九年级第二次月考试卷
2023-2024学年陕西省西安市光中学教育集团九年级(上)第二次月考物理试卷+答案解析

2023-2024学年陕西省西安市光中学教育集团九年级(上)第二次月考物理试卷一、单选题:本大题共10小题,共20分。
1.很多物理量的单位是以科学家名字命名的。
下列以科学家的名字命名的物理量单位与其物理量对应正确的是()A.安培——电阻B.欧姆——电压C.焦耳——热量D.伏特——电流2.下列四组物体中,在通常情况下都不容易导电的是()A.空气、人体B.陶瓷管、橡胶棒C.石墨棒、金属丝D.盐水溶液、塑料3.如图甲是小华在学校科技实践活动中自制的盐水动力车,主要是由盐水电池和一个小电动机组装而成的。
图乙是他在测量自制盐水电池的电压,下列内容摘自关于盐水动力车的说明书,其中说法不合理的是()A.盐水电池给小车供电时,化学能转化为电能B.盐水电池供电时不会升温C.自制盐水电池的电压是D.小车运动时电能转化为机械能4.下列有关电阻、变阻器说法正确的是()A.电阻是导体对电流的阻碍作用,导体中没有电流流过时,导体就没有电阻B.电阻是导体的一种性质,与电压成正比,与电流成反比C.将一根金属丝缓慢拉长后,其电阻变大D.滑动变阻器是通过改变电阻丝的横截面积来改变电阻的5.下列各图中,电流表能直接测量通过灯泡的电流的电路是()A. B.C. D.6.如图所示是电阻、的电压-电流关系图像,下列说法正确的是()A.电阻的阻值是B.的阻值小于的阻值C.电阻、串联,当电流为时,、两端总电压为3VD.电阻、并联,当电源电压为2V时,干路中的电流是7.用如图所示的器材探究影响导体电阻大小的因素,分别选用A、B、C、D四根不同的金属丝接入M、N 两点之间,下列说法正确的是()A.接A、D,可探究导体电阻大小与导体长度是否有关B.接C比接B时电流表示数更大一些C.接A、C,可探究导体电阻大小与横截面积是否有关D.该实验装置不能探究导体电阻与导体材料的关系8.在图所示的各电路中,闭合电键S后,在滑动变阻器滑片P向右移动的过程中,电表示数变化表示错误的是()A.电流表A示数变小B.电压表V示数变小C.电流表示数不变D.电流表A与电流表示数比值不变9.图甲是我们经常使用到的非接触式红外线测温枪的工作原理图。
2023-2024学年四川省泸州市合江县第五片区九年级(上)第二次月考物理试卷+答案解析

2023-2024学年四川省泸州市合江县第五片区九年级(上)第二次月考物理试卷一、单选题:本大题共10小题,共30分。
1.根据所学的电学知识和生活经验,下列数据最接近实际的是()A.人体的正常体温约为B.人体安全电压为不高于36VC.电饭锅正常工作时电流为D.一节新干电池的电压为2V2.下列有关分子动理论的说法不正确的是()A.分子是真实存在的,因此我们可以直接观察到分子运动B.我们能够闻到花香是因为分子在不停地做无规则运动C.我们很难压缩固体体积是因为分子间存在着相互作用的斥力D.气体分子间的距离很远,彼此之间几乎没有作用力3.一瓶酒精用掉一半,剩下一半酒精的质量、密度、比热容和热值的情况是()A.质量、密度、比热容和热值都不变B.质量变为原来的一半,密度、比热容和热值不变C.质量和密度变为原来的一半,比热容和热值不变D.质量和热值变为原来的一半,密度和比热容不变4.关于图中所示的热现象,说法正确的是()A.图甲中炙热的铁水具有内能,冰冷的冰块没有内能B.图乙中冬天搓手取暖是将内能转化为机械能C.图丙中用湿毛巾冷敷降温是通过热传递的方式减小人体的内能D.图丁中能量转化与汽油机做功冲程能量转化都是机械能转化为内能5.下列说法中,正确的是()A.验电器的工作原理是“异种电荷互相吸引,同种电荷互相排斥”B.电流的方向都是从电源的正极流向负极C.同一电路中的两个灯泡,它们两端的电压相等,可以判断这两个灯一定是并联的D.油罐车底拖一条铁链是为了防止摩擦起电造成危害6.下列电路图中,电压、电流关系正确的是()A.B.C.D.7.关于电阻的说法正确的是()A.横截面积相同的导体,越长电阻越大B.两个电阻并联相当于增大了导体的横截面积,总电阻大于其中任何一个电阻C.电阻大小在数值上等于导体两端的电压与通过导体的电流的比值D.根据可知:电流相同时,导体的电阻与它两端的电压成正比8.如图所示,图甲是某款电子秤的外观图,图乙是它的原理图,表盘是由电压表改装而成的,下列判断正确的是()A.物体质量越大,电子秤示数越大,电路中电流不变B.物体质量越大,电子秤示数越小,电路中电流不变C.物体质量越大,电子秤示数越大,电路中电流越大D.物体质量越大,电子秤示数越小,电路中电流越大9.在探究通电螺线管的实验中,小明连接了如图所示的电路,通电螺线管A端放有一小磁针,闭合开关,移动滑动变阻器的滑片。
2024年上海市宝山区罗南中学九年级下学期第二次月考道德与法治试卷

九年级道法练习姓名班级学号一、综合理解题1、在中国共产党领导下,中华民族迎来了从站起来,富起来到_______起来的伟大飞跃。
2、我国协调推进全面建设全面___________国家,全面深化改革,全面________治国,全面从严治党,“四个全面”战略布局。
3、在以“团结就是力量”为主题的课本剧排演活动中,担任负责人的晓君发现,成员个性鲜明,各有所长。
晓君不知如何让大家更好地融入团队并完成任务。
结合材料,从“集体的力量”或“友谊的力量”的角度针对晓君的困惑,请你给晓君提一条建议并说明理由。
(6分)二、时政探究题环境是民生,青山就是美丽。
党的十八大以来,我国大力推进生态系统的保护修复,牢筑中华民族永续发展的根基。
为了解相关情况,晓畅同学收集了两组数据,(数据来源:国家统计局)制作了下图:4. 你从图1中可以获得一个什么结论,其依据是什么?5.根据上述材料,晓畅坚信未来我国人民将享有更普惠的绿色福祉。
请综合运用所学内容回答,晓畅的信心来自于哪里?(4分)三、案例分析题6、在全国知识产权宣传周期间,行远中学初二(1)班全体同学到当地法院知识产权庭旁听“甲诉乙小说著作权纠纷案”。
旁听过程中,同学们了解到,著作权是知识产权重要种类,保护知识产权有利于创新发展。
《中华人民共和国著作权法》规定,未经著作权人同意,不得发表其作品。
法院审理后认定,案件中涉及的小说是甲具有独创性的智力成果,应当予以尊重;乙未经甲许可,擅自发表属于甲的小说,构成。
最后法院裁决支持甲的诉讼请求。
同学们对这次旁听活动印象深刻,回到学校,同学们自发组织“知识产权法学习小组”,并编写案例小册子,传播法治力量。
你愿意参加这项活动吗?结合案例,从“法治与创新”的角度,综合所学内容阐述理由。
江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷(含答案)

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷一、选择题(本大题共10小题,每小题3分,共计30分,在每小题给出的四个选项中恰有一项是符合题目要求的)1.下列各点中,在反比例函数的图象上的是( )4y x =A. B. C. D.(14)--,(14)-,(2)-,2(2),-22.将抛物线向右平移2 个单位长度,再向下平移5 个单位长度,平移后的抛物线的2y x =解析式为( )A. B. C. D.2(2)5y x =+-2(2)5y x =++2(2)5y x =--2(2)5y x =-+3.如图,O 的半径为10,弦AB=16,点 M 是弦 AB 上的动点且点 M 不与点A 、B 重⊙合,则OM 的长不可能是( )A.5B.6C.8D.94.如图,等腰直角三角板ABC 的斜边AB 与量角器的直径重合,点D 是量角器上 120° 刻度线的外端点,连接CD 交AB 于点E ,则∠CEB 的度数是( )A.100°B.105°C.110°D.120°5.正方形网格中,如图放置,则=( )AOB ∠sin AOB ∠C. D.1226.如图,直线,直线m 、n 分别与直线a ,b ,c 相交于点A ,B ,C 和点D ,E ,F ,a ∥b ∥c 若AB =2,AC =5,DE =3,则EF =( )A.2.5B.4C.4.5D.7.57.已知点,,都在反比例函数的图象上,则,A (−4,y 1)B (−2,y 2)C (3,y 3)(0)ky k x =>y 1,的大小关系为( )y 2y 3 A. B. C. D.y 3<y 2<y 1y 2<y 3<y 1y 3<y 1<y 2y 2<y 1<y 38.如图,点D 在△ABC 的边AC 上,添加一个条件,不能判断△ABC 与△BDC 相似的是( )A.∠CBD =∠AB.C.∠CBA =∠C DBD.BC CD AC AB =BC CD AC BC=9.如图,∠B 的平分线 BE 与 BC 边上的中线 AD 互相垂直,并且 BE =AD =4,则BC 值为()A.7B.C. 6D.10.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,A 点坐标为,50-(,)对角线 AC 和 OB 相交于点D ,且AC OB =40.若反比例函数的图象经过 ∙(0)k y x x =<点D ,并与BC 的延长线交于点E ,则值等于()CDE S ∆A. 2 B.1.5 C.1 D.0.5二、(本大题共8小题,第11~12每小题3分,13~18每小题4分,共30分)11.抛物线y =2(x +1)2 +3的顶点坐标是.12.在Rt △ABC 中,∠C =90°,AC =5,BC =4,则tanA=.13.正八边形的中心角是 度.14.圆锥的底面半径是3,母线长为4,则圆锥的侧面积为.15.如图,△ABC 和△DEF 是以点O 为位似中心的位似图形,若 OA ∶AD =2∶3,则△ABC 与DEF 的面积比是 .16.如图,有一个测量小玻璃管口径的量具ABC ,AB 的长为18 mm ,AC 被分为60 等份.如果小玻璃管口径DE正好对应量具上20 等份处(DE ∥AB ),那么小玻璃管口径DE = mm.17. 已知,,若 m ≤n ,则实数 a 的23236m n a +=++22324m n a +=++值为.18. 线段AB =,M 为AB 的中点,动点 P 到点 M 的距离是1,连接 PB ,线段 PB绕点P 逆 时针旋转 90° 得到线段 PC ,连接 AC ,则线段 AC 长度的最小值是.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;(2)如图,在Rt △ABC 中,∠C =90°,AC ,BC ,解这个直角三角形.20.(本小题满分10分)如图,是三角形的外接圆,是的直径,AD ⊥BC 于点E .O ABC AD O (1)求证:;BAD CAD ∠=∠(2)若长为8,,求的半径长.BC 2DE =O 21.(本小题满分10分)如图,在平面直角坐标系 xOy 中,直线 y =2x +b 经过点 A (-2,0)与 y 轴交于点 B ,与反比例函数的图象交于点 C (m ,6),过 B 作 BD ⊥y 轴,交反比例函数(0)k y x x =>的图象于点D .连接AD 、CD .(0)k y x x=>(1)b =,k =,不等式 >2x +b (x >0)的解集是;k x(2)求△ACD 的面积.如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥BD,交AB于点E,(1) 求证:△ADE∽△ABD;(2)若AB=10,BE=3AE,求线段AD长.23.(本小题满分12分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,(1)求证:AC平分∠BAD;(2)若∠BAD=60°,AB=4,求图中阴影部分的面积.24.(本小题满分12分)某商品进货价为每件40 元,将该商品每件的售价定为50 元时,每星期可销售250 件.现在计划提高该商品的售价增加利润,但不超过58 元.市场调查反映:若该商品每件的售价在50元基础上每上涨1元,其每星期的销售量减少10 件.设该商品每件的售价上涨x元(x为整数且x≥0)时,每星期的销售量为y 件.(1)求y与x之间的函数解析式;(2)当该商品每件的售价定为多少元时,销售该商品每星期获得的利润最大?最大利润是多少?(3)若该商品每星期的销售利润不低于3000 元,求商品售价上涨x元的取值范围.在矩形ABCD 中,AB <BC ,AB =6,E 是射线CD 上一点,点C 关于BE 的对称点F 恰好落在射线DA 上.如图,当点 E 在CD 边上时,①若BC =10,DF 的长为;②若AF ·FD =9时,求 DF 的长;(2)作∠ABF 的平分线交射线 DA 于点M ,当 时,求 DF 的长.12MF BC =26.(本小题满分13分)在平面直角坐标系中,如果一个点的纵坐标比横坐标大k ,则称该点为“k 级差值点”.例如,(1,4)为“3级差值点” ,(﹣3,2)为“5级差值点”.(1) 点(x ,y )是“4级差值点”,则y 与x 的函数关系式是;(2) 若反比例函数的图象上只有一个“k 级差值点”(﹣3≤ k ≤2),t =4m +2k +4,求t 的取m y x=值范围;(3) 已知直线l : y =nx +3与抛物线y =a (x ﹣h )²+h +3交于A ,B 两点,且AB ≥3.若 k ≠3时,2直线 l 上无“k 级差值点”,求a 的取值范围.答案一、选择题1. A2. C3.A4.B4.B5.B6.C7.D8.B9.D 10.C二填空题、11. (-1,3)12.4 513. 4514. 12π15. 4∶2516.1218.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)19.(本小题满分10分)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;解:原式= (2)分211122-⨯-…………………………………………………………………… 4分11142=--…………………………………………………………………… 5分14=(2)解:在在Rt △ABC 中,∠C =90°………………………………………………………… 7分∴∠A =60°…………………………………………………………………… 8分∠B =90°-∠A =90°-60°=30°………………………………………………… 9分 (10)分2AB AC ==20.(本小题满分10分)解:(1)∵AD 是的 ⊙O 直径∵AD ⊥BC∴弧BD =弧CD ,…………………………………… 2分∴∠BAD =∠CAD …………………………………… 4分C BAtan BC A AC ==(2) 连接OC∵AD 是的 ⊙O 直径∵AD ⊥BC∴CE =BE =BC…………………………………… 5分12∵BC =8∴CE =4…………………………… 6分在Rt △OEC 中,由勾股定理得,222OE EC OC +=设圆的半径长为r ,∵DE =2∴…………………8分222(2)4r r -+=∴5r =∴⊙O 的半径长为5…………………10分21.(本小题满分10分)(1) b =4,k =6,0<x<1…………………6分 (2)在y =2x +4中,令x =0,则y =4,∴B (0,4) ,在中,令y =4则x =1.56(0)y x x=>∴ D (1.5,4),∴BD =1.5…………………8分∴S △ACD =S △ABD +S △BCD ==…………………10分111.54 1.56422⨯⨯+⨯⨯-()9222.(本小题满分10分)(1)证明:∵BD 是∠ABC 的平分线∴∠ABD =∠DBC……………………………1分∵DE ⊥BD∴∠BDE =90°∵∠C =90°∴∠ADE + ∠BDC =90°,∠CBD +∠BDC =90°∴∠CBD = ∠ADE ……………………………………3分∴∠ADE = ∠ABD ……………………………………4分又∵∠A =∠A∴△ADE ∽△ABD ………………………………5分(2)解:∵AB =10,BE =3AE∴AE =2.5,BE =7.5………………………………6分由(1)得△ADE ∽△ABD ,∴………………………………8分AD AE AB AD∴AD 2=AB ·AE =10×2.5=25∴AD =5∴线段AD 长为5.………………………………10分23. (本小题满分12分)(1)证明:如图1,连接OC ,∵CD 为⊙O 切线,∴OC ⊥CD………………………………1分∵AD ⊥CD∴OC // AD ………………………………2分∴∠OCA =∠CAD , ………………………………3分又∵OA =OC∴∠OCA =∠OAC ………………………………4分∴∠CAD =∠OAC ,………………………………5分∴AC 平分∠DAB . ………………………………6分(2)解:如图所示,过点O 作OE ⊥AC 于点E ,则AE =EC =AC ,12∵∠BAD =60°,AC 平分∠DAB∴∠CAB =30°,∠COB =2∠CAB =60°,………………………………8分在Rt △AOE 中,AO =AB =2,12∴OE =OA =1,AE 12=∴AC =2AE =………………………………10分∴AOC BOCS S S ∆=+阴影扇形=2160212360π⨯⨯⨯+……………………………12分23π24.(本小题满分12分)解:(1)由题意可得, y =250-10x=﹣10x+250,y 与x 之间的函数解析式是y =﹣10x +250;……………………………2分(2)设当该商品每件的售价上涨x 元时,销售该商品每星期获得的利润为w 元.由题意可得:w=……………………………4分(5040)(10250)x x +--+=2101502500x x -++=210(7.5)3062.5x --+∵,0≤x ≤25且x 为整数100-<∴当x =7或8时,w 取得最大值3060,此时50+x =57或58.……………………6分答:当该商品每件的售价为57或58元时,每星期获得的利润最大,最大利润为3060元.……………………………7分(3)由题意得:……………………………8分21015025003000x x -++=解得……………………………10分12510x x ==,当x =5或10时,此时50+x =55或60又∵售价不超过58元∴5≤x ≤8且x 为整数…………………………12分25.(本小题满分13分)(1) ①DF 的长为 2 …………………………2分②解:∵四边形ABCD 是矩形∴∠BCD =∠A =∠ABC =∠D = 90°,CD =AB =6由对称可知∠BFE =∠BCD =90°, BF =BC∴∠AFB +∠DFE =90°,∠DEF +∠DFE =90°,∴∠AFB =∠DEF又:∠D =∠A =90°∴△FAB ∽△EDF . ………………………4分∴………………………5分AFBADE FD =∴AB ·DE =AF .DF =9.又∵AB =6,∴DE =……………………………………………6分32∴CE =CD -DE =6 -=………………………7分3292(2)分两种情况讨论.①当点F 在线段 AD 上时,如图(1),过点M 作 MN ⊥BF 于点N ,则∠MNF =∠A =90°.又∵∠AFB =∠NFM∴△FMN ∽△FBA∴MN MF FNAB BF AF==又∵,BF =BC12MF BC =∴12MNMFFNAB BF AF ===∴MN =3,AF =2FN …………………………………………8分∵BM 平分∠ABF ,∠BNM =∠A =90°,∴AM = MN =3.∴AM +MF =2FN∴13()22BN FN FN++=∴13(6)22FN FN++=∴FN =4…………………………………………9分∴AD =BF =BC =6+4=10∴AF =8∴DF =AD - AF =10-8=2…………………………………10分②当点F 在线段 DA 的延长线上时如图(2),过点M 作 MN ⊥BF 于点 P .同①可得AM =MN =AB =3,BN =AB =6,BC = AD =10,12MF =BC =5,12∴AF =8,∴DF =18.综上可知,DF 的长为2或18.…………………………………13分26.(本小题满分13分)26.(1)…………………………………3分4y x =+(2)解:由题意得:mx kx =+∴20x kx m +-=∵图象上只有一个“k 级差值点”∴方程 有两个相等的实数根20x kx m +-=∴△=0∴240k m +=∴…………………………………4分24m k =-∵424t m k =++∴…………………………………5分224t k k =-++=2(1)5k --+当k =1时,t 有最大值5,当t =-3时,t 有最小值-11-11≤t ≤5…………………………………7分(3)由题意得若 k =3时,直线 l 上有“k 级差值点”∴y =x +3∴n =1…………………………………8分∴x +3= a (x -h )²+h +3∴x 1=h ,x 2=…………………………………9分1h a+∵AB ≥利用两点间距离公式或根据够勾股定理得出≥3即≥3………………………………11分12x x -1a ∴或,即………………………………13分103a <≤103a >≥-11,033a a ≥≥-≠。
甘肃武威市凉州区武威第二十七中学2024-2025学年九年级上学期12月第二次月考数学试题(无答案)

2024—2025学年第一学期第二次月考试卷九年级数学一、选择题(每小题3分,共30分)1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A. B. C. D.2.关于的方程是一元二次方程,则值是( )A. B. C.或 D.为任意实数3.已知二次函数的图象与轴一个交点的坐标为,则与轴的另一个交点的坐标是( )A. B. C. D.4.已知正六边形的半径为4,则这个正六边形的边心距为( )A.2B.D.45.凉州区某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月率为,则由题意列方程应为( )A. B.C. D.6.如图,四边形内接于,是直径,,则的度数为( )A.90°B.100°C.110°D.120°7.在同一平面直角坐标系内,二次函数与一次函数的图象可能是( )A. B. C. D.x 22(1)20a x x ---=a 1a ≠1a ≠-1a ≠1-26y x x c =++x (1,0)-(3,0)-(3,0)(5,0)-(5,0)x 3200(1)1000x +=20020021000x +=⨯20020031000x +=⨯2200200(1)200(1)1000x x ++++=ABCD O e AB O e 20ABD ∠=︒C ∠2(0)y ax bx b a +≠=+y ax b =+8.已知点,,在抛物线上,则、、的大小关系是( )A. B. C. D.9.如图,是等边的内切圆,分别切,,于点,,,是弧上一点(不与点重合),则的度数是( )A.65°B.60°C.58°D.50°10.如图1,中,,为的中点,点沿从点运动到点,设,两点间的距离为,,图2是点运动时随变化的关系图象,则的长为( )图1图2A.3 B.4 C.5 D.6二、填空题(每小题3分,共18分)11.已知圆锥的底面的半径为,高为,则它的侧面积是________.12.在实数范围内定义运算“★”,其法则为:,则方程的解为________.13.如图,过点且平行于轴的直线与二次函数图象的交点坐标为,,则不等式的解集为________.14.我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大1(3,)A y -2(2,)B y 3(3,)C y 224y x x c =-+1y 2y 3y 123y y y >>132y y y >>321y y y >>231y y y >>O e ABC △AB BC AC E F D P DF F EPF ∠Rt ABC △90B ∠=︒E BC P BC B C B P x PA PE y -=P y x BC 3cm 4cm 22a b b a =-★(43)24x =★★(0,1)x 2(0)y ax bx c a =++>(1,1)(3,1)210ax bx c ++->小,以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深寸,锯道长尺(1尺寸).问这根圆形木材的直径是________寸.15.如图,已知抛物线与轴交于、两点,顶点的纵坐标为,现将抛物线向右平移2个单位,得到抛物线,则下列结论正确的是________(写出所有正确结论的序号)①;②;③阴影部分的面积为4;④若,则.16.如图,在平面直角坐标系中,点的坐标为,将线段绕点按顺时针方向旋转45°,再将其长度伸长为的2倍,得到线段;又将线段绕点按顺时针方向旋转45°,长度伸长为的2倍,得到线段;如此下去,得到线段、…,(为正整数),则点的坐标是________.三、解答题(一)(本大题共6小题,共33分,解答应写出必要的文字说明,证明过程或演算步骤)17.解方程(6分)(1);(2).18.(4分)通过配方变形,将二次函数化为的形式,并指出顶点坐标1ED =1AB =10=2y ax bx c =++x A B C 2-2111y a x b x c =++240b ac ->0a b c -+<1c =-24b a =1P 1OPO 1OP 2OP 2OP O 2OP 3OP 4OP 5OP n OP n 2024P 2610x x --=2(21)4(21)30x x ++++=241y x x =-+-2()y a x h k =-+及取何值时,随的增大而减小.19.(5分)关于的一元二次方程.(1)求证:对于任意实数,方程总有两个不相等的实数根;(2)若方程的一个根是2,求的值及方程的另一个根.20.(6分)在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,的三个顶点都在格点上.(1)以为原点建立直角坐标系,点的坐标为,则点的坐标为________;(2)画出绕点顺时针旋转90°后的,并求点旋转到所经过的路线的长.21.(6分)如图:要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成三个大小相同的矩形羊圈.(1)若设米,矩形的面积为平方米,写出与的函数关系式及自变量的取值范围;(2)若矩形的面积为400平方米,求羊圈的边长的长.22.(6分)小慧爷爷家的的房前有一块矩形的空地,空地上有三棵树、、.为了响应“建设美丽乡村,共建美好家园”的号召,小慧爷爷想要修建一个圆形花坛,使三棵树都在花坛的边上.(1)请你帮小慧爷爷把花坛的位置画出来;(尺规作图,不写作法,保留作图痕迹)(2)若中米,米,,试求这个圆形花坛的面积.四、解答题(一)(本大题共5小题,共39分,解答应写出必要的文字说明,证明过程或演算步骤)x y x x 2(1)60x k x -+-=k k ABO △O B (3,1)-A ABO △O 11OA B △B 1B AB x =ABCD y y x ABCD BC A B C ABC △16AB =12AC =90BAC ∠=︒23.(6分)某商品进价每个为10元,当售价为每个12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请解答以下问题:(1)为了让利给顾客,并同时获得840元利润,应涨价多少元?(2)当售价定为多少时,获得利润最大,最大利润是多少?24.(7分)某游乐场的圆形喷水池中心有一雕塑,从点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为轴,点为原点建立直角坐标系,点在轴上,轴上的点,为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为.(1)求雕塑高;(2分)(2)求落水点,之间的距离;(2分)(3)若需要在上的点处竖立雕塑,,,.问:顶部是否会碰到水柱?请通过计算说明.(3分)25.(共8分)如图,是的外接圆,是直径,过点作直线,过点作直线,两直线交于点,如果,的半径是.(1)求证:是的切线.(2)求图中阴影部分的面积(结果用表示).26.(8分)【问题情境】数学活动课上,老师和同学们一起玩旋转,如图1,四边形是正方形,绕点顺时针旋转后与重合.图1图2【解决问题】O OA A x O A y x C D 21(5)66y x =--+OA C D OD E EF 10m OE = 1.8m EF =EF OD ⊥F O e ACD △AB D //DE AB B //BE AD E 45ACD ∠=︒O e 2cm DE O e πABCD ADE △A ABF △(1)连接,若,求的长;【类比迁移】(2)用上述思想或其他方法证明:如图2,在正方形中,点、分别在、上,且.求证:.27.(10分)如图,抛物线交轴于点和点,交轴于点.图1 图2(1)求抛物线的函数解析式;(3分)(2)如图1,若点是抛物线上一动点(不与点重合),且,求点的坐标;(3分)(3)如图2,设点是线段上的一动点,作轴,交抛物线于点,求线段长度的最大值及此时点的坐标.(4分)EF BC =2BF =EF ABCD E F DC BC 45EAF ∠=︒EF BE DF =+2y x bx c =-++x (3,0)A -B y (0,3)C P C ABP ABC S S =△△P Q AC DQ x ⊥D DQ D。
辽宁省铁岭市2024—2025学年上学期第二次月考九年级数学试卷

辽宁省铁岭市2024—2025学年上学期第二次月考九年级数学试卷一、单选题1.下列关于x 的方程有实数根的是()A .x 2-x +1=0B .x 2+x +1=0C .(x -1)(x +2)=0D .(x -1)2+1=02.下列运动属于旋转的是()A .滚动过程中的篮球的滚动B .钟摆的摆动C .一个图形沿某直线对折过程D .气球升空的运动3.如图,在平面直角坐标系中,(4,2)D -,将Rt OCD △绕点O 逆时针旋转90︒到OAB △位置,则点B 坐标为()A .(2,4)B .(4,2)C .(4,2)--D .(2,4)-4.围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史.一棋谱中四部分的截图由黑白棋子摆成的图案是中心对称的是()A .B .C .D .5.如图,将△ABC 绕点C 顺时针方向旋转40°得△A’CB’,若AC ⊥A’B’,则∠BAC 等于()A .50°B .60°C .70°D .80°6.如图,已知抛物线2y ax c =+与直线y kx m =+交于()()123,,1,A y B y -,则关于x 的不等式2ax c kx m +≥+的解集是()A .3x ≤-或1x ≥B .1x ≤-或3x ≥C .31x -≤≤D .13x -≤≤7.若a ,b 是方程x 2+2x-2016=0的两根,则a 2+3a+b=()A .2016B .2015C .2014D .20128.如图是一个在建隧道的横截面,它的形状是以点O 为圆心的圆的一部分,O M 是O 中弦CD 的中点,EM 经过圆心O 交O 于点E ,且8=CD m ,8m EM =,则O 的半径为()m .A .5B .6.5C .7.5D .89.如图,AD 是半圆O 的直径,点B 、C 在半圆上,且 AB BC CD==,点P 在 CD 上,若130PCB ∠=︒,则PBC ∠等于()A .25︒B .20︒C .30︒D .35︒10.如图,AB 是O 的直径,点C 为圆上一点,AC =D 是弧AC 的中点,AC 与BD 交于点E .若E 是BD 的中点,则BC 的长为()A .5B .4C .3D .2二、填空题11.已知点(,2)A m 与点(3,)B n -关于原点对称,则m n -的值为.12.已知1x =是方程²30x mx -+=的一个解,则另一个解为.x =13.如图,四边形ACBD 内接于O ,连接AB ,CD ,AB 是O 的直径,若28ADC ∠=︒,则BAC ∠的度数为.14.定义:关于x 的函数2y ax bx =+与2y bx ax =+(其中a b ≠)叫做互为交换函数,如225y x x =-与252y x x =-+是互为交换函数,如果函数22y mx x =+与它的交换函数图象顶点关于x 轴对称,那么m =.15.如图,在矩形ABCD 中,8AB =,5BC =,点M 是AB 边的中点,点N 是AD 边上任意一点,将线段MN 绕点M 顺时针旋转90︒,点N 旋转到点N ',则MBN '△周长的最小值为.三、解答题16.解方程:(1)用配方法解方程:2650x x ++=(2)用因式分解法解方程:()3224x x x -=-17.利用你所学的平移与旋转知识作答.(1)如图1,是某产品的标志图案,要在所给的图形图2中,把A ,B ,C 三个菱形通过一种或几种变换,均可以变为与图1一样的图案.你所用的变换方法是______.①将菱形B 绕点O 旋转60︒;②将菱形B 绕点O 旋转120︒;③将菱形B 绕点O 旋转180︒.(在以上的变换方法中,选择一种正确的填到横线上.).(2)如图,在平面直角坐标系中,已知点()0,2A 、()2,2B 、()1,1C .①若将ABC V 先向左平移3个单位长度,再向下平移1个单位长度,得到111A B C △,请画出111A B C △,并写出点1C 的坐标为______;②若将ABC V 绕点O 按顺时针方向旋转180︒后得到222A B C △,直接写出点2C 的坐标为______;③若将ABC V 绕点P 按顺时针方向旋转90︒后得到333A B C △,则点P 的坐标是______.18.如图,在O 中,4OA =, CDBD =,直径AB CD ⊥于点E ,连接OC ,OD .(1)求COD ∠的度数;(2)求CD 的长度.19.某公司电商平台,在2022年十一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y (件)是关于售价x (元/件)的一次函数,下表仅列出了该商品的售价x ,周销售量y ,周销售利润W (元)的三组对应值数据.x407090y1809030W 360045002100(1)求y 关于x 的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价为a (元/件),售价x 为多少时,周销售利润W 最大?并求出此时的最大利润.20.如图,AB 是O 的直径,点C 、M 在O 上,且OM BC ∥,连接AC 分别与OM ,BM 相交于点E ,F .(1)求证:点M 为弧AC 的中点;(2)若2ME =,4AE =,求BC 的长.21.等边ABC V 的边长为4,D 为BC 的中点,ABD △绕点B 顺时针旋转得到FBE ,点A 的对应点为F ,点D 的对应点为E ,连接EC ,EC BF ∥.(1)求BEC ∠的度数;(2)求EC 的长度.22.综合与实践已知:90MBN ∠=︒,在BM 和BN 上截取BA BC =,将线段AB 边绕点A 逆时针旋转α()0180α︒<<︒得到线段AD ,点E 在射线BD 上,连接CE ,45BEC ∠=︒.【特例感知】(1)如图1,若旋转角90α=︒,则BD 与CE 的数量关系是______;【类比迁移】(2)如图2,试探究在旋转的过程中BD 与CE 的数量关系是否发生改变?若不变,请求BD 与CE 的数量关系;若改变,请说明理由;【拓展应用】(3)如图3,在四边形ABCD 中,5AD AB BC ===,90ABC ∠=︒,点E 在直线BD 上,45BEC ∠=︒,CE =,请直接写出CDE 的面积.23.定义:在平面直角坐标系中,抛物线()20y ax bx c a =++≠与y 轴的交点坐标为()0,c ,那么我们把经过点()0,c 且平行于x 轴的直线(即直线y c =)称为这条抛物线的横向分割线.(1)抛物线243y x x =++的横向分割线与这条抛物线的交点坐标为______.(2)抛物线21142y x mx n =-++与x 轴交于点−2,0和()(),02B x x >-,与y 轴交于点C .它的横向分割线与该抛物线另一个交点为D ,请用含m 的式子表示点C 和点D 的坐标.(3)在(2)的条件下,设抛物线21142y x mx n =-++的顶点为P ,直线EF 垂直平分线段OC ,垂足为E ,交该抛物线的对称轴于点F .①当45CDF ∠=︒时,求点P 的坐标.②是否存在点P ,使2PF OE =?若存在,直接写出m 的值;若不存在,请说明理由.。
九年级上册第二次月考数学试卷

20 -20 学年九年级第一学期第二次月考数学学科试卷学校: 班级: 姓名: 考号:一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的。
1.抛物线2(2020)2021y x =-+的顶点坐标是( )A .(2020,2021)-B .(2020,2021)C .(2020,2021)-D .(2020,2021)-- 2.已知是方程x 2﹣3x +c =0的一个根,则c 的值是( )A .﹣6B .6C .D .23.为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是( )A.本次共随机抽取了40名学生;B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°; 4.抛物线y =2x 2与y =﹣2x 2相同的性质是( ) A .开口向下 B .对称轴是y 轴C .有最低点D .对称轴是x 轴5.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是( ) A .B .C .D .6.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =48°,则∠OAB 的度数为( ) A .24°B .30°C .50°D .60°7.如图,△COD 是△AOB 绕点O 顺时针方向旋转30°后所得的图形,点C 恰好在AB 上,则∠A 的度数为( ) A .30°B .60°C .70°D .75° 8.若二次函数y =x 2+mx 的对称轴是x =4,则关于x 的方程x 2+mx =9的根为( ) A .x 1=0,x 2=8B .x 1=1,x 2=9C .x 1=1,x 2=﹣9D .x 1=﹣1,x 2=99.已知等腰三角形的两边长分别是一元二次方程x 2﹣6x +8=0的两根,则该等腰三角形的底边长为( ) A .2B .4C .8D .2或410.如图,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为(,1),下列结论:①abc <0;②b 2﹣4ac >0;③a +b <0;④2a +c <0,其中正确的个数是( ) A .1个B .2个C .3个D .4个二、填空题(本大题共4小题,每小题5分,满分20分) 11.点M (1,2)关于原点的对称点的坐标为 .12.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点H ,若AB =10,CD =8,则BH 的长度为 . 13.若一个圆锥的母线长为4,底面半径是1,则它的侧面展开图的面积是______. 14.我国魏晋时期的数学家刘徽首创“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的周长,进而确定圆周率.某圆的半径为R ,其内接正十二边形的周长为C .若R =,则C = ,≈ (结果精确到0.01,参考数据:≈2.449,≈1.414).三、(本大题共2小题,每小题8分,满分16分)15.解方程: 3x (x +1)=3x +316.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆. (1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价. 四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,ΔABC 三个顶点的坐标分别为A (1,1)、B (4,2)、C (3,5)。
吉林省第二实验学校2024-2025学年九年级上学期第二次月考语文试题(含答案)

吉林省第二实验学校2024-2025学年度上学期九年级第二次月考语文试题本试卷包括四道大题,共22道小题。
共6页。
全卷满分120分。
考试时间为120分钟。
考试结束后,将本试卷和答题卡一并回收。
一、积累与运用(15分)阅读下面的文字,完成1~5题。
(15分)①近日,习近平总书记在全国生态环境保护大会上强调“今后5年是美丽中国建设的重要时期,”②我们妥践行“绿水青山就是金山银山”的理念,让绿色成为生态文明的“底色”。
③生态文明建设要坚持功在当代、利在千秋。
4建设人与自然和谐共生的美丽中国,让“每个人都是生态环境的建设者、保护者、受益者”成为全社会的共识。
我们___________要做生活环境的保护者,更要做历史文化的传承者。
(1)信步江南,采莲女的歌声能否让你轻声吟sòng()《诗经·关雎》中那句“□□□□,君子好逑”;(2)行至塞北,当你看到漫天的飞雪,能否想起岑参《白雪歌送武判官归京》中的名句“□□□□□□□,□□□□□□□”;(3)泛舟海上,文天祥《过零丁洋》中“□□□□□□□,□□□□□□□”那视死如归的豪迈气概,能否激荡在你的心胸;(4)走过古战场,能否与张养浩《山坡羊·潼关怀古》中“□□□□□□□,□□□□□□□□”这两句一起感慨世事变迁,朝代更迭。
让绿色成为生态文明的底色,让历史文化可以跨越千年再现。
保护环境,传承文化。
让我们可以与古人共赏一样的山水,共同吟唱一样的壮美景色。
(节选自李非燃《让绿色成为美丽中国底色》,有删改)1.给文中加点字注音,根据拼音写出相应的汉字。
(2分)(1)吟sòng()(2)更迭()2.材料第一段中有一句标点符号有错误,请找出并写出修改意见。
(2分)第___________句,修改意见:___________________________________________________________________ 3.填入文中横线处的词语,恰当的一项是()(2分)A.虽然B.不仅C.尽管D.如果4.下列短语结构类型与其他三项不同的是()(2分)A.生态环境B.美丽中国C.传承文化D.豪迈气概5.补全材料第二段中的名句,使文段更优美通畅。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正平中学2012—2013学年上学期第二次月考
九年级物理试
一、选择题(本题共14小题.每小题2分,共28分,每小题只有一个
....选项符合题意)1.如右图所示电路,以下说法正确的是【】
A.只接通S2,灯亮且电铃响B.只接通S1,灯亮且电铃响
C.只断开S3,灯亮且电铃响D.只断开S1,灯亮且电铃响
2.关于欧姆定律变形公式R=U/I,以下说法中正确的是【】
A.导体的电阻与这段导体两端的电压成正比
B.导体的电阻与这段导体的电流成反比
C.电压一定时,导体中的电流越大,导体的电阻越小
D.利用这个公式可以计算电阻,但是电阻和电压、电流无关
3.图示为常见的家用电器,关于它们正常工作时的电流,下列说法中合理的是【】
A.电风扇约2A B.电冰箱约1A C.电饭煲约0.8A D.微波炉约10A
4.用铁锤敲打铁钉,铁钉温度升高是因为铁锤()
A.把温度传递给铁钉B.把热量传递给铁钉
C.把内能传递给铁钉D.对铁钉作了功
5.有经验的柴油机维修师,不用任何仪器,只是靠近柴油机排气管口观察和闻一下,并将手伸到排气管口附近感觉一下尾气的温度,就能初步判断这台柴油机的节能效果。
在同样负荷的情况下,关于柴油机的
节能效果,下列判断中正确的是()
A.尾气的温度越高,柴油机越节能B.尾气的温度越低,柴油机越节能
C.尾气的柴油味越浓,柴油机越节能D.尾气的颜色越发黑,柴油机越节能
6.将质量相同的三块金属甲、乙、丙加热到相同的温度后,放到表面平
整石蜡上。
经过一定时间后,观察到的现象如图3所示,则三块金属
的比热容()
A.甲最大 B.乙最大
C.丙最大D.一样大
7.三个电阻R1、R2、R3并联于同一电路中,其阻值分别为30Ω、20Ω、10Ω,通过它们的电流分别为I1、I2、I3,那么I1∶I2∶I3为【】
A.6∶3∶2 B.2∶3∶6 C.3∶2∶1 D.1∶2∶3
8.如下图所示四个电路中,电阻R的阻值和电源电压已知,根据已知条件和电表的示数能测出电阻Rx阻值的电路是
( )
图 1
图3
甲乙丙
石蜡
1
2 A V
R 0
S P
9.在右图所示的电路中,电源电压和灯泡电阻都保持不变.当滑动变阻器的滑片P 由中点向右移动时,下列判断正确的是【 】
A .电流表和电压表的示数都增大,电路总功率变大
B .电流表和电压表的示数都减小,电路总功率变小
C .电流表示数减小,电压表示数不变,变阻器功率变小
D .电流表示数减小,电压表示数变大,灯泡功率不变
10.甲、乙两只普通照明灯泡的铭牌如右图所示,下列说法中正确的是
【 】
A .甲灯的实际功率一定是40W
B .将乙灯接入110V 电路中,它的额定功率仍为60W
C .两灯均正常发光时,甲灯灯丝电阻较小
D .两灯均正常发光时,甲灯消耗的电能较少
11.两个灯泡L1和L2分别标有“6V 、2A ”和“9V 、1A”字样,不考虑温度的影响,将它们连入同一电路中,
为确保两灯均不坏,下列说法正确的是【 】
A .将它们串联时,电路两端允许最大电压是15V
B .将它们并联时,干路中允许最大电流是3A
C .将它们并联时,电路中允许最大总功率是21W
D .将它们串联时,L1允许的最大功率是3W
12.在右图所示电路中,当开关S 闭合后,发现电压表V1和V2的示数相同,
则电路中发生的故障可能是【 】
A .灯L1的灯丝断了
B .灯L2的灯丝断了
C .开关S 处接触不良
D .灯L1两端接线柱短路
13. 将灯L 接到电压为U 的电路上时,灯的电功率为25W ,若将灯L 与一个电
阻R 串联后仍接在原电路上时,灯L 消耗的电功率为16W ,设灯丝电阻不变,则此电阻R 消耗的电功率是【 】
A. 2W
B. 4W
C. 8W
D. 9W
14. 一盏电灯接在恒定电压的电源上,其功率为100W 。
若将这盏电灯先接在一段很长的导线后,再接在同一电源上,已知导线上损失功率是9 W ,那么此时电灯实际消耗功率是( )
A .91 W
B .小于91 W
C .大于91W
D .条件不足,无法确定
二、填空题(本题共5小题.每空2分,共26分)
15.公园中的人工湖可以大大减弱周围地区的“热岛效应”,这是利用了水的_______大的特性。
当你漫步在
公园中,可以闻到阵阵的花香,说明分子在做______________。
16.在如图所示的电路中,电源电压不变.开关S 闭合后,移动滑片P ,改变滑动变阻器接入电
路的阻值,使电压表的示数从6V 变化到2V ,同时观察到电流表的示数从0.5A V 1 V 2
L 1 L 2 S A V P a b S
变化到1A,则定值电阻R0的阻值为____________Ω
17.两根电阻线的电阻之比是3∶4,若通过的电流之比为4∶3,则它们两端的电压之比是_____________,在相同时间内,电流通过两根电阻线所做的电功之比是______________.
18.物业工作人员来李明家收电费,他观察到李明家电能表的情况如图所示.然后从记录本上查出上月电能表的示数是811.6kW·h.若按0.5元/(kW·h)计费,李明家本月应缴
电费__________元;当李明家只有一盏电灯工作时,3min内转盘正好转过5
圈,则该灯泡消耗的电能是____________J ,其功率为______W;若家
中已有200W的电视机一台,700W的电饭锅一只,则李明家的电路上最多
可接“220V 40W”的电灯___________盏.
19.一只标有“6V 0.6A”的小灯泡,若加在其两端的电压是3V,则灯泡
的额定功率是___________W,实际功率是___________W.若把它接在电压为9V的电源两端并使它正常发光,则需要__________联一个__________Ω的电阻.
三、实验探究题
20.(26分)如图所示,是测量小灯泡电功率的实物元件图,其中电源是由三只蓄电池组成,小灯泡额定电压是 3.8V,其灯丝电阻约为10Ω,滑动变阻器标有
“10Ω、1A”字样,电流表(0~0.6A、0~3A),电压表
(0~3V、0~15V).
(1)本实验的原理是:_________________;(2分)
(2)请用笔画线代替导线,把右图中的电路元件连接
成实验电路.(要求:滑片P向左移时灯变亮,且
连线不得交叉)(4分)
(3)小刚合理地连接好电路,并按正确的顺序操作,闭合
开关后灯不亮,聪明的小刚猜想:
A.可能灯丝断了B.可能是变阻器开路
C.可能是小灯泡短路D.可能是电流表开路
请你借助已连好电路中的电流表和电压表验证小刚的猜想,并将电流表、电压表相应示数填入下表.(4分)
猜想电流表示数/A 电压表示数/ V
如果A成立
如果B成立
(4)排除故障后,在测量小灯泡的额定功率时,应先调节_________________,使小灯泡两端电压为___________V,再测出电路中的______________,即可计算出额定功率;若小灯泡两端实际电压为额定电压的 1.2 倍,则实际功率为额定功率的___________倍.(假设电阻值不变)(4分)
3
4 (5)实际测量过程中小刚才发现电压表0~15V 量程已损坏(另一量程完好),但他仍想利用现有器材测出小灯泡的额定功率,请你帮小刚重新设计新的电路图并画在下面的方框内. (3分)
(6)小刚按重新设计的电路图继续实验,调节滑动变阻器滑片,使电压表示数为___________V 时,小灯泡正常发光,此时电流表示数如上右图所示,则小灯泡的额定功率是__________W . (4分)
(7)实验时,若发现电流表指针摆动分别出现了如下图甲、乙所示的两种情况. 请分析在使用电流表时分别存在什么问题,并写在下面的横线上.(2分)
甲现象存在的问题:_______________________________________;
乙现象存在的问题:_______________________________________.
四、计算应用题:共20分(每小题10分)
21.如图所示,电源电压U=6V ,电阻R 1=4Ω,R 2=6Ω.
(1)当开关S 闭合后,电流表示数为多少?
(2)当开关S 闭合后,电阻R 1在10s 内消耗的电能为多少?
(3)若将两电阻并联后接入原电路,当开关S 闭合后,电路的总功率为多少?
22.使用电烙铁焊接元件,有时为了省电和避免烙铁头太热而不宜沽锡,通过控制开关使电路具有以下特点:在暂不焊接时,电烙铁处于保温状态,需焊接时,能很快达到焊接温度。
已知电源电压是220V ,电烙铁的内部电路如图所示。
开关S 接在a 点时,电烙铁的电功率P 1为100W 。
开关接b 点时,电烙铁的电功率为P 2。
问:
(1)电烙铁处于保温状态时,开关S 接在哪点?
(2)若P1=4P2,电阻丝R1、R2的电阻各是多大?
0 0 1 2 3 0.4 0.6 A 0 0 1 2 3 0.4 0.6 0.2 A 0 0 1 2 3 0.4 0.6 0.2 A 甲 乙 第23题图
24题图。