完整word版,高中数学竞赛知识点,推荐文档
高中数学竞赛校本教材【全套共30讲】(原创Word版,含答案,278页)

高中数学竞赛校本教材目录§1数学方法选讲(1) (1)§2数学方法选讲(2) (11)§3集合 (22)§4函数的性质 (30)§5二次函数(1) (41)§6二次函数(2) (55)§7指、对数函数,幂函数 (63)§8函数方程 (73)§9三角恒等式与三角不等式 (76)§10向量与向量方法 (85)§11数列 (95)§12递推数列 (102)§13数学归纳法 (105)§14不等式的证明 (111)§15不等式的应用 (122)§16排列,组合 (130)§17二项式定理与多项式 (134)§18直线和圆,圆锥曲线 (143)§19立体图形,空间向量 (161)§20平面几何证明 (173)§21平面几何名定理 (180)§22几何变换 (186)§23抽屉原理 (194)§24容斥原理 (205)§25奇数偶数 (214)§26整除 (222)§27同余 (230)§28高斯函数 (238)§29覆盖 (245)§29涂色问题 (256)§30组合数学选讲 (265)§1数学方法选讲(1)同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。
看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。
例题讲解一、从简单情况考虑华罗庚先生曾经指出:善于“退”,足够的“退”,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。
从简单情况考虑,就是一种以退为进的一种解题策略。
数学竞赛知识点总结高中

数学竞赛知识点总结高中一、函数的基本概念1.1 函数的定义函数是一种对应关系,将定义域中的元素映射到值域中的元素,通常用f(x)表示函数。
1.2 常见函数常见函数包括线性函数、二次函数、指数函数、对数函数、三角函数等。
1.3 函数的性质函数的奇偶性、周期性等性质对于解题非常重要。
1.4 函数的图像函数的图像对于理解函数的性质和解题都具有重要意义。
二、不等式2.1 不等式的表示不等式通常表示为a>b、a≥b、a<b、a≤b等形式。
2.2 不等式的解法解不等式通常通过分析不等式的性质、代数方法和图像法进行。
2.3 不等式的应用不等式在优化问题、绝对值不等式、三角不等式等问题中常常出现。
三、集合与映射3.1 集合的基本概念集合是由各种对象的总体,通常用大写字母表示集合。
3.2 集合的运算包括交集、并集、差集等。
3.3 映射的概念映射是一种元素之间的对应关系,通常用f:A→B表示从集合A到集合B的映射。
三、多项式和方程4.1 多项式的定义多项式是由多个项的代数式,通常表示为P(x)。
4.2 多项式的运算多项式包括加减乘除等基本运算。
4.3 多项式的因式分解因式分解是将多项式表示为若干个不可约的因式乘积。
4.4 方程与不等式方程和不等式是基于多项式的等式与不等式。
四、数列与数学归纳法5.1 等差数列与等比数列等差数列的通项公式为an=a1+(n-1)d,等比数列的通项公式为an=a1*q^(n-1)。
5.2 数学归纳法的基本思想数学归纳法用于证明递推关系的性质。
五、排列与组合6.1 排列的基本概念排列是从n个元素中取出m个元素进行排列的方式。
6.2 组合的基本概念组合是从n个元素中取出m个元素进行组合的方式。
6.3 排列组合的性质排列组合问题通常包括排列数、组合数、二项式定理等内容。
六、数论7.1 整数的性质奇数、偶数、素数、合数等是数论中的基本概念。
7.2 最大公约数与最小公倍数最大公约数和最小公倍数是数论中的重要概念。
高中数学竞赛知识点整理

高中数学竞赛知识点整理
一、代数知识
1.一元二次方程:
(1)一元二次方程的解法:
a、利用求根公式:解一元二次方程的根:
若ax2 + bx + c = 0,则x1 = (-b + √(b2 - 4ac))/2a,x2 = (-b -
√(b2 - 4ac))/2a
b、利用因式分解法:
将一元二次方程化为两个一元一次方程,求解。
2.一元一次方程:
(1)一元一次方程的解法:
a、利用移项法:把一元一次方程化为一元一次不等式,求解。
b、利用乘除法:将一元一次方程的系数化简,求解。
3.二元一次方程组:
(1)二元一次方程组的解法:
a、利用消元法:把二元一次方程组化为一元一次方程组,求解。
b、利用代入法:将一个方程的解代入另一个方程,求解。
4.不等式:
(1)一元一次不等式的解法:
a、利用移项法:将一元一次不等式化为一元一次方程,求解。
b、利用乘除法:将一元一次不等式的系数化简,求解。
二、几何知识
1.直线与圆:
(1)直线与圆的位置关系:
a、直线与圆有共点:直线与圆相切;
b、直线与圆无共点:直线与圆相交;
c、直线与圆有共线:直线与圆相离;
2.三角形:
(1)三角形的性质:
a、直角三角形:有两条直角边;
b、等腰三角形:有两条等长边;
c、等边三角形:三条边。
高中数学竞赛基础平面几何知识点总结

⾼中数学竞赛基础平⾯⼏何知识点总结⾼中数学竞赛平⾯⼏何知识点基础1、相似三⾓形的判定及性质相似三⾓形的判定:(1)平⾏于三⾓形⼀边的直线和其他两边(或两边的延长线)相交,所构成的三⾓形与原三⾓形相似;(2)如果⼀个三⾓形的两条边和另⼀个三⾓形的两条边对应成⽐例,并且夹⾓相等,那么这两个三⾓形相似(简叙为:两边对应成⽐例且夹⾓相等,两个三⾓形相似.);(3)如果⼀个三⾓形的三条边与另⼀个三⾓形的三条边对应成⽐例,那么这两个三⾓形相似(简叙为:三边对应成⽐例,两个三⾓形相似.);(4)如果两个三⾓形的两个⾓分别对应相等(或三个⾓分别对应相等),则有两个三⾓形相似(简叙为两⾓对应相等,两个三⾓形相似.).直⾓三⾓形相似的判定定理:(1)直⾓三⾓形被斜边上的⾼分成两个直⾓三⾓形和原三⾓形相似;(2)如果⼀个直⾓三⾓形的斜边和⼀条直⾓边与另⼀个直⾓三⾓形的斜边和⼀条直⾓边对应成⽐例,那么这两个直⾓三⾓形相似.常见模型:相似三⾓形的性质:(1)相似三⾓形对应⾓相等(2)相似三⾓形对应边的⽐值相等,都等于相似⽐(3)相似三⾓形对应边上的⾼、⾓平分线、中线的⽐值都等于相似⽐(4)相似三⾓形的周长⽐等于相似⽐(5)相似三⾓形的⾯积⽐等于相似⽐的平⽅2、内、外⾓平分线定理及其逆定理内⾓平分线定理及其逆定理:三⾓形⼀个⾓的平分线与其对边所成的两条线段与这个⾓的两边对应成⽐例。
如图所⽰,若AM平分∠BAC,则该命题有逆定理:如果三⾓形⼀边上的某个点与这条边所成的两条线段与这条边的对⾓的两边对应成⽐例,那么该点与对⾓顶点的连线是三⾓形的⼀条⾓平分线外⾓平分线定理:三⾓形任⼀外⾓平分线外分对边成两线段,这两条线段和夹相应的内⾓的两边成⽐例。
如图所⽰,AD平分△ABC的外⾓∠CAE,则其逆定理也成⽴:若D是△ABC的BC边延长线上的⼀点,且满⾜,则AD是∠A的外⾓的平分线内外⾓平分线定理相结合:如图所⽰,AD平分∠BAC,AE平分∠BAC的外⾓∠CAE,则3、射影定理在Rt△ABC中,∠ABC=90°,BD是斜边AC上的⾼,则有射影定理如下:BD2=AD·CDAB2=AC·ADBC2=CD·AC对于⼀般三⾓形:在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA4、旋转相似当⼀对相似三⾓形有公共定点且其边不重合时,则会产⽣另⼀对相似三⾓形,寻找⽅法:连接对应点,找对应点连线和⼀组对应边所成的三⾓形,可以得到⼀组⾓相等和⼀组对应边成⽐例,如图中若△ABC∽△AED,则△ACD∽△ABE5、张⾓定理在△ABC中D为BC边上⼀点,则sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD6、圆内有关⾓度的定理圆周⾓定理及其推论:(1)圆周⾓定理指的是⼀条弧所对圆周⾓等于它所对圆⼼⾓的⼀半(2)同弧所对的圆周⾓相等(3)直径所对的圆周⾓是直⾓,直⾓所对的弦是直径(4)圆内接四边形对⾓互补(5)圆内接四边形的外⾓等于其内对⾓弦切⾓定理:顶点在圆上,⼀边和圆相交,另⼀边和圆相切的⾓叫做弦切⾓。
(完整word版)全国高中数学联赛竞赛大纲(修订稿)及全部定理内容

全国高中数学联赛竞赛大纲及全部定理内容一、平面几何1、数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
2、几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
3、几个重要的极值:到三角形三顶点距离之和最小的点--费马点。
到三角形三顶点距离的平方和最小的点--重心。
三角形内到三边距离之积最大的点--重心。
4、几何不等式。
5、简单的等周问题。
了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。
在周长一定的简单闭曲线的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
6、几何中的运动:反射、平移、旋转。
7、复数方法、向量方法。
平面凸集、凸包及应用。
二、代数1、在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。
三倍角公式,三角形的一些简单的恒等式,三角不等式。
2、第二数学归纳法。
递归,一阶、二阶递归,特征方程法。
函数迭代,求n次迭代,简单的函数方程。
3、n个变元的平均不等式,柯西不等式,排序不等式及应用。
4、复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。
5、圆排列,有重复的排列与组合,简单的组合恒等式。
6、一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。
7、简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。
三、立体几何1、多面角,多面角的性质。
三面角、直三面角的基本性质。
2、正多面体,欧拉定理。
3、体积证法。
4、截面,会作截面、表面展开图。
四、平面解析几何1、直线的法线式,直线的极坐标方程,直线束及其应用。
2、二元一次不等式表示的区域。
3、三角形的面积公式。
4、圆锥曲线的切线和法线。
5、圆的幂和根轴。
五、其它抽屉原理。
容斤原理。
极端原理。
集合的划分。
高中数学竞赛公式定理大全

高中数学竞赛公式定理大全包括但不限于:
1. 集合运算的分配律与反演律(摩根律)、容斥原理、有限等集的性质。
2. 直线与方程:克莱姆法则、二维对称点坐标公式、二维投影点坐标公式、直线的参数方程、交轨法、定比分点公式。
3. 圆锥曲线:阿波罗尼斯圆、圆的直径式方程、曲线系、圆幂定理、调和点列、椭圆和双曲线的第二定义、各种切割线方程、特殊类型的双曲线、抛物线的各种几何性质、阿基米德三角形、齐次化方法、双根式、仿射变换、隐函数、蒙日圆、等角定理、二次锥面形成圆锥曲线的过程、极点与极线。
4. 立体几何:祖暅原理、用行列式求平面的法向量、三维对称点坐标公式、三维投影点坐标公式、直角四面体勾股定理、四面体余弦定理、三射线定理、三余弦定理、三面角余弦定理、三正弦定理、平行六面体的性质、立体几何中的正余弦定理。
5. 导数与极限:夹逼定理、洛必达法则、极限运算法则、常用极限、对数求导法则、隐函数求导、多个极值判定法、抽象函数的构造、对数平均不等式、指数平均不等式。
6. 数列:等差数列中,S奇=na中,例如S13=13a7;等差数列中,S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差;等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立;等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q;数列的终
极利器,特征根方程等。
7. 其他公式和定理:三角形垂心爆强定理;维维安尼定理;爆强思路;常用结论;爆强公式;函数y=(lnx)/x在(0,e)上单调递增,在(e,+无穷)上单调递减等。
这些公式和定理是高中数学竞赛的重要知识点,需要学生熟练掌握和应用。
同时,学生还需要具备灵活运用知识的能力和创造性思维,才能取得优异的成绩。
高中数学竞赛常用定理

高中数学竞赛常用定理在高中数学竞赛中,掌握一些常用的数学定理和公式是至关重要的。
这些定理和公式可以帮助学生在比赛中更快、更准确地解决问题,提高竞赛成绩。
下面我们就来介绍一些高中数学竞赛中常用的定理和公式。
1. 三角函数的基本关系:- 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sinC}=2R$,其中$a$、$b$、$c$分别为三角形$ABC$的三边长度,$A$、$B$、$C$为对应的内角,$R$为三角形$ABC$的外接圆半径。
- 余弦定理:$a^2=b^2+c^2-2bc\cos A$,$b^2=a^2+c^2-2ac\cos B$,$c^2=a^2+b^2-2ab\cos C$。
- 正弦函数和余弦函数的关系:$\sin(a \pm b)=\sin a \cos b \pm \cosa \sin b$,$\cos(a \pm b)=\cos a \cosb \mp \sin a \sin b$。
2. 相似三角形的性质:- 相似三角形的对应角相等,对应边成比例。
- 直角三角形中,正弦、余弦、正切函数的关系:$\sinA=\frac{a}{c}$,$\cos A=\frac{b}{c}$,$\tan A=\frac{a}{b}$。
3. 平面几何中的重要定理:- 圆的性质:圆内角的和为$180^\circ$,圆周角等于其对应圆心角的一半。
- 相交弦定理:相交弦乘积相等,即$AB \times CD=BC \timesDA$。
- 切线和半径的关系:切线和半径垂直,切线与半径的交点与圆心连线构成直角三角形。
- 内切圆和外切圆的性质:内切圆的切点和三角形的顶点共线,外切圆的切点和三角形的对边中点共线。
4. 数列和级数中的常用公式:- 等差数列前$n$项和公式:$S_n=\frac{n}{2}(a_1+a_n)$。
- 等比数列前$n$项和公式:$S_n=\frac{a_1(1-q^n)}{1-q}$。
高一数学竞赛知识点汇总

高一数学竞赛知识点汇总随着数学竞赛的兴起和普及,越来越多的高中生开始加入到数学竞赛中来。
对于高一学生来说,掌握一些常见的数学竞赛知识点是非常重要的。
本文将从数列、概率、三角函数和平面几何四个方面进行讲解和汇总。
数列部分在数学竞赛中,数列是一个非常常见的考点。
常见的数列有等差数列、等比数列、斐波那契数列等等。
等差数列是指一个数列中的每个数与它的前一个数之差都相等。
在计算等差数列的和时,可以利用求和公式进行计算。
等比数列是指一个数列中的每个数与它的前一个数之比都相等。
同样地,在计算等比数列的和时,可以利用求和公式进行计算。
斐波那契数列是一个非常有趣的数列,它的每个数等于前两个数之和。
斐波那契数列的数学特性被广泛应用于自然界和各个领域。
概率部分概率是数学竞赛中的一个重要知识点,也是数学中的一个重要分支。
概率可以用来描述随机事件发生的可能性。
在计算概率时,可以使用频率概率和几何概率两种方法。
频率概率是通过实验统计的结果来计算的,而几何概率则是通过几何上的分析来计算的。
在概率计算中,常见的技巧有加法原理和乘法原理。
加法原理用于计算多个事件中至少发生一个事件的概率,而乘法原理则用于计算多个事件同时发生的概率。
三角函数部分三角函数是数学竞赛中的一个重要知识点,也是解决三角形相关问题的基础。
常见的三角函数包括正弦函数、余弦函数和正切函数。
在解决三角函数问题时,可利用三角函数的周期性、奇偶性和对称性进行简化。
此外,还可以利用三角函数的图像性质进行问题的解答。
平面几何部分平面几何是数学竞赛中的另一个重要知识点,涵盖了线段、角、三角形、四边形、圆等内容。
在解决平面几何问题时,可以利用几何图形的对称性、相似性和尺规作图等方法进行推导和解答。
此外,还有一些常见的几何定理和公式需要掌握,如勾股定理、正弦定理和余弦定理等。
总结数学竞赛知识点的汇总是为了帮助高一学生更好地准备数学竞赛。
数列、概率、三角函数和平面几何是数学竞赛中的常见考点,掌握了这些知识点,就能更好地应对数学竞赛的挑战。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学均值不等式被称为均值不等式。
·即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数,简记为“调几算方”。
其中:,被称为调和平均数。
,被称为几何平均数。
,被称为算术平均数。
,被称为平方平均数。
一般形式设函数(当r不等于0时);(当r=0时),有时,。
可以注意到,Hn≤Gn≤An≤Qn仅是上述不等式的特殊情形,即。
特例⑴对实数a,b,有(当且仅当a=b时取“=”号),(当且仅当a=-b时取“=”号)⑵对非负实数a,b,有,即⑶对非负实数a,b,有⑷对实数a,b,有⑸对非负实数a,b,有⑹对实数a,b,有⑺对实数a,b,c,有⑻对非负数a,b,有⑼对非负数a,b,c,有在几个特例中,最著名的当属算术—几何均值不等式(AM-GM不等式):当n=2时,上式即:当且仅当时,等号成立。
根据均值不等式的简化,有一个简单结论,即。
排序不等式基本形式:排序不等式的证明要证只需证根据基本不等式只需证∴原结论正确棣莫弗定理设两个复数(用三角形式表示),则:复数乘方公式:.圆排列定义从n个不同元素中不重复地取出m(1≤m≤n)个元素在一个圆周上,叫做这n个不同元素的圆排列。
如果一个m-圆排列旋转可以得到另一个m-圆排列,则认为这两个圆排列相同。
计算公式n个不同元素的m-圆排列个数N为:特别地,当m=n时,n个不同元素作成的圆排列总数N为:。
费马小定理费马小定理(Fermat Theory)是数论中的一个重要定理,其内容为:假如p是质数,且(a,p)=1,那么a(p-1)≡1(mod p)。
即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。
组合恒等式组合数C(k,n)的定义:从n个不同元素中选取k个进行组合的个数。
基本的组合恒等式nC(k,n)=kC(k-1,n-1)C(n,k)C(m,k)=C(m,n)C(k-m,n-m)∑C(i,n)=2^n∑[(-1)^i]*C(i,n)=0C(m,n+1)=C(m-1,n)+C(m,n)(这个性质叫组合的【聚合性】)C(k,n)+C(k,n+1)+……+C(k,n+m)=C(k+1,n+m+1)-C(k+1,n)C(0,n)C(p,m)+C(1,n)C(p-1,m)+C(2,n)C(p-2,m)+……+C(p-1,n)C(1,m)+C(p,n)C(0,m)= C(p,m+n)韦达定理逆定理如果两数α和β满足如下关系:α+β=,α·β=,那么这两个数α和β是方程的根。
通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
[5]推广定理韦达定理不仅可以说明一元二次方程根与系数的关系,还可以推广说明一元n次方程根与系数的关系。
定理:设(i=1、2、3、……n)是方程:的n个根,记k为整数),则有:。
[ 实系数方程虚根成对定理:实系数一元n次方程的虚根成对出现,即若z=a+bi(b≠0)是方程的一个根,则=a-bi也是一个根。
无穷递降法无穷递降法是证明方程无解的一种方法。
其步骤为:假设方程有解,并设X为最小的解。
从X推出一个更小的解Y。
从而与X的最小性相矛盾。
所以,方程无解。
孙子定理又称中国剩余定理,中国剩余定理给出了以下的一元线性同余方程组:有解的判定条件,并用构造法给出了在有解情况下解的具体形式。
中国剩余定理说明:假设整数m1,m2, ... ,mn两两互质,则对任意的整数:a1,a2, ... ,an,方程组有解,并且通解可以用如下方式构造得到:设是整数m1,m2, ... ,mn的乘积,并设是除了mi以外的n- 1个整数的乘积。
设为模的数论倒数:方程组的通解形式:在模的意义下,方程组只有一个解:同余同余公式也有许多我们常见的定律,比如相等律,结合律,交换律,传递律….如下面的表示:1)a≡a(mod d)2)a≡b(mod d)→b≡a(mod d)3)(a≡b(mod d),b≡c(mod d))→a≡c(mod d)如果a≡x(mod d),b≡m(mod d),则4)a+b≡x+m (mod d)其中a≡x (mod d),b≡m(mod d)5)a-b≡x-m (mod d)其中a≡x (mod d),b≡m (mod d)6)a*b≡x*m (mod d )其中a≡x (mod d),b≡m (mod d)7)a≡b(mod d)则a-b整除d欧拉函数φ函数的值通式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数。
φ(1)=1(唯一和1互质的数(小于等于1)就是1本身)。
(注意:每种质因数只一个。
比如12=2*2*3那么φ(12)=12*(1-1/2)*(1-1/3)=4若n是质数p的k次幂,φ(n)=p^k-p^(k-1)=(p-1)p^(k-1),因为除了p的倍数外,其他数都跟n互质。
设n为正整数,以φ(n)表示不超过n且与n互素的正整数的个数,称为n的欧拉函数值,这里函数φ:N→N,n→φ(n)称为欧拉函数。
欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)。
特殊性质:当n为奇数时,φ(2n)=φ(n), 证明与上述类似。
若n为质数则φ(n)=n-1。
格点定义数学上把在平面直角坐标系中横纵坐标均为整数的点称为格点(lattice point)或整点。
性质1、格点多边形的面积必为整数或半整数(奇数的一半)。
2、格点关于格点的对称点为格点。
3、格点多边形面积公式(坐标平面内顶点为格点的三角形称为格点三角形,类似地也有格点多边形的概念。
)设某格点多边形内部有格点a个,格点多边形的边上有格点b个,该格点多边形面积为S,则根据皮克公式有S=a+b/2-1。
4,格点正多边形只能是正方形。
5,格点三角形边界上无其他格点,内部有一个格点,则该点为此三角形的重心。
三面角定义三面角:由三个面构成的多面角称为三面角,如图中三面角可记作∠O-ABC。
特别地,三个面角都是直角的三面角称为直三面角。
三面角的补三面角:由三条自已知三面角定点发出的垂直于已知三面角的三个平面的射线组成的三面角叫做已知三面角的补三面角。
性质1、三面角的任意两个面角的和大于第三个面角。
2、三面角的三个二面角的和大于180°,小于540°。
三面角相关定理设三面角∠O-ABC的三个面角∠AOB、∠BOC、∠AOC所对的二面角依次为∠OC,∠OA,∠OB。
1、三面角正弦定理:sin∠OA/sin∠BOC=sin∠OB/sin∠AOC=sin∠OC/sin∠AOB。
2、三面角第一余弦定理:cos∠BOC=cos∠OA×sin∠AOB×sin∠AOC+cos∠AOB×cos∠AOC。
3、三面角第二余弦定理:cos∠OA=cos∠BOC×sin∠OB×sin∠OC-cos∠OB×cos∠OC。
直线方程一般有以下八种描述方式:点斜式,斜截式,两点式,截距式,一般式,法线式,法向式,点向式。
点斜式已知直线一点(x1,y1,)并且存在直线的斜率k,则直线可表示为:y-y1=k(x-x1)。
适用范围:斜率K存在的直线。
斜截式已知与Y轴的交点(0,b),斜率为K,则直线可表示为:y=kx+b。
适用范围:斜率存在的直线。
两点式两点式是解析几何直线理论的重要概念。
当已知两点(X1,Y1),(X2,Y2)时,将直线的斜率公式k=(y2-y1)/(x2-x1)代入点斜式时,得到两点式(y-y1)/(y2-y1)=(x-x1)/(x2-x1) 。
适用范围:不平行于(或者说不垂直于)坐标轴的的直线。
截距式已知与坐标轴的交点(a,0),(0,b)时,截距式的一般形式:x/a+y/b=1(a≠0且b≠0)。
适用范围:不平行于(或者说不垂直于)坐标轴的直线,不过原点的直线。
一般式ax+by+c=0 (A、B不同时为0)。
斜率:-A/B截距:-C/B。
两直线平行时:A1/A2=B1/B2≠C1/C2,则无解。
两直线相交时:A1/A2≠B1/B2;两直线垂直时:A1A2+B1B2=0A1/B1×A2/B2=-1,都只有一个交点。
两直线重合时:A1/A2=B1/B2=C1/C2,则有无数解。
适用范围:所有直线均可适用。
法线式过原点向直线做一条的垂线段,该垂线段所在直线的倾斜角为α,p是该线段的长度。
x·cos α+y sin α-p=0。
法向式知道直线上一点(x0,y0)和与之垂直的向量(a,b),则a(x-x0)+b(y-y0)=0,法向量n=(a,b)方向向量d=(b,-a)k=a/b。
点向式知道直线上一点(x0,y0)和方向向量(u,v ),(x-x0)/u=(y-y0)/v (u≠0,v≠0)。
极坐标系极坐标系(polar coordinates)是指在平面内由极点、极轴和极径组成的坐标系。
在平面上取定一点O,称为极点。
从O出发引一条射线Ox,称为极轴。
再取定一个长度单位,通常规定角度取逆时针方向为正。
这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极角。
极坐标方程于极点(90°/270°)对称,如果r(θ-α) = r(θ),则曲线相当于从极点顺时针方向旋转α°。
圆方程为r(θ) = 1的圆。
在极坐标系中,圆心在(r0, φ) 半径为a 的圆的方程为r^2-2rr0cos(θ-φ)+r0^2=a^2该方程可简化为不同的方法,以符合不同的特定情况,比如方程r(θ)=a表示一个以极点为中心半径为a的圆。
直线经过极点的射线由如下方程表示θ=φ,其中φ为射线的倾斜角度,若k为直角坐标系的射线的斜率,则有φ = arctan k。
任何不经过极点的直线都会与某条射线垂直。
这些在点(r0, φ)处的直线与射线θ = φ 垂直,其方程为r(θ)=r0sec(θ-φ)圆幂点到圆的幂:设P为⊙O所在平面上任意一点,PO=d,⊙O的半径为r,则d^2-r^2就是点P对于⊙O的幂.过P任作一直线与⊙O交于点A、B,则PA·PB= |d2-r2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.1.定义从一点A作一圆周的任一割线,从A起到和圆相交为止的两段之积,称为点A于这圆周的幂.2.圆幂定理已知⊙(O, r) ,通过一定点P,作⊙O的任一割线交圆于A, B,则PA,PB为P对于⊙O的幂,记为k,则当P在圆外时,k=PO^2-r^2;当P在圆内时,k= r^2-PO^2;当P在圆上时,k=0.图Ⅰ:相交弦定理。