高等数学——微分方程
高等数学-第七章-微分方程

在工程领域中,微分方程组被广泛应用于控制论、信号处理、流体力学等方面。通过求解微分方程组,可以优化工程 设计、提高系统性能等。
经济应用
在经济学中,微分方程组被用来描述经济系统的动态行为,如经济增长模型、金融市场模型等。通过求 解这些微分方程组,可以分析经济现象的发展趋势和内在机制。
05 微分方程的数值解法
常数变易法
对于某些特殊形式的高阶微分方程组,可以通过常 数变易的方法,将其转化为易于求解的方程或方程 组。
幂级数解法
对于某些高阶线性微分方程组,可以通过幂 级数展开的方法,将其转化为无穷级数进行 求解。
微分方程组的应用
物理应用
在物理学中,许多现象可以用微分方程组来描述,如力学中的运动方程、电磁学中的麦克斯韦方程等。通过求解这些 微分方程组,可以揭示物理现象的本质和规律。
非线性微分方程
不满足线性条件的微分方程,称为非线性微分方 程。
微分方程解的性质
唯一性定理 在一定条件下,微分方程的解是 唯一的。
边值问题 给定边界条件的微分方程求解问 题,称为边值问题。边值问题的 解可能不唯一,也可能不存在。
叠加原理
对于线性微分方程,若$y_1$和 $y_2$分别是方程的两个解,则 它们的线性组合 $c_1y_1+c_2y_2$(其中$c_1$ 和$c_2$是任意常数)也是方程 的解。
首次积分法
利用首次积分的方法,将一阶微 分方程组转化为可分离变量的方 程或可降阶的方程,然后求解得 到原方程组的解。
特征线法
对于一阶偏微分方程组,可以通 过引入特征线的概念,将偏微分 方程转化为常微分方程进行求解 。
高阶微分方程组法
变量代换法
通过适当的变量代换,将高阶微分方程组转 化为一阶微分方程组或可降阶的方程,然后 求解得到原方程组的解。
高等数学 第六章

微分方程
y f (x)
(6-26)
的特点是右端仅含有自变量,其解法是逐次积分两次,具体如
下.
微分方程(6-26)两边积分得 y f (x)dx C1
上式两边再积分,便得到微分方程(6-26)的通解,即
.
y f (x)dx C1 dx C2
例 1 求微分方程 y x cos x 的通解 解 所给微分方程两边积分得
二、齐次型微分方程
形如 dy P(x) y Q(x) dx
的微分方程称为一阶线性微分方程,其中P(x)、Q(x)为已 知函数.
当时Q(x)=0,微分方程变为 dy P(x) y 0 dx
是齐次的,称一阶齐次线性微分方程,简称齐次线性方程. 当Q(x)≠0时,微分方程是非齐次的,称为一阶非齐次线性微 分方程,简称非齐次线性方程.
y dp dp dy p dp , dx dy dx dy p dp f ( y ,p) , dy
这是关于 y ,p 的一阶微分方程,设求出其通解为 y p ( y ,C1) ,
上式 分离变 量并积 分,便 得到微 分方程 (6 -2 8)的 通解.
例 3 求微分方程 yy ( y)2 的通解.
第六章
微分方程
导学
函数是客观事物的内部联系在数量方面的反映,利用函数关系又可以 对客观事物的规律性进行研究,因此如何寻求函数关系在实践中具有重要 意义.然而在许多问题中,往往不能直接找出所需的函数关系,但有时可 根据问题所提供的情况,列出含有要找的函数及其导数的关系式,这种关 系式就是微分方程.微分方程建立后,对它进行研究,找出未知函数,就 是解微分方程.本章主要介绍微分方程的一些基本概念和几种常用微分方 程的解法.
y e3dx e2xe3dx dx C e3x e2xe3x dx C
高数微分方程公式大全

高数微分方程公式大全微分方程是数学中的重要概念,包含了许多公式和方法。
下面我将从不同角度介绍一些常见的高等数学微分方程公式。
1. 一阶微分方程:可分离变量方程公式,dy/dx = f(x)g(y),可通过分离变量并积分求解。
齐次方程公式,dy/dx = f(x)/g(y),可通过变量代换或分离变量求解。
线性方程公式,dy/dx + P(x)y = Q(x),可通过积分因子法或常数变易法求解。
2. 二阶微分方程:齐次线性方程公式,d²y/dx² + P(x)dy/dx + Q(x)y = 0,可通过特征方程法求解。
非齐次线性方程公式,d²y/dx² + P(x)dy/dx + Q(x)y = f(x),可通过常数变易法或待定系数法求解。
欧拉方程公式,x²d²y/dx² + pxdy/dx + qy = 0,可通过变量代换或特征方程法求解。
3. 高阶微分方程:常系数线性齐次方程公式,andⁿy/dxⁿ +an⁻¹dⁿ⁻¹y/dxⁿ⁻¹ + ... + a1dy/dx + a0y = 0,可通过特征方程法求解。
常系数线性非齐次方程公式,andⁿy/dxⁿ +an⁻¹dⁿ⁻¹y/dxⁿ⁻¹ + ... + a1dy/dx + a0y = f(x),可通过常数变易法或待定系数法求解。
常系数二阶齐次方程公式,d²y/dx² + py' + qy = 0,可通过特征方程法求解。
4. 常见的变换和公式:指数函数变换,对于形如y = e^(kx)的方程,可通过变量代换进行求解。
对数函数变换,对于形如y = ln(x)的方程,可通过变量代换进行求解。
三角函数变换,对于形如y = sin(kx)或y = cos(kx)的方程,可通过变量代换进行求解。
常用公式,如指数函数的导数公式、对数函数的导数公式、三角函数的导数公式等。
高等数学微分方程总结

高等数学微分方程一、微分方程的定义和分类微分方程是研究函数之间的关系的数学工具。
它包含未知函数及其导数的方程,用于描述具有变化率的物理现象和自然现象。
根据方程中的未知函数的个数以及导数的阶数,微分方程可分为常微分方程和偏微分方程两大类。
常微分方程是指只包含未知函数的一阶或高阶导数的方程。
而偏微分方程是指包含未知函数及其偏导数的方程。
二、常微分方程的解法常微分方程的解法分为解析解和数值解两种。
1. 解析解解析解是指能够用已知的函数表达出来的方程解。
常用的解法有:•分离变量法:适用于可以把未知函数和自变量分离的方程。
•齐次方程法:适用于一阶线性常微分方程。
•一阶线性微分方程求解:可用常数变易法、指数函数法等。
•二阶线性常系数齐次微分方程求解:可用特征方程法求解。
2. 数值解对于一些无法用解析解表示的微分方程,我们可以使用数值方法进行求解。
常见的数值解法有:•欧拉法:利用导数的定义近似计算未知函数的值。
•改进的欧拉法:在欧拉法的基础上改进精度。
•二阶龙格-库塔法:通过计算多个导数来提高计算精度。
•四阶龙格-库塔法:精度更高的数值解法。
三、偏微分方程的解法偏微分方程的解法相对复杂,通常需要利用变量分离、特征线方法等技巧。
1. 变量分离法变量分离法是最常用的解偏微分方程的方法之一,适用于可将方程的未知函数表示为两个或多个单变量函数之积的情况。
2. 特征线方法特征线方法适用于线性偏微分方程,通过找到方程中的特征线来求解方程。
3. 分离变量法对于特定形式的偏微分方程,也可以利用分离变量法将未知函数表示为两个或多个单变量函数之积的形式。
四、微分方程的应用领域微分方程在自然科学、工程技术、经济学等领域中都有广泛应用。
在物理学领域,微分方程可以描述物体的运动、振动、传热等各种现象。
在工程技术领域,微分方程可以用于建模和优化问题,如电路分析、振动控制、流体力学等。
在经济学领域,微分方程可以用于经济增长模型、价格预测、市场分析等。
高等数学-微分方程1

例 4 14 求解方程 yy '' ( y ')2 0
dx x 通过做变量替换:
y u,或 y xu x 将齐次方程化为可分离变量方程 :
du dx f (u) u x
例 4 8 求解微分方程
dy y tan( y )
dx x
x
2. 形如 dy a1x b1 y c1 的方程. dx a2 x b2 y c2
(1)
y(
x0
)
y0
,
y '' f (x, y, y ')
(2) y(x0 )
y0 ,
y '(x0 )
y0'
(3) 设y f (x)在x点的切线斜率为2x
且通过(1,4)点,求f (x).
4.2 微分方程的初等积分法
4.2.1 一阶可分离变量方程 形如
dy h(x)g( y)
2(2),(4) 3(2),(4) 4(2),(4)
5 6 7(4) 8
习题 4-2
(1)
dx
的微分方程称为一阶可分离变量微分方程.
设 g( y) 0,则(1)式可变形为(分离变量):
1 dy h(x)dx
(2)
g( y)
对(2)式两边积分:
微分方程的概念

引例2 解
一曲线通过点 (1, 2,) 且在该曲线上任意一点 M处(x的, 切y)线的斜率
为 ,求曲2x线方程.
设曲线的方程为 y y(x) ,根据导数的几何意义,可知未知函数
y y(x) 应满足关系式
dy 2x dx
此外,函数 y y还(x应) 满足条件
(1) 微分方程 y( x) x1 2,(2) 初始条件
y 2 y ex 的解.
解
由于 y Ce2x 1 ex
3
则 y 2Ce2x 1 ex , y 4Ce2x 1 ex
3
3
代入微分方程 y 2 y ex 得:
4Ce2x 1 ex 2(2Ce2 x 1 ex ) ex 恒成立.
2
dy dx
y
sin
x
dx dt
2
x2
t3
常微分方程
实质: 联系自变量,未知函数以及未知函数的导数(或微分)之间 的关系式.
2、微分方程的阶
微分方程中未知函数的最高阶导数的阶数,叫做微 分方程的阶.
d x x2 dt
d2 y 2 d y y sin x d x2 d x
⑸ xdy ydx 0
解 ⑴不是微分方程;
⑵不是微分方程;
⑶是1阶微分方程;
⑷是4阶微分方程;
⑸是1阶微分方程.
练习: 试说出下列各微分方程的阶数.
(1) x dy y 1 dx
(2) y2 xy xy 0
(3) x2 y x( y)3 3 0
3
3
所以 y Ce2x 1 ex 是 y 2 y ex 的解.
高等数学第七章第一节微分方程的基本概念课件.ppt

令 Y = 0 , 得 Q 点的横坐标
即 yy 2x 0
y P
Qo xx
引例1 通解:
dy dx
2x
y x1 2
引例2
y x2 C
d2y dx2
0.4
s t0 0 ,
ds dt
t0 20
s 0.2t 2 C1t C2
特解: y x2 1
s 0.2t 2 20t
例1. 验证函数 是微分方程
(C1 , C2为常数 )
的解, 并求满足初始条件
x
t0
A, dx
dt
t00
的特解 .
解:
k 2 (C1 sin kt C2 cos kt ) 这说明 x C1 cos kt C2 sin kt 是方程的解 .
是两个独立的任意常数, 故它是方程的通解.
利用初始条件易得:
故所求特解为
x Acos k t
例2. 已知曲线上点 P(x, y) 处的法线与 x 轴交点为 Q 且线段 PQ 被 y 轴平分, 求所满足的微分方程 .
微分方程的基本概念
含未内容)
分类 偏微分方程
方程中所含未知函数导数的最高阶数叫做微分方程 的阶.
一般地 , n 阶常微分方程的形式是
F (x, y, y,, y(n) ) 0
或 y(n) f (x, y, y,, y(n1) ) ( n 阶显式微分方程)
微分方程的解 — 使方程成为恒等式的函数.
通解 — 解中所含独立的任意常数的个数与方程 的阶数相同.
特解 — 不含任意常数的解, 其图形称为积分曲线.
定解条件 — 确定通解中任意常数的条件.
高等数学第七章微分方程微分方程

熟练掌握二阶常系数齐线性微分方程的解法. 掌握自由项(右端)为多项式、指数函数、正弦函数、余
弦函数以及它们的和或乘积的二阶常系数非齐线性微分方 程的解法.
2013/9/23
第一节 微分方程的基本概念
解
2
在许多物理、力学、生物等现象中,不能直接找到联 系所研究的那些量的规律,但却容易建立起这些量与它们 的导数或微分间的关系。
例1
解 原方程即 对上式两边积分,得原方程的通解
例2
解
对上式两边积分,得原方程的通解 经初等运算可得到原方程的通解为
4
原方程的解为
例3
解 两边同时积分,得
故所求通解为
2013/9/23
例4
解 原方程即 两边积分,得 故通解为
曲线族的包络。
例6求解微分方程 解 分离变量
两端积分
工程技术中 解决某些问题时, 需要用到方程的 奇解。
18
例.
的通解.
解: 特征方程为
其根为
对应齐次方程的通解为
为特征方程的单根 ,因此设非齐次方程特解为
代入方程: 比较系数, 得 因此特解为 所求通解为
2013/9/23
19
特解:
故
等式两边取共轭 :
为方程 ③ 的特解 .
第三步 求原方程的特解 原方程 利用第二步的结果, 根据叠加原理, 原方程有特解 :
均为 m 次多项式 .
第四步 分析
因
本质上为实函数 ,
均为 m 次实多项式 .
内容小结
为特征方程的 k (=0, 1, 2) 重根, 则设特解为
为特征方程的 k (=0, 1 )重根, 则设特解为 3. 上述结论也可推广到高阶方程的情形.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 常微分方程一、本章学习要求与内容提要(一)基本要求1.了解微分方程和微分方程的阶、解、通解、初始条件与特解等概念.2.掌握可分离变量的微分方程和一阶线性微分方程的解法. 3.了解二阶线性微分方程解的结构.4.掌握二阶常系数齐次线性微分方程的解法.5.会求自由项为xm x P λe )(或x x P xm βαcos e)(,x x P x m βαsin e )(时的二阶常系数非齐次线性微分方程的解.6. 知道特殊的高阶微分方程()()(x f y n =,),(y x f y '='',),(y y f y '='')的降阶法. 7.会用微分方程解决一些简单的实际问题. 重点 微分方程的通解与特解等概念,一阶微分方程的分离变量法,一阶线性微分方程的常数变易法,二阶线性微分方程的解的结构,二阶常系数非齐次线性微分方程的待定系数法。
难点 一阶微分方程的分离变量法,一阶线性微分方程的常数变易法,二阶常系数非齐次线性微分方程的待定系数法,高阶微分方程的降阶法,用微分方程解决一些简单的实际问题.(二)内容提要⒈ 微分方程的基本概念 ⑴ 微分方程的定义①凡是含有未知函数的导数(或微分)的方程,称为微分方程. ②未知函数是一元函数的微分方程称为常微分方程,未知函数是多元函数的微分方程称为偏微分方程.本书只讨论常微分方程,简称微分方程.⑵ 微分方程的阶、解与通解微分方程中出现的未知函数最高阶导数的阶数,称为微分方程的阶.如果把函数)(x f y =代入微分方程后,能使方程成为恒等式,则称该函数为该微分方程的解.若微分方程的解中含有任意常数,且独立的任意常数的个数与方程的阶数相同,则称这样的解为微分方程的通解.⑶ 初始条件与特解用未知函数及其各阶导数在某个特定点的值作为确定通解中任意常数的条件,称为初始条件.满足初始条件的微分方程的解称为该微分方程的特解.⑷ 独立的任意常数 ①线性相关与线性无关设)(),(21x y x y 是定义在区间),(b a 内的函数,若存在两个不全为零的数21,k k ,使得对于区间),(b a 内的任一x ,恒有0)()(2211=+x y k x y k成立,则称函数)(),(21x y x y 在区间),(b a 内线性相关,否则称为线性无关.显然,函数)(),(21x y x y 线性相关的充分必要条件是)()(21x y x y 在区间),(b a 内恒为常数. 如果)()(21x y x y 不恒为常数,则)(),(21x y x y 在区间),(b a 内线性无关. ②独立的任意常数在表达式)()(2211x y C x y C y += (1C ,2C 为任意常数) 中, 1C ,2C 为独立的任意常数的充分必要条件为)(1x y ,)(2x y 线性无关.2.可分离变量的微分方程 ⑴定义 形如)()(d d y g x f xy= 的微分方程,称为可分离变量的方程.该微分方程的特点是等式右边可以分解成两个函数之积,其中一个仅是x 的函数,另一个仅是y 的函数,即)(),(y g x f 分别是变量y x ,的已知连续函数.⑵求解方法 可分离变量的微分方程)()(d d y g x f xy=的求解方法,一般有如下两步: 第一步:分离变量 x x f y y g d )(d )(=, 第二步:两边积分 ⎰⎰=x x f y y g d )(d )(.3. 线性微分方程 ⑴ 一阶线性微分方程①定义 形如)()(d d x Q y x P xy=+. 的微分方程,称为一阶线性微分方程,其中)(),(x Q x P 都是x 的已知连续函数,“线性”是指未知函数y 和它的导数y '都是一次的.②求解方法 一阶线性微分方程)()(d d x Q y x P xy=+的求解方法,一般有如下两步: 第一步:先用分离变量法求一阶线性微分方程)()(d d x Q y x P xy=+所对应的齐次线性微分方程0)(d d =+y x P xy的通解⎰=-x x P c C y d )(e . 第二步:设⎰=-x x P x C y d )(e )(为一阶线性微分方程)()(d d x Q y x P xy=+的解,代入该方程后,求出待定函数)(x C .第三步: 将)(x C 代入⎰=-xx P x C y d )(e )(中,得所求一阶线性微分方程)()(d d x Q y x P xy=+的通解. 注意 只要一阶线性微分方程是)()(d d x Q y x P xy=+的标准形式,则将⎰=-xx P x C y d )(e )(代入一阶线性微分方程后,整理化简后,必有 )(e )(d )(x Q x C xx P =⎰'-,该结论可用在一阶线性微分方程的求解过程中,以简化运算过程.③一阶线性微分方程)()(d d x Q y x P xy=+的求解公式 ⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-C x x Q y x x P x x P d e )(e d )(d )( (其中C 为任意常数). ⑵ 二阶常系数齐次线性微分方程①定义 形如0=+'+''qy y p y 的微分方程(其中q p ,均为已知常数,称为二阶常系数齐次线性微分方程. ②求解方法 求解二阶常系数齐次线性微分方程,一般分为如下三步:第一步 写出方程0=+'+''qy y p y 的特征方程 02=++q pr r ,第二步 求出特征方程的两个特征根 1r ,2r ,第三步 根据下表给出的三种特征根的不同情形,写出0=+'+''qy y p y 的通解.⑶二阶常系数非齐次线性微分方程①定义 形如)(x f qy y p y =+'+''的微分方程(其中q p ,均为已知常数),称为二阶常系数非齐次线性微分方程. ② 求解方法 求解二阶常系数非齐次线性微分方程, 一般分为如下三步:第一步 先求出非齐次线性微分方程)(x f qy y p y =+'+''所对应的齐次线性微分方程方程0=+'+''qy y p y 的通解c y ;第二步 根据下表设出非齐次线性微分方程)(x f qy y p y =+'+''的含待定常数的特解p y ,并将p y 代入非齐次线性微分方程)(x f qy y p y =+'+''解出待定常数,进而确定非齐次方程)(x f qy y p y =+'+''的一个特解p y ;第三步 写出非齐次线性微分方程)(x f qy y p y =+'+''的通解p c y y y +=.方程)(x f qy y p y =+'+''的特解p y 的形式表注: 表中的)(x P m 为已知的m 次多项式,)(x Q m 为待定的m 次多项式,如C Bx Ax x Q ++=22)( (C B A ,,为待定常数).4. 二阶线性微分方程解的结构⑴ 二阶齐次线性微分方程解的叠加原理如果函数1y 和2y 是齐次线性微分方程的两个解,则函数2211y C y C y +=也是方程0)()(=+'+''y x q y x p y 的解;且当1y 与2y 线性无关时, 2211y C y C y +=就是方程的通解(其中21,C C 是任意常数).⑵ 非齐次线性微分方程解的叠加原理如果函数p y 为非齐次线性微分方程)()()(x f y x q y x p y =+'+''的一个特解,c y 为齐次线性微分方程0)()(=+'+''y x q y x p y 的通解,则p c y y y +=为该非齐次线性微分方程的通解.⑶ 非齐次线性微分方程解的分离定理如果1y 是方程)(1x f qy y p y =+'+''的解,2y 是方程)(2x f qy y p y =+'+''的解,则21y y y +=是方程)()(21x f x f qy y p y +=+'+''的解.5.高阶微分方程的降阶法二、主要解题方法1.一阶微分方程的解法例1 求微分方程 y y x y x y xy d d d d 2+=+ 满足条件20==x y 的特解.解 这是可以分离变量的微分方程,将方程分离变量,有x x y y y d 11d 12-=-,两边积分,得=-⎰y y yd 12⎰-x x d 11,求积分得121ln 1ln 21C x y +-=-,1222)1ln(1ln C x y +-=-, 1222e )1(1C x y -=-,222)1(e 11-±=-x y C ,记 0e12≠=±C C ,得方程的解 22)1(1-=-x C y .可以验证 0=C 时,1±=y ,它们也是原方程的解,因此,式22)1(1-=-x C y 中的C 可以为任意常数,所以原方程的通解为 22)1(1-=-x C y (C 为任意常数). 代入初始条件 20==x y得 3=C ,所以特解为 22)1(31-=-x y .例2 求微分方程(1)xy yy +=',(2) x xy y x cos e 22=-'的通解.(1)解一 原方程可化为1d d +=xyx yx y ,令 x yu =, 则 1d d +=+u u x u x u ,即 x x u u u d d 12-=+ ,两边取积分 ⎰⎰-=+x x u u u d 1d )11(2, 积分得C x u u ln ln ln 1-=-,将xy u =代入原方程,整理得原方程的通解为 yx C y e = (C 为任意常数).解二 原方程可化为11d d =-x yy x 为一阶线性微分方程,用常数变易法.解原方程所对应的齐次方程01d d =-x yy x ,得其通解为 y C x =. 设y y C x )(=为原方程的解,代入原方程,化简得 1)(='y y C ,1ln)(C yy C =, 所以原方程的通解为 1ln C y y x=,即yx C ye = (C 为任意常数).(2)解一 原方程对应的齐次方程02d d =-xy x y 分离变量,得xy xy2d d =,x x yyd 2d =, 两边积分,得x x y y⎰⎰=d 2d ,C x y +=2ln ,)e ln(ln e ln ln 22x x C C y =+=,2e x C y =,用常数变易法.设2e )(x x C y =代入原方程,得 x x C x x cos e e )(22=',x x C cos )(=',C x x x x C +==⎰sin d cos )(,故原方程的通解为 )(sin e 2C x y x += (C 为任意常数).解二 这里x x P 2)(-=,x x Q x cos e )(2=代入通解的公式得)d e cos e (e d 2d 22⎰+⎰⋅⎰=---C x x y xx x x x=)d e cos e(e 222C x x x x x +⋅⎰-=)d cos (e 2C x x x +⎰=)(sin e 2C x x +(C 为任意常数).小结 一阶微分方程的解法主要有两种:分离变量法,常数变易法.常数变易法主要适用线性的一阶微分方程,若方程能化为标准形式 )()(x Q y x P y =+',也可直接利用公式C x x Q y xx P x x P +⎰⎰=⎰-d e )((e d )(d )()求通解.2. 可降阶的高阶微分方程例3 求微分方程 123='+''y x y x 的通解. 解 方程中不显含未知函数y ,令P y =',x P y d d ='',代入原方程,得 1d d 23=+P x xP x ,311d d xP x x P =+,这是关于未知函数)(x P 的一阶线性微分方程,代入常数变易法的通解公式,所以=)(x P 1d 13d 1d e 1(eC x xxx xx +⎰⎰⎰-) =1ln 3ln d e 1(e C x x x x+⎰-)=13d 1(1C x x x x +⋅⎰)=11(1C x x +-)=x C x 121+-, 由此x y d d =x Cx121+-,⎰+-=x x C xy d )1(12=21ln 1C x C x ++, 因此,原方程的通解为 y =21ln 1C x C x++ (21,C C 为任意常数). 例4 求微分方程 )1()(22-''='y y y 满足初始条件21==x y ,11-='=x y 的特解.解 方程不显含x ,令 P y =',y P Py d d ='',则方程可化为 )1(d d 22-=y yP PP , 当 0≠P 时y y P P d 12d -=,于是 21)1(-=y C P . 根据 21==x y,11-='=x y ,知12-='=y y 代入上式,得 11-=C ,从而得到x y y d )1(d 2-=-,积分得 211C x y +=-,再由21==x y ,求得 02=C ,于是当0≠P 时,原方程满足所给初始条件的特解为x y =-11, 当0=P 时,得C y =(常数),显然这个解也满足方程,这个解可包含在解x y =-11中. 故原方程满足所给初始条件的特解为x y =-11,即 xy 11+=. 3. 二阶常系数线性齐次微分方程的求解方法 例5 求微分方程02=+'-''y y a y 的通解. 解 原方程对应的特征方程为 0122=+-ar r ,244222,1-±=a a r =12-±a a ,(1)当1>a ,即 1>a 或1-<a 时,特征方程有两个不相等的实根121-+=a a r ,122--=a a r ,故原方程的通解为xa a xa a C C y )1(2)1(122e e ---++=.(2)当1=a ,即1=a 或1-=a 时,特征方程有两个相等的实根 a r r ==21, 故原方程的通解为 axx C C y e )(21+=.(3)当1<a ,即 11<<-a 时,特征方程有两个共轭复根 22,11i a a r -±=,故原方程的通解为)1sin 1cos (e 2221x a C x a C y ax -+-=.4.二阶常系数线性非齐次微分方程的求解方法 例6 求微分方程 xx y y e 4=-''满足初始条件00==x y,10='=x y 的特解.解 对应齐次方程的特征方程为 012=-r ,特征根 12,1±=r .故对应齐次微分方程的通解为 xx c C C y -+=e e 21.因为1=λ是特征方程的单根,所以设特解为 xP b x b x y e )(10+=,代入原方程得 x x b b b 4422010=++,比较同类项系数得 10=b ,11-=b ,从而原方程的特解为 xP x x y e )1(-=, 故原方程的通解为 =y xxC C -+ee 21x x x e )1(-+,由初始条件 0=x 时,0='=y y ,得 ⎩⎨⎧=-=+,2,02121C C C C从而11=C ,12-=C .因此满足初始条件的特解为 =y xx--ee x x x e )1(-+.例7 求微分方程 x y y y x2sin e 842=+'-''的通解.解 对应的齐次微分方程的特征方程 0842=+-r r ,特征根 i 222,1±=r .于是所对应的齐次微分方程通解为)2sin 2cos (e 212x C x C y x c +=.为了求原方程x y y y x2sin e842=+'-''的一个特解,先求x y y y )i 22(e 84+=+'-''(*)的特解.由于i 22+=λ是特征方程的单根,且1)(=x P m 是零次多项式。