】根据正数的两个平方根互为相反数可得50a a +-=,解方程求出a ,然后根据平方根的意义求出这个正数.【详解】解: 某正数的平方根是a 和5a -,50a a ∴+-=.解得52a =.2525()24±= .∴这个数为254.故答案为:254.【点拨】本题考查了平方根的性质与意义,解题的关键是掌握一个正数有两个平方根,且它们互为相反数.17.3±【分析】计算出()2981-=,再找出四次方等于81的数即可.【详解】解:∵()2981-=,又∵()4381±=∴()29-的四次方根是3±,故答案为:3±.【点拨】本题考查平方根的推广,有理数的乘方.解题的关键是正确找出四次方等于81的数.18.8【分析】设阴影小正方形的边长为x cm ,根据阴影部分的面积列出方程,求出x 的值,进而得出大正方形的对角线的长度是4x cm ,最后求出边长a 即可.【详解】设“小狐狸”脸部小正方形的边长为x cm ,由题意得:21(24)162x x x x +⨯-=,解得:x =x =-∴小正方形的边长为,∴大正方形的对角线为:,∴大正方形的边长为8(cm)=,8a ∴=.故答案为:8.【点拨】本题主要考查七巧板的知识,熟练掌握七巧板各边的关系是解题的关键.19.(1)1255,33x x ==-(2)1271,22x x ==【分析】(1)先移项,然后利用平方根求解方程即可;(2)先移项,然后利用平方根求解方程即可.【详解】(1)解:29250x -=移项得:2925x =,∴2259x =,∴53x =±,∴1255,33x x ==-(2)24(2)90x --=24(2)9x -=,∴29(2)4x -=∴32=2x -±∴1271,22x x ==.【点拨】题目主要考查利用平方根解方程,熟练掌握解方程方法是解题关键.20.(1)5;(2)8--【分析】(1)先化简各式,然后再进行计算即可;(2)先化简各式,然后再进行计算即可.【详解】(1)解:22021(3)(1)--93(1)=-+-6(1)=+-5=;(2)解:233|-+932=-+8=-【点拨】本题考查了实数的运算,准确熟练地化简各式是解题的关键.21.(1)23a b -的平方根为4±;(2)3x =±.【分析】(1)先由相反数的定义列出等式,再根据绝对值的非负性、算术平方根的非负性求出a 、b 的值,然后代入,根据平方根的定义求解即可;(2)先将a 、b 的值代入,再利用平方根的性质求解即可.【详解】(1)由相反数的定义得:02a b ++=由绝对值的非负性、算术平方根的非负性得:203120a b b +=⎧⎨+=⎩解得24a b =⎧⎨=-⎩则23223(4)41216a b -=⨯-⨯-=+=故23a b -的平方根为4±;(2)方程2420ax b +-=可化为224(4)20x +⨯--=整理得22180x -=29x =解得3x =±.【点拨】本题考查了相反数的定义、绝对值的非负性、算术平方根的非负性、平方根的定义等知识点,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.22.(1)5;5;(2)()0(0)a a a a ⎧≥⎨-<⎩;(3)b a -【分析】(1)根据算术平方根求解即可;(2)结合(1)中结果求解即可;(3)根据数轴得出0c a b <<<,且a b <,然后将各式化简合并同类项求解即可.【详解】解:(15=5==;故答案为:5;5;(2)当0a ≥a =;当0a <a =-;()0(0)a a a a ⎧≥=⎨-<⎩,故答案为:()0(0)a a a a ⎧≥⎨-<⎩;(3)由数轴得:0c ab <<<,且a b <,∴a +∴a -()()a abc c a =-++-+-a a b c c a=-++-+-b a =-.【点拨】题目主要考查算术平方根的化简及根据数轴判断式子的正负,整式的加减法等,理解题意,熟练掌握各个运算法则是解题关键.23.(1)47;(2)3±;(3)165.【分析】(1)根据关联数的含义,列方程求解即可;(2)根据关联数的含义,列方程求得x 的值,即可求解;(3)根据关联数的含义,可得M N m -=,可得N M m =-,根据题意,求解即可.【详解】(1)解:由题意可得:492a -=解得47a =,故答案为:47;(2)由题意可得:21(53)2x x ---=解得:85x =,519x +=9的平方根为3±(3)由题意可得:M N m -=,则53(51)3N M mn n m n m n m ++--==+=+-,∵N 的值与m 无关∴510n -=,解得15n =则116355N =+=【点拨】本题考查了新型定义题型,解一元一次方程、整式的值与字母无关,解题的关键是准确理解题干,列出方程,进行解答.24.(1)7;(2,长为;(3)不能,理由见解析【分析】(1)根据正方形的面积公式和正方形的面积即可求出正方形的边长;26cm列出方程求解即可;(2)设长方形的宽为x cm,则长为2x cm,根据长方形的面积为2(3)根据题意比较正方形的边长和长方形的长即可判断.49cm,【详解】解:(1)∵正方形的面积为2∴边长7==cm.(2)设长方形的宽为x cm,则长为2x cm,根据题意得x·2x=26,x2=13,解得x=∵x∴x∴长为2x=,,长为,(3)不能.理由:因为7,即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片.【点拨】此题考查了正方形和长方形面积公式,算数平方根的性质,解题的关键是根据题意求出正方形的边长和长方形的长和宽.。
平方根练习题
平方根练习题平方根练题一、填空题1、判断下列说法是否正确⑴5是25的算术平方根(正确)⑵√525是的一个平方根(错误,应为√25)⑶√(-4)的平方根是-4(错误,应为不存在实数平方根)⑷-5的平方根与算术平方根都是不存在(错误,应为不存在实数平方根)2、⑴121=11²,⑵-1.69=√2.8561,⑶±7,⑷-0.093、若x=7,则x²=49,x的平方根是74、√=±907,选项A5、共有4个数有平方根,选项B6、a=1,b=1/4,a+b的平方根为√(5/4)=1.1187、⑴x=5,⑵x=9,⑶x=49/4,⑷x=36/258、a=14/3,b=-1/39、a=5,b=1/210、a=4/3,b=1/311、x=±√a,x的正平方根为√a,负平方根为-√a12、非负数a的平方根为√a13、因为没有什么数的平方会等于负数,所以负数没有平方根,因此被开方数一定是非负数或014.16的平方根是415.非负的平方根叫正平方根二、选择题16.9的算术平方根是317.下列计算正确的是C.±6=±√3618.下列说法中正确的是C.16的算术平方根是419.64的平方根是±820.4的平方的倒数的算术平方根是1/2三、计算题21.(1)-9=不存在实数平方根(2)9=3(3)√100=1022.(1)10,(2)不存在实数平方根,(3)223.(1)√159≈12.61,(2)±3,(3)11/8,(4)±0.5,(5)1,(6)0.324.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A。
x+1 B。
x^2+1 C。
x+1 D。
x^2+125.若2m-4与3m-1是同一个数的平方根,则m的值是()A。
-3 B。
1 C。
-3或1 D。
-126.已知x,y是实数,且3x+4+(y-3)^2=99,则xy的值是()A。
平方根与立方根练习提高初二数学上册平方根与立方根的计算水平
平方根与立方根练习提高初二数学上册平方根与立方根的计算水平平方根和立方根是数学中常见的运算,它们在初二数学上册中也是重要的内容。
熟练地计算平方根和立方根不仅有助于提高数学运算能力,还能帮助我们更好地理解数学概念。
本文将通过一些练习题来帮助提高初二数学上册平方根与立方根的计算水平。
1. 平方根的计算平方根是一个数的平方等于它的平方根。
比如,√9 = 3,因为3² = 9。
我们可以使用平方根的性质来计算平方根。
下面是一些练习题:(1) 计算√16 = ?解:√16 = 4,因为4² = 16。
(2) 计算√25 = ?解:√25 = 5,因为5² = 25。
(3) 计算√36 = ?解:√36 = 6,因为6² = 36。
通过这些简单的练习题,我们可以熟悉平方根的计算方法,并提高计算水平。
2. 立方根的计算立方根是一个数的立方等于它的立方根。
比如,³√27 = 3,因为3³ = 27。
和平方根类似,我们可以使用立方根的性质来计算立方根。
下面是一些练习题:(1) 计算³√8 = ?解:³√8 = 2,因为2³ = 8。
(2) 计算³√27 = ?解:³√27 = 3,因为3³ = 27。
(3) 计算³√64 = ?解:³√64 = 4,因为4³ = 64。
通过这些练习题,我们可以进一步巩固立方根的计算能力。
3. 平方根和立方根的运算规律平方根和立方根在数学运算中有一些特定的规律。
了解和掌握这些规律可以帮助我们更快地计算平方根和立方根。
下面是一些例子:(1) 平方根的乘法规律:√(a × b) = √a × √b例如,√(4 × 9) = √(4) × √(9) = 2 × 3 = 6(2) 立方根的乘法规律:³√(a × b) = ³√a × ³√b例如,³√(2 × 8) = ³√(2) × ³√(8) = 2 × 2 = 4(3) 平方根的除法规律:√(a ÷ b) = √a ÷ √b例如,√(9 ÷ 4) = √(9) ÷ √(4) = 3 ÷ 2 = 1.5(4) 立方根的除法规律:³√(a ÷ b) = ³√a ÷ ³√b例如,³√(8 ÷ 2) = ³√(8) ÷ ³√(2) = 2 ÷ ³√2掌握了这些运算规律,我们可以更加灵活地进行平方根和立方根的计算。
专题02 平方根重难点题型专训(9大题型+15道拓展培优)(解析版)七年级数学下册-
专题02平方根重难点题型专训(9大题型+15道拓展培优)【题型目录】题型一平方根与算术平方根概念理解题型二求一个数的算术平方根题型三利用算术平方根的非负性解题题型四求算术平方根的整数部分与小数部分题型五与算术平方根有关的规律探索题题型六求一个数的平方根题型七已知一个数的平方根,求这个数题型八利用平方根解方程题型九平方根的应用【知识梳理】知识点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a,读作“a 的算术平方根”,a 叫做被开方数.特别说明:有意义时,aa ≥0.2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算.a (a≥0)的平方根的符号表达为0)a ≥是a 的算术平方根.知识点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.特别说明:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质0||000a a a a a a >⎧⎪===⎨⎪-<⎩()20a a =≥知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.=.=0.25=25=, 2.5250【经典例题一平方根与算术平方根概念理解】【变式训练】平方差公式和完全平方公式,下,【经典例题二求一个数的算术平方根】【变式训练】A.3B.3±C.3【答案】A【分析】本题主要考查了有理数和无理数的识别,根据程序图及算术平方根的计算方法,依次计算即可,理解算术平方根是解题的关键.【点睛】本题主要考查了同类项、代数式求值、算术平方根等知识,熟练掌握相关知识是解题关键.七年级统考期末)我们知道,任意一个有理数与无理数的和为无理数,任意一个不为【经典例题三利用算术平方根的非负性解题】【变式训练】【经典例题四求算术平方根的整数部分与小数部分】【变式训练】8.(2022下·广东珠海·七年级统考期末)如图,用边长为3的两个小正方形拼成一个面积为18的大正方形,则大正方形的边长最接近的整数是()A.4B.5C.6D.7【分析】根据算术平方根的概念结合正方形的性质得出其边长,进而得出答案.【经典例题五与算术平方根有关的规律探索题】【答案】B【分析】根据算术平方根的定义解决此题.【详解】解:由题意得:从0.0625开始,小数点每向右移动两位,对应算术平方根扩大10倍,从0.625开始,小数点每向右移动两位,对应算术平方根扩大10倍,∴可得:6.25的算术平方根为2.5,62.5的算术平方根约为7.91,故选B.【点睛】本题主要考查数字类规律探索,算术平方根,熟练掌握原数和平方根的变化规律是解决本题的关键.【变式训练】【经典例题六求一个数的平方根】n 【变式训练】∴x y+的平方根是2±,±.故答案为:2【点睛】本题考查根式的非负性,以及计算一个数的平方根,能够根据根式的非负性计算出未知数的值是解决本题的关键.【经典例题七已知一个数的平方根,求这个数】【变式训练】的值,再找出关系即可.【详解】(1)解:由题意得,6290a a ++-=,解得1a =,21649m +∴==();(2)当1a =时,2160x -=,216x ∴=,4x ∴=±.【点睛】本题考查平方根的意义及求平方根,关键是要掌握一个正数有两个平方根,互为相反数.【经典例题八利用平方根解方程】【变式训练】1.(2023下·河北石家庄·七年级统考期中)问题:在一块面积为2400cm 的正方形纸片上,沿着边的方向裁出一块面积为2300cm ,且长宽之比为3:2的长方形纸片(不拼接),能裁出吗?对于上述问题的解决,嘉嘉和琪琪进行如下对话:嘉嘉:可是不符合实际情况啊正方形纸片的面积为【经典例题九平方根的应用】【变式训练】1.(2023下·河南郑州·八年级统考期末)电流通过导线时会产生热量,满足2=,其中Q为产生的热量Q I Rt为通电时间(单位:,则乙的面积为【拓展培优】A.2B.【答案】C【分析】本题主要考查算术平方根的定义,准确求出阴影部分的面积是解题的关键.根据割补法求出阴影部分的面积即可得到答案.①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则±【答案】2【分析】本题考查了二元一次方程组的应用,平方根,找准等量关系,列出二元一次方程组是解题的关键.则3757.69的算术平方根为.【答案】61.3【分析】本题考查了求一个数的算术平方根,根据题目所给的方法进行解答即可.;,由于10.(2023上·浙江丽水·七年级统考期中)如图角形和一个阴影小正方形(无缝隙、不重叠)折后得到图2所示的大正方形.(1)若阴影小正方形的边长为1,则图2中大正方形的面积为(2)若图2中大正方形的边长为正整数,则阴影小正方形的边长为【答案】7123或8【分析】(1)根据图1求出四个直角三角形的面积,根据翻折的性质,从而得到图可;(2)设小正方形的面积为x,从而得到图2大正方形的面积,再根据大正方形的边长为正整数,即可得到x的值.【详解】解:(1)∵一个边长为6的正方形被分割成四个完全相同的直角三角形和一个阴影小正方形,阴影小正方形的边长为1,②∵3,2a b ==-,∴a b >,∴()()33228a b ⊕=⊕-=-=-,∵83-<,∴()()()8328313a b a ⊕⊕=-⊕=⨯-+=-.13.(2023上·湖北黄冈·七年级武穴市实验中学校考期中)如图,A 、B 、C 、D 四张卡片分别代表一种运算,例如,5经过A B C D →→→顺序的运算,可列式为:2[(52)3]4⨯-+,8经过运算顺序B D A C →→→运算,可列式为2{[(83)4]2}-+⨯(1)请计算2[(52)3]4⨯-+;(2)列式计算2-经过C D A B →→→顺序的运算结果;(3)若数x 经过B C A D →→→顺序的运算,结果是12.则求初始数字x 是多少?【答案】(1)53(2)13(3)初始数字x 是5或1【分析】(1)根据有理数的运算法则和运算顺序计算即可;(2)根据题意可以列出算式2[(2)4]23-+⨯-,计算即可;(3)根据题意可以得到()223412x -+=,即可求解.【详解】(1)解:2[(52)3]4⨯-+()21034=-+274=+53=;(2)解:由题意得:2[(2)4]23-+⨯-(44)23=+⨯-2。
算术平方根与平方根专项练习
算术平方根与平方根专项练习算术平方根与平方根专项练一、填空1、如果一个数的平方等于a,即x^2=a,那么x叫做a的算术平方根。
注:①数a的算术平方根记作√a,其中a≥0;②0的算术平方根为0;③只有当a≥0时,数a才有算术平方根。
2、如果一个数的平方等于a,即x^2=a,那么x叫做a的平方根(二次方根)。
注:①一个正数a有两个平方根,且它们互为相反数,记为±√a;②有一个正数的平方根,就是正数;③负数没有平方根。
3、4的平方根是2;算术平方根是2.4、36有个正平方根6,一个负平方根-6;它们的和是0;它们互为相反数。
5、0.04的算术平方根是0.2,开平方等于±0.2的数是0.2和-0.2.6、81的正平方根是9;(-5)^2的平方根是5i。
7、算术平方根等于它本身的数只有0和1;平方根等于它本身的数只有1.8、若5x+4的平方根为±1,则x=-3或x=-0.2;若m-4没有实数平方根,则|m-4|=m-4.9、已知2a-1的平方根是±4,3a+b-1的平方根是±4,则a+2b的平方根是±10.10、若实数x,y满足x-2+(3-y)^2=0,则代数式xy-x的值为1.11、在小于或等于100的非负整数中,其平方根是整数的共有10个。
12、已知x+2与y-3互为相反数,则xy=-6.13、因为没有什么数的平方会等于负数,所以负数没有实数平方根,因此被开方数一定是非负数或0.14、当m≥3时,3-m有意义。
二、选择题15、(-3)^2的平方根是B.-3.16、9的算术平方根是B.3.17、下列个数没有平方根的是C.(-1)。
18、如果3x-5有意义,则x可以取的最小整数为D.3.19、x是16的算术平方根,那么x的算术平方根是B.2.20、选B。
因为(-9)的平方是81,而81不等于9.21、选B。
因为64的平方根是8,而8的相反数是-8,故平方根为±8.22、选C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方根提高专题练习
一、 填空
1、 若x >0 ,y>0, 且x+y = 8 ,xy = 4, 则。
2、 0234=++-b a ,则 010259622=+--+-x x x x = 。
3、 如果 a>0 , 则化简:=+-4)1(2a
a 。
4、 如果 3 ≤ x ≤ 5 , 则 a
b +3a = 。
5、 已知x=251
- , 则x 2 – 4x – 5 的值等于 。
6、 已知x+y=43 ,x-y=22,求6+xy 的值?
7、 2
x -有意义,则x= ,则x x --1)1(2
= 。
8、 若a>0 ,则a < a ( ) , 2x -一定无意义 9、 已知:x=
10001, 则=-3x 。
10、
x x ---22有意义,则x = 11、
=-+-x Y 25 0 ,则x = ,y = . 12、
(x+y-1)2 与5+-y x 互为相反数,则x= ,y = 13、
52- + 53+ = 14、
若x x = ,则x= ; 若x x + = 0 ,则x 15、
设3+6=a+b ,其中a 为整数 ,0<b<1 ,则 a = ,b = 。
16、
已知a<3+5,且a -2=a –2 ,则整数a 的值为 。
17、 (23+33)(23-33)= 。
18、 若31
=-x x ,则x+x
1= .
19、
如果 a + b = 3 +2, ab= 6 , 则a 2+b 2 = 20、
若 a< - 1 , 计算121222+--++a a a a = 。
21、 (a b -)2 + (b a -)2 = 22、
若b=642-a +264a - 。
则b a -3的值等于 。
23、
已知:0<a<1,则a , a , a 1 从小到大的顺序是 。
24、 若2<x<3, 则962+-x x +x -2= 。
25、
若0<m<1, 则化简:4)1(2-+m m = 。
26、
已知x+y=3+7 ,x 为正整数,0<y<1, 则y= 。
27、
已知a 是11的整数部分,b 是11的小数部分,则(b-11)a = 28、 若x +x=0 , 则化简x x ---2)1(2= 。
29、 已知:a 2-3a+1=0 。
30、 211
+ +321
+ + 431
+ +541+ +………..+ 199919981
+ +200019991
+= 。
31、 若x<2 , 化简 x x -+-3)2(2= 。
32、 已知a 为实数,化简 3a - - a a 1- = 。
33、
38 的平方根是 。
34、
若m<0, 2m +33m = 。
35、
若0)2(2=-x x ,则x = 。
二、 判断
1. 36的平方根是土6 ( )
2. 16的平方根是土4 ( )
3. a 是有理数,则a 的平方根是土a ( )
4. 2)3(-无意义( )
5. a 是实数,则a 2+1一定大于或等到于1 ( )
6. 实数和数轴上的点之间有一一对应关系( )
7.
三、 选择
1、 数轴上原点及其右边的数表示( )
A 、 正数
B 、正有理数
C 、非负实数
D 、非有理数
2、 x 的平方根是2 ,则x 是 ( )
A 、16
B 、土16
C 、64
D 、土64
3、 a 的平方根是土5 ,则a+1的平方根是 ( )
A 、土6
B 、土5
C 、土26
D 、土25
4、 m 的平方根是a , 则m +1的平方根是( )
A 、a+1
B 、a 2+1
C 、土12+a
D 、土1+a
5、 实数m 、n ,若m +n =0 ,则m 、n 的关系是( )
A 、m=n=0
B 、 m 、n 互为相反数。
C 、m 、n 异号
D 、m 、n 不相等 。
6、 已知:x 28是一个整数,则正整数x 的范围是( )
A 、 4
B 、7
C 、28
D 、无法确定
四、 解答题
1、 先化简,再求值:
y x xy y x y
x y
x +++---422,其中x=3
2, y= 24 。
2、 已知:x=2+1 , 求代数式:1212--+-x x x x ÷1
2222++--x x x x 的值?
3、 若y=2)1(1221-+-+-x x x ,求代数式(x+y )100 的值 ?
4、 已知:a , b , c ,满足
21b a -+c b +2+c 2 – c +41=0 求:a(b+c)
5、 计算:211
+ +3
21
+ + 431+ +541+ +………..+ 199919981+ +
2000
19991+
6、 已知:a+b+c-2(21-+-+c b a )= 0 , 求:a 2 +b 2 +c 2
7、 如果 a+b+
1-c = 42-a +21+b - 4 ,试求:a+2b-5c 的值?
8、 已知:a+b-21-a -42-b = 33-c -
2c -5 ,求:a+b+c 的值?。