分式全章测试卷

合集下载

数学八年级上册《分式》单元测试题含答案

数学八年级上册《分式》单元测试题含答案

八年级上册数学《分式》单元测试卷考试时间:90分钟满分:100分第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(2018秋•松桃县期末)若分式有意义,则实数x的取值范围是()A .x=2B .x=﹣2C .x≠2D .x≠﹣22.(2018秋•鸡东县期末)在,,﹣3xy+y2,,,分式的个数为()A .2B .3C .4D .53.(2018秋•永川区期末)如果把分式中的x和y都同时扩大2倍,那么分式的值()A .不变B .扩大4倍C .缩小2倍D .扩大2倍4.(2018春•利津县期末)若A =﹣22,B =2﹣2,C =()﹣2,D =()0.则()A .A <B <D <C B .A <B <C <D C .B <A <D <C D .A <C <B <D5.(2018春•开江县期末)若x为整数,使分式值为整数,则满足条件的整数有()A .5个B .6个C .8个D .7个6.(2018秋•江北区期末)从﹣3,﹣2,﹣1,,1,3这六个数中,随机抽取一个数,记为A .关于x的方程1的解是正数,那么这6个数中所有满足条件的A 的值有()个.A .3B .2C .1D .47.(2018秋•香坊区期末)某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,提速前列车的平均速度是()A .km/hB .km/hC .km/hD .km/h8.(2018秋•怀柔区期末)定义:如果一个关于x的分式方程 B 的解等于,我们就说这个方程叫和解方程.比如:4就是个和解方程.如果关于x的分式方程3﹣n是一个和解方程,那么n的值是()A .B .C .D .9.(2019春•包河区期末)计算的结果是()A .﹣3xB .3xC .﹣12xD .12x10.(2018秋•海淀区期末)学完分式运算后,老师出了一道题:化简.小明的做法是:原式;小亮的做法是:原式=(x+3)(x﹣2)+(2﹣x)=x2+x﹣6+2﹣x=x2﹣4;小芳的做法是:原式1.对于这三名同学的做法,你的判断是()A .小明的做法正确B .小亮的做法正确C .小芳的做法正确D .三名同学的做法都不正确第Ⅱ卷(非选择题)二.填空题(共6小题,满分24分,每小题4分)11.(2018秋•吕梁期末)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=0.000000001m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm,将28nm用科学记数法可表示为.12.(2018春•惠山区期末)在分式,,,中,最简分式有个.13.(2019春•泰州期末)已知关于x的方程1的解是负值,则A 的取值范围是.14.(2018秋•芝罘区期末)若分式的值为0,则x的值为.15.(2019春•丹东期末)如果解关于x的分式方程时,出现增根,那么m的值为.16.(2018秋•阳东区期末)小明家离学校2000米,小明平时从家到学校需要用x分钟,今天起床晚,怕迟到,走路速度比平时快5米/分钟,结果比平时少用了2分钟到达学校,则根据题意可列方程.评卷人得分三.解答题(共6小题,满分46分)17.(6分)(2019春•顺义区期末)计算:(﹣1)﹣2018+()2﹣(π﹣4)0﹣3﹣2;18.(6分)(2018秋•孝义市期末)先化简,再从,﹣1,0,1中选一个合适的数作为m的值代入求值.19.(8分)(2019秋•娄底期中)解分式方程:(1)(2)20.(8分)(2018秋•宜都市期末)如图,“复兴一号“水稻的实验田是边长为m米的正方形去掉一个边长为n米(m>n)正方形蓄水池后余下的部分,“复兴二号“水稻的试验田是边长为(m﹣n)米的正方形,两块试验田的水稻都收获了A 千克.(1)哪种水稻的单位面积产量高?为什么?(2)高的单位面积产量比低的单位面积产量高多少?21.(8分)(2018秋•凉州区期末)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①;②;③;④.其中是“和谐分式”是(填写序号即可);(2)若A 为正整数,且为“和谐分式”,请写出A 的值;(3)在化简时,小东和小强分别进行了如下三步变形:小东:小强:显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:,请你接着小强的方法完成化简.22.(10分)(2018秋•鞍山期末)近年来,随着我国的科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国创造”,高铁事业是“中国创造”的典范,一般的高铁包括G字头的高速动车组以及D 字头的动车组.由大连到北京的G377的平均速度是D 31的平均速度的1.2倍,行驶相同的路程1500千米,G377少用1个小时.(1)求D 31的平均速度.(2)若以“速度与票价的比值”定义这两种列车的性价比,人们出行都喜欢选择性价比高的方式.现阶段D 31票价为266元/张,G377票价为400元/张,如果你有机会给有关部门提一个合理化建议,使G377的性价比达到D 31的性价比,你如何建议,为什么?参考答案一.选择题(共10小题,满分30分,每小题3分)1.(2018秋•松桃县期末)若分式有意义,则实数x的取值范围是()A .x=2B .x=﹣2C .x≠2D .x≠﹣2[解析]解:由题意得,x﹣2≠0,解得:x≠﹣2;故选:D .[点睛]此题考查了分式有意义的条件,属于基础题,掌握分式有意义分母不为零是关键.2.(2018秋•鸡东县期末)在,,﹣3xy+y2,,,分式的个数为()A .2B .3C .4D .5[解析]解:分式有:,,共2个.故选:A .[点睛]本题主要考查分式的定义,注意判断分式的条件是:含有分母,且分母中含有未知数.3.(2018秋•永川区期末)如果把分式中的x和y都同时扩大2倍,那么分式的值()A .不变B .扩大4倍C .缩小2倍D .扩大2倍[解析]解:分式中的x和y都同时扩大2倍,可得2,所以分式的值扩大为原来的2倍,故选:D .[点睛]本题主要考查了分式的基本性质,在解题时要根据分式的基本性质进行解答是本题的关键.4.(2018春•利津县期末)若A =﹣22,B =2﹣2,C =()﹣2,D =()0.则()A .A <B <D <C B .A <B <C <D C .B <A <D <C D .A <C <B <D[解析]解:∵A =﹣22=﹣4,B =2﹣2,C =()﹣2=4,D =()0=1,∴﹣41<4,∴A <B <D <C .故选:A .[点睛]此题主要考查了负指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.5.(2018春•开江县期末)若x为整数,使分式值为整数,则满足条件的整数有()A .5个B .6个C .8个D .7个[解析]解:∵2,∴x+3=±1、±2、±3、±6,则x=﹣4、﹣2、﹣1、﹣5、0、﹣6、3、﹣9时分式的值为整数,故选:C .[点睛]此题考查了分式的值,将原式计算适当的变形是解本题的关键.6.(2018秋•江北区期末)从﹣3,﹣2,﹣1,,1,3这六个数中,随机抽取一个数,记为A .关于x的方程1的解是正数,那么这6个数中所有满足条件的A 的值有()个.A .3B .2C .1D .4[解析]解:由1得:2x+A =x﹣1∴x=﹣1﹣A∵解是正数,且x﹣1为原方程的分母,∴﹣1﹣A >0,且﹣1﹣A ≠1∴A <﹣1,且A ≠﹣2故在﹣3,﹣2,﹣1,,1,3这六个数中,符合题意得数有:﹣3,,故选:B .[点睛]本题考查了分式方程的解及一元一次不等式的应用,本题难度不大,属于基础题.7.(2018秋•香坊区期末)某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,提速前列车的平均速度是()A .km/hB .km/hC .km/hD .km/h[解析]解:设提速前这次列车的平均速度xkm/h.由题意得,,方程两边乘x(x+v),得s(x+v)=x(s+50)解得:x,经检验:由v,s都是正数,得x是原方程的解.∴提速前这次列车的平均速度km/h,故选:D .[点睛]本题考查了列代数式(分式),解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答.8.(2018秋•怀柔区期末)定义:如果一个关于x的分式方程 B 的解等于,我们就说这个方程叫和解方程.比如:4就是个和解方程.如果关于x的分式方程3﹣n是一个和解方程,那么n的值是()A .B .C .D .[解析]解:关于x的分式方程3﹣n是一个和解方程,根据题中的新定义得:x,把x代入得:3n=3﹣n,解得:n,故选:D .[点睛]此题考查了解分式方程,弄清题中的新定义是解本题的关键.9.(2019春•包河区期末)计算的结果是()A .﹣3xB .3xC .﹣12xD .12x[解析]解:原式12x;故选:D .[点睛]分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.10.(2018秋•海淀区期末)学完分式运算后,老师出了一道题:化简.小明的做法是:原式;小亮的做法是:原式=(x+3)(x﹣2)+(2﹣x)=x2+x﹣6+2﹣x=x2﹣4;小芳的做法是:原式1.对于这三名同学的做法,你的判断是()A .小明的做法正确B .小亮的做法正确C .小芳的做法正确D .三名同学的做法都不正确[解析]解:小明的作法是错误的,错误在于第二个等号后面的分子书写错误,忘记加括号了,分子部分正确书写是(x+3)(x﹣2)﹣(x﹣2);小亮的作法是错误的,错误在于第一个等号后面的部分,此处应该是通分,而小亮直接把分母漏掉了;小芳的作法是正确的;故选:C .[点睛]本题考查分式的混合运算、合并同类项,解答本题的关键是明确分式加减的计算方法,同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,再根据同分母分式相加减的方法计算.二.填空题(共6小题,满分24分,每小题4分)11.(2018秋•吕梁期末)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=0.000000001m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm,将28nm用科学记数法可表示为 2.8×10﹣8.[解析]解:将28nm用科学记数法可表示为28×10﹣9=2.8×10﹣8.故答案为:2.8×10﹣8.[点睛]本题考查用科学记数法表示较小的数,一般形式为A ×10﹣n,其中1≤|A |<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(2018春•惠山区期末)在分式,,,中,最简分式有3个.[解析]解:是最简分式,是最简分式,,不是最简分式,是最简分式,故答案为:3.[点睛]本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.13.(2019春•泰州期末)已知关于x的方程1的解是负值,则A 的取值范围是 A <﹣2且A ≠﹣4.[解析]解:方程1,去分母得:2x﹣A =x+2,解得:x=A +2,由分式方程的解为负值,得到A +2<0,且A +2≠﹣2,解得:A <﹣2且A ≠﹣4,故答案为:A <﹣2且A ≠﹣4[点睛]此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.14.(2018秋•芝罘区期末)若分式的值为0,则x的值为﹣1.[解析]解:∵分式的值为0,∴1﹣|x|=0且(x﹣1)(x﹣2)≠0,解得:x=﹣1.故答案为:﹣1.[点睛]此题主要考查了分式的值为零的条件,正确把握分式有意义的条件是解题关键.15.(2019春•丹东期末)如果解关于x的分式方程时,出现增根,那么m的值为﹣4.[解析]解:去分母得:m+2x=x﹣2,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程得:m+4=0,解得:m=﹣4,故答案为:﹣4[点睛]此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.16.(2018秋•阳东区期末)小明家离学校2000米,小明平时从家到学校需要用x分钟,今天起床晚,怕迟到,走路速度比平时快5米/分钟,结果比平时少用了2分钟到达学校,则根据题意可列方程.[解析]解:设小明平时从家到学校需要用x分钟,则实际从家到学校用(x﹣2)分钟,根据题意,得.故答案为:.[点睛]本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.三.解答题(共6小题,满分46分)17.(6分)(2019春•顺义区期末)计算:(﹣1)﹣2018+()2﹣(π﹣4)0﹣3﹣2;[解析]解:原式=11.[点睛]此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)(2018秋•孝义市期末)先化简,再从,﹣1,0,1中选一个合适的数作为m的值代入求值.[解析]解:原式•,当m时(m≠﹣1,0,1),原式=﹣2.[点睛]此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(8分)(2019秋•娄底期中)解分式方程:(1)(2)[解析]解:(1)去分母得:x2+x﹣x2+1=2,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得:2x2﹣2x﹣4﹣x2﹣2x=x2﹣2,解得:x,经检验x是分式方程的解.[点睛]此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.(8分)(2018秋•宜都市期末)如图,“复兴一号“水稻的实验田是边长为m米的正方形去掉一个边长为n米(m>n)正方形蓄水池后余下的部分,“复兴二号“水稻的试验田是边长为(m﹣n)米的正方形,两块试验田的水稻都收获了A 千克.(1)哪种水稻的单位面积产量高?为什么?(2)高的单位面积产量比低的单位面积产量高多少?[解析]解:(1)根据题意知,“复兴一号“水稻的实验田的单位面积为(千克/米2),“复兴二号“水稻的实验田的单位面积为(千克/米2),则,∵m、n均为正数且m>n,∴0,∴“复兴二号”水稻的单位面积产量高;(2)由(1)知,∴高的单位面积产量比低的单位面积产量高(kg).[点睛]此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.21.(8分)(2018秋•凉州区期末)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①;②;③;④.其中是“和谐分式”是②(填写序号即可);(2)若A 为正整数,且为“和谐分式”,请写出A 的值;(3)在化简时,小东和小强分别进行了如下三步变形:小东:小强:显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:小强通分时,利用和谐分式找到了最简公分母,请你接着小强的方法完成化简.[解析]解:(1)②分式,不可约分,∴分式是和谐分式,故答案为:②;(2)∵分式为和谐分式,且A 为正整数,∴A =4,A =5;(3)小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:小强通分时,利用和谐分式找到了最简公分母,原式故答案为:小强通分时,利用和谐分式找到了最简公分母.[点睛]本题考查约分,解答本题的关键是明确题意,找出所求问题需要的条件,利用和谐分式的定义解答.22.(10分)(2018秋•鞍山期末)近年来,随着我国的科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国创造”,高铁事业是“中国创造”的典范,一般的高铁包括G字头的高速动车组以及D 字头的动车组.由大连到北京的G377的平均速度是D 31的平均速度的1.2倍,行驶相同的路程1500千米,G377少用1个小时.(1)求D 31的平均速度.(2)若以“速度与票价的比值”定义这两种列车的性价比,人们出行都喜欢选择性价比高的方式.现阶段D 31票价为266元/张,G377票价为400元/张,如果你有机会给有关部门提一个合理化建议,使G377的性价比达到D 31的性价比,你如何建议,为什么?[解析]解:(1)设D 31的平均速度为x千米/时,则G377的平均速度为1.2x千米/时.由题意:1,解得x=250.经检验:x=250,是分式方程的解.答:D 31的平均速度250千米/时.(2)G377的性价比0.75D 31的性价比0.94,∵0.94>0.75∴为了G377的性价比达到D 31的性价比,建议降低G377票价.[点睛]本题考查分式方程的应用,解题的关键是正确寻找等量关系,构建方程解决问题,属于中考常考题型.。

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。

分式单元测试题(含答案)

分式单元测试题(含答案)

(时间:60分钟,满分:100分)一、填空题:(每题2分,共22分)1.当x_______时,分式13x x +-有意义,当x_______时,分式23x x -无意义. 2.当x_______时,分式293x x --的值为零. 3.分式311,,46y xy x xyz-的最简公分母是_______. 4.222bc a a b c =_______;32243x x y y ÷=_______;23b a a b-=_______;21x y x y -+-=_______. 5.一件工作,甲单独做ah 完成,乙单独做bh 完成,则甲,乙合作______h 完成.6.若分式方程1x x a ++=2的一个解是x=1,则a=_______. 7.若分式13x-的值为整数,则整数x=_______. 8.已知x=1是方程111x k x x x x +=--+的一个增根,则k=_______. 9.某商场降价销售一批服装,打8折后售价为120元,则原销售价是_____元.10.已知224(4)4A Bx C x x x x +=+++,则B=______. 11.若1x +x=3,则421x x x ++=______. 二、选择题(每题2分,共14分) 12.下列各式:3,7a b a +,x 2+12y 2,5,1,18x x π-其中分式有( ) A .1个 B .2个 C .3个 D .4个13.如果把分式2x x y+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .缩小3倍 C .缩小6倍 D .不变14.下列约分结果正确的是( )A .2222881212x yz z x y z y =B .22x y x y --=x-yC .2211m m m -+--=-m+1D .a m a b m b+=+ 15.与分式x y x y-++相等的是( ) A .x y x y +- B .x y x y -+ C .-x y x y -+ D .x y x y+-- 16.下列分式一定有意义的是( )A .21x x +B .22x x +C .22x x -- D .23x x + 17.已知a 2+b 2=6ab 且a>b>0,则a b a b+-的值为( )A B C .2 D .±218.某农场开挖一条480m 的渠道,开工后,每天比原计划多挖20m ,结果提前4天完成任务,若设原计划每天挖xm ,那么所列方程正确的是( )A .48048020x x --=4 B .4804804x x -+=20 C .48048020x x -+=4 D .4804804x x --=20 三、计算题;(每题3分,共12分)19.2224422a a a a a a +-+-+ 20.11a --1-a21.2242()4422x x x x x x x ---÷-++-; 22.1-22244x y x y x y x xy y--÷+++.四、解答题(每题4分,共8分)23.321(1)x x x x +---=0 24.5425124362x x x x -+=---五、解答题(每题6分,共18分)25.先化简,再用你喜爱的数代入求值:2232214()2442x x x x x x x x x+---÷--+-26.若235x y z ==,且3x+2y-z=14,求x ,y ,z 的值.27.阅读下列材料: x+1x =c+1c 的解是x 1=c ,x 2=1c; x-1x =c-1c (即x+1x -=c+1c -)的解是x 1=c ,x 2=-1c; x+2x =c+2c 的解是x 1=c ,x 2=2c; x+3x =c+3c 的解是x 1=c ,x 2=3c ; ……(1)请观察上述方程与解的特征,猜想方程x+m x =c+m c (m ≠0)的解,并验证你的结论;(2)利用这个结论解关于x 的方程:x+2211a x a =+--.六、解决问题(共26分)28.(8分)甲,乙两地相距19km ,某人从甲地出发去乙地,先步行7km ,•然后骑自行车,共行2h到达乙地.已知这个人骑自行车的速度是步行速度的4倍,求步行速度和骑自行车的速度.29.(8分)甲,乙两组学生去距学校4.5km的敬老院打扫卫生,•甲组学生步行出发半小时后,乙组学生骑自行车开始出发,结果两组学生同时到达敬老院,•如果步行的速度是骑自行车的速度的13,求步行和骑自行车的速度各是多少.30.(10分)一个批发兼零售的文具店规定:凡一次购买铅笔300•枝以上(•不包括300枝),可以按批发价付款:购买300枝以下(包括300枝),只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果多购买60枝,那么可以按批发价付款,同样需要120元.(1)这个学校八年级的学生总数在什么范围内(2)若按批发价购买6枝与按零售价购买5枝的价格相同,那么这个学校八年级学生有多少人参考答案1.≠3 =322.=-3 3.12x 3yz 4.222222332326x y b a x y ab ab x y --- 5.ab a b+ 6.0 7.2或4 8.-1 9.150 10.-•1 •11.1812.B 13.D 14.C 15.C 16.A 17.A 18.C19.22a - 20.221a a -- 21.82x + 22.-y x y + 23.无解 24.无解 25.2x x - 26.x=4,y=6,z=10 27.(1)x 1=c ,x 2=m c (2)x 1=a ,x 2=11a a +- 28.•步行速度为5km/h ,骑自行车速度为20km/h29.步行速度为6km/h ,•骑自行车速度为18km/h •30.(1)人数多于240人,不大于300人 (2)300人第7章测试卷讲评课Ⅰ.本题针对第7题●反馈 若31a +表示一个整数,则整数a 可以取哪些值 Ⅱ.本题针对第11题●反馈 已知x=12,求351x x x ++的值. Ⅲ.本题针对第26题●反馈1 已知1x -1y=3,求55x xy y x xy y +---的值. ●反馈2 已知234x y z ==,求2222323x y z xy yz xz -+-+的值. ●反馈3 已知4x-3y-6z=0,2x+4y-14z=0,求22222223657x y z x y z ++++的值. Ⅳ.本题针对第28,29题●反馈 某商场家电部送货人员与销售人员人数之比为1:8,今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货,结果送货人员与销售人员人数之比为2:5,求这个商场家电部原来各有送货人员和销售人员多少名.参考答案Ⅰ.反馈:2,0,-2,-4Ⅱ.反馈:由x=12,得, 所以(2x-1)2=5,即x 2-x-1=0,x 2=x+1, 所以33322255532331(1)(1)11x x x x x x x x x x x x x x xx x x +++++++========Ⅲ.反馈1:72反馈2:173反馈3:1Ⅳ.反馈:原来送货人有14人,销售人员有112人.&。

八年级上册数学《分式》单元测试含答案

八年级上册数学《分式》单元测试含答案

一.选择题
1.若分式 在实数范围内有意义,则实数x的取值范围是()
A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣2
[答案]D
[解析]
[分析]
直接利用分式有意义的条件分析得出答案.
[详解]∵代数式 在实数范围内有意义,
∴x+2]本题主要考查了分式有意义的条件,熟练掌握分母不为0时分式有意义是解题的关键.
[分析]
根据题意可得 ,解方程组可得A,B,再代入求值.
[详解]解:∵ ,
∴ ,
解得 ,
∴3A﹣B=6﹣4=2.
故3A﹣B的值是2.
[点睛]本题考核知识点:分式性质,非负数性质.解题关键点:理解分式性质和非负数性质.
17.先约分,再求值: 其中 .
[答案]
[解析]
分析:先把分式的分子分母分解因式,约分后把A、B的值代入即可求出答案.
∴3x=36.
答:自行车的速度是12km/h,公共汽车的速度是36km/h.
[点睛]本题考核知识点:列分式方程解应用题.解题关键点:找出相等关系,列出方程.
20.某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了 ,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?
[答案]
[解析]
[分析]
分式方程两边同乘3(x+1),解出x的解,再检验解是否满足.
[详解]解:方程两边都乘 ,
得: ,
解得: ,
经检验 是方程的解,
原方程的解为 .
[点睛]本题考查的知识点是分式方程的求解,解题关键是解出的解要进行检验.
16.若A,B为实数,且 ,求3A﹣B的值.

第1章 分式测试题(一)

第1章 分式测试题(一)

第1章 分式测试题(一)一、选择题(每小题3分,共30分) 1.【导学号81830961】若分式21a +有意义,则a 的取值范围是( ) A .a=0 B .a=1 C .a≠-1D .a≠0 2.【导学号81830343】化简62962-+-x x x 的结果正确的是( )A.23+xB.292+xC.292-x D.23-x3. 【导学号81830960】下列式子:a -b 2,x (x +3)x ,5+x π,a +b a -b,a +1m ,其中是分式的有( ) A .1个 B .2个 C .3个 D .4个 4. 【导学号81830872】下列计算正确的是( )A. 132-⎛⎫- ⎪⎝⎭=32 B. 1a +1b =1a b + C. 22a b a b --=a +b D.320⎛⎫- ⎪⎝⎭=0 5. 【导学号81830977】一份工作,甲单独做需a 天完成,乙单独做需b 天完成,则甲、乙两人合做一天的工作量是( ) A . a+b B .b a +1 C . 2b a + D .ba 11+ 6. 【导学号81830337】分式方程212x x--=0的解是( ) A .x=﹣2 B .x=﹣1 C .x=2 D .x=1 7. 【导学号81830958】计算22222a ab b b aba b ++的结果是( ) A. b a b+ B.b ab C. aa b+ D .a ab8. 【导学号81830956】把12x,123xx,223x通分的过程中,不正确的是( )A. 最简公分母是(x -2)(x+3)2B.2231223x xxxC.2132323x xxx x D .22222323x xxx9. 【导学号81830968】若关于x 的方程x +m x -3+3m3-x =3的解为正数,则m 的取值范围是( )A .m <92B .m <92且m ≠32C .m >-94D .m >-94且m ≠-3410. 【导学号81830952】某人生产一种零件,计划在30天内完成,若每天多生产6个,则25天完成且还多生产10个,问原计划每天生产多少个零件?设原计划每天生产x 个零件,根据题意列方程为( ) A.B . C. D.二、填空题(每小题3分,共18分)11. 【导学号81830975】化简:(1)258x x = ;(2)22357mn n m -= . 12. 【导学号81830876】当a=2017时,分式2224a aa +-的值为 .13. 【导学号81830972】分式方程12x =1x +1的解是_______.14. 【导学号81830777】计算1342+⋅⎪⎭⎫ ⎝⎛+-x xx 的结果是_______. 15. 【导学号81830974】如今步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的热量消耗.对比手机数据发现:小琼步行13500步与小刚步行9000步消耗的热量相同,若每消耗1千卡的热量小琼行走的步数比小刚多15步,则小刚每消耗1千卡热量需要行走 步. 16. 【导学号81830953】若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立,则a= ,b = . 三、解答题(共52分)17.【导学号81830955】(每小题3分,共6分)计算:(1)22a a b b a b a -⋅--;(2)(xy-x 2)÷x y xy-. 18.【导学号81830881】(每小题4分,共8分)解方程:(1)2112x x =-- ;(2) x -2x +2-16x 2-4=1.19. 【导学号81830979】(7分)先化简,再求值:224144x x x ⎛⎫-+ ⎪-+⎝⎭÷x 2x -2,其中x =1.3010256x x -=+3010256x x +=+3025106x x =++301025106x x +=-+20. 【导学号81830951】(9分)某学校为绿化环境,计划种植600棵树,实际劳动中每小时植树的数量比原计划多20%,结果提前2小时完成任务,求:原计划每小时种植多少棵树?21. 【导学号81830963】(10分)先化简,再求值:2214244x x x xx x x +--⎛⎫-÷ ⎪--+⎝⎭,其中x 是不等式3x+7>1的负整数解.22. 【导学号81830976】(12分)“2017年张学友演唱会”于6月3日在贵阳市关山湖奥体中心举办.小张到离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心.已知小张骑车的时间比跑步的时间少用了4分,且骑车的平均速度是跑步的平均速度的1.5倍. (1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分,他能否在演唱会开始前赶到奥体中心?说明理由.附加题(20分,不计入总分)23.【导学号81830978】(1)观察下列算式:;;;由此推断 ; (2)请用含m 的等式表示(1)中算式的一般规律;(3)利用(2)中的规律,解方程:.(拟题 雷成德)111162323==-⨯1111123434==-⨯1111204545==-⨯142=1311(2)(3)(1)(4)(1)(2)4x x x x x x x -+=-------参考答案:一、1. C 2. D 3. C 4. C 5. D 6. A 7. D 8. D 9. B 10. B二、11.(1)83x (2)n m5- 12. 2017201513. x =1 14.32+x x 15. 30 16. 12 -12三、17.(1)a.(2)-x 2y.18. 解:(1)去分母,得2(x -2)=x -1,解得x=3.经检验,x=3是原分式方程的解. (2)方程两边同乘x (x +2)(x -2),得(x -2)2-16=x 2-4,解得x =-2.经检验:当x =-2时,x (x +2)(x -2)=0,因此x =-2不是原分式方程的解.所以原分式方程无解.19. 解:原式=212x x +⎛⎫+⎪-⎝⎭·22x x -=2222x x x x -⋅-=2x .当x =1时,原式=2. 20. 解:设原计划每小时种植x 棵树.根据题意,得()600600120%x x-+=2,解得x =50. 检验:当x =50时,(1+20%)x ≠0,所以x =50是所列方程的解. 答:原计划每小时种植50棵树.21. 解:原式=()()()()()()22212224x x x x x x x x x x ⎡⎤+----⋅⎢⎥---⎣⎦=()()2222424x x x x x x x ---+⋅-- =()()22424x x x x x --⋅--=2x x -.解不等式3x+7>1,得x >﹣2.因为x 是不等式3x+7>1的负整数解,所以x=﹣1. 当x=-1时,原式=121---=3.22. 解:(1)设小张跑步的平均速度为x 米/分,则小张骑车的平均速度为1.5x 米/分. 根据题意,得2520252041.5x x-=,解得x=210. 经检验,x=210是原方程的解.答:小张跑步的平均速度为210米/分.(2)小张跑步到家所需时间为2520÷210=12(分),骑车所用时间为12-4=8(分),小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分).因为25>23,所以小张不能在演唱会开始前赶到奥体中心.23. 解:(1).(2). (3)由原方程,得11111113241214x x x x x x x --++-=-------. 整理,得1234x x =--.方程两边同乘(x -3)(x -4),得x -4=2x -6,解得x=2. 经检验,x=2不是原方程的解,所以原方程无解.1116767=-⨯111(1)1m m m m =-++。

分式测试题及答案

分式测试题及答案

分式测试题及答案一、选择题1. 已知分式\( \frac{a}{b} \),若\( a \)和\( b \)同号,则该分式的值为()A. 正数B. 负数C. 0D. 无法确定2. 下列分式中,哪个分式的值是负数?A. \( \frac{-3}{4} \)B. \( \frac{-3}{-4} \)C. \( \frac{3}{-4} \)D. \( \frac{3}{4} \)3. 如果\( \frac{x}{y} = 2 \),当\( y \)增加时,分式的值会()A. 变大B. 变小C. 不变D. 无法确定二、填空题4. 将分式\( \frac{2x^2}{3x} \)化简为\( \frac{x}{\_\_\_} \)。

5. 若\( \frac{a}{b} = \frac{c}{d} \),且\( b \)和\( d \)不为0,则\( a \)和\( c \)成______比例。

三、解答题6. 已知\( \frac{2}{x+1} = \frac{3}{y+1} \),求\( \frac{x}{y} \)的值。

7. 计算下列分式的和:\( \frac{1}{2x+1} + \frac{2}{3x-1} \)。

四、应用题8. 一个水池的容积是\( 2000 \)升,水管A每秒可以注入\( 5 \)升水,水管B每秒可以排出\( 3 \)升水。

如果同时打开水管A和B,求水池注满需要的时间。

答案:一、选择题1. A2. C3. B二、填空题4. 35. 正三、解答题6. 由题意可得\( 2y+2 = 3x+3 \),化简得\( 2y = 3x+1 \),所以\( \frac{x}{y} = \frac{2}{3} \)。

7. 通分后计算得:\( \frac{1}{2x+1} + \frac{2}{3x-1} = \frac{3x-1}{(2x+1)(3x-1)} + \frac{4(2x+1)}{(2x+1)(3x-1)} = \frac{3x-1+8x+4}{(2x+1)(3x-1)} = \frac{11x+3}{(2x+1)(3x-1)} \)。

苏教版八下第八章分式整章水平测试

苏教版八下第八章分式整章水平测试

第八章 分式 整章水平测试一、选一选,看完四个选项再做决定!(每小题3分,共30分) 1.要使分式1(1)(2)x x x ++-有意义,则x 应满足【 】A .x ≠-1B .x ≠2C .x ≠±1D .x ≠-1且x ≠2 2.若分式231xx -的值为正数,则【 】A .0>xB .0<xC .1>xD .1<x 3.下列约分正确的是【 】 A .326x xx = B .0=++yx y x C .xxyx y x 12=++ D .214222=yx xy4.计算:xy y yx x 222-+-,结果为( )A .1B .-1C .y x +2D .y x + 5.若分式方程424-+=-x a x x 有增根,则a 的值为【 】A .4B .2C .1D .0 6.计算nm mn mn 2222⋅÷-的结果是( )A .n -B .22nm -C .3nm -D .4nm -7.某厂去年产值是m 万元,今年产值是n 万元(m <n ),则今年的产值比去年的产值增加的百分比是【 】 A .%100⨯-nn m B .%100⨯-mm n C .%100)1(⨯+mn D .%10010⨯-mm n8.如果m 为整数,那么使分式13++m m 的值为整数的m 的值有【 】A .2个B .3个C .4个D .5个 9.已知122432+--=--+x B x A x x x ,其中A 、B 为常数,则4A -B 的值为【 】A .13B .9C .7D .510.几名同学租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为【 】 A .32180180=+-x x B .31802180=-+xx C .32180180=--x x D .31802180=--xx二、填一填,要相信自己的能力!(每题3分,共30分) 1.当____=x 时,23-x x 无意义.2.当x __________时,分式242+-x x 的值为0.3.不改变分式的值,使分子、分母各项的系数都化为整数,则=-+yx y x 6.027.05.0 .4.计算=-+-⋅+xy yyx xy x 2222)(______________.5.若31=+x x,则=++1242x x x_____ ____.6.已知432z y x ==,则=+--+zy x z y x 232 .7.若关于x 的分式方程311x a x x --=-无解,则a = .8.观察下面一列有规律的数:31,82,153,244,355,486,……根据规律可知第n 个数应是 (n 为正整数).9.一位工人师傅加工1500个零件后,把工作效率提高到原来的2.5倍,因此再加工1500个零件时,较前提早了18个小时完工,问这位工人师傅提高工作效率的前后每小时各加工多少个零件?设提高工作效率前每小时加工x 个零件,则根据题意可列方程为____________________. 10.如果记)(122x f xxy =+=,并且)1(f 表示当1=x 时y 的值,即21111)1(22=+=f ,那么=++⋅⋅⋅+++++)1()()31()3()21()2()1(nf n f f f f f f _________(结果用含n的代数式表示,n 为正整数).三、做一做,要注意认真审题!(本大题共46分) 1.(10分) (1)计算:13)181(++÷+--x x x x ;(2)化简代数式22222))((2)(b a b a ab ba b a ba b a +-÷+---+,然后取你喜欢的a 、b 值代入求值.2.(8分)解方程:(1)1412222=--+-x x x ; (2)1112132-=+--x x x .3.(10分)要使关于x 的方程21212-+=--++x x a x x x x 的解是正数,求a 的取值范围.4.(10分)A 、B 两地相距40km ,甲骑自行车从A 地出发1小时后,乙也从A 地出发,用相当于甲的1.5的速度追赶,当追到B 地时,甲比乙先到20分钟,求甲、乙两人的速度.四、探索创新,再接再厉!(本题14分)某开发公司生产的960件新产品需要精加工后才能投放市场。

因式分解和分式方程章节测试卷

因式分解和分式方程章节测试卷

数学周考试卷一、选择题(每小题3分,共27分)1.下列因式分解中,正确的是( )A .)(2a ax x ax ax -=-B .)1(222222++=++ac a b b c ab b aC .D .2.下列各式2a) A .2个 B .3个 C .4个 D.5个3.若关于的分式方程m 的取值范围是( )A 、B 、C 、且D 、且4.设mn n m =-,则nm 11-的值是( ) A 、mn1B 、0C 、1D 、1-5x 的取值范围是( )A 、B 、且C 、D 、且. 6.已知x+,那么的值是( )A .1B .﹣1C .±1D .47.下列各式变形正确的是( )A 、yx y x y x y x -+=--+- B 、d c b a d c b a +-=+-2 C D 8.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设原来参加游览的同学共人,则所列方程为( )A 、31802180=--x xB 、31802180=-+x xC 、32180180=--x xD 、32180180=+-x x 9.A 、B 两地相距80千米,一辆大汽车从A 地开出2小时后,又从A 地开出一辆小汽车,已知小汽车的速度是大汽车速度的3倍,结果小汽车比大汽车早40分钟到达B 地,求两种汽车每小时各走多少千米.设大汽车的速度为xkm/h ,则下面所列方程正确的是( )A .﹣=40B .﹣=2.4C .﹣2=+ D .+2=﹣222)(y x y x -=-)3)(2(652--=--x x x x x 1m >-1m ≥1m >-1m ≠1m ≥-1m ≠1x ≥1x ≤2x ≠1x >1x ≥2x ≠且x1011.当______时,分式392--xx的值为0;12_______个;13.若方程()()11116=---+xmxx有增根,则它的增根是,m=;14.已知m=2n≠0,则+﹣= .15.一项工程甲单独做要20小时,乙单独做要12小时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学第十六章分式考试卷
(时间100分钟)
1、下列式子中,y x +15、8a 2
b 、-239a 、y x b a --25、4322b a -、a a -2、m 1、
6
5xy
中分式的个数为( ) A 、2 B 、 3 C 、 4 D 、 5
2、下列式子中正确的是( )
A 、3-2=-6
B 、3-2=0.03
C 、3-2=61
D 、3-2=9
1
3、下列各式正确的是( )
A 、11++=++b a x b x a
B 、()0,≠=a ma na m n
C 、22
x
y x y = D 、a m a n m n --= 4、要使分式
5
1
-x 有意义则x 应满足( ) A 、X ≠5 B 、X ≠-5 C 、X ≠5且X ≠-5 D 、任何实数 5、下列各分式中,最简分式是( )
A 、2222xy y x y x ++
B 、y x x y +-22
C 、()()y x y x +-96
D 、()
2
2
2y x y x +- 6、用科学记数法表示-0.000 0064记为( )
A 、-64×10-7
B 、-0.64×10-4
C 、-6.4×10-6
D 、-640×10
-8
7、下列化简结果正确的是( )
A 、22
2
2
22z
y z x y x -=+-
B 、)
)((2
2b a b a b a -+--=0
C 、y
x y x 263=3x 3
D 、12-a
a =a
3
8、若关于x 的分式方程
3
23-=--x m x x 有增根,则m 的值为( ) A 、0 B 、1 C 、2 D 、3
9、一颗人造地球卫星的速度是8×104
米/秒,一架喷气式飞机的速度是5
×102
米/秒,这颗人造地球卫星的速度是这架喷气式飞机的速度的多少倍?( ) A 、160倍 B 、150倍 C 、16倍 D 、17倍 10、甲从A 地到B 地要走m 小时,乙从B 地到A 地要走n 小时,若甲、乙二人同时从A 、B 两地出发,经过几小时相遇( )
A 、(m +n )小时
B 、
n m mn +小时 C 、mn n m +小时 D 、2
n
m +小时 二、填空题(每小题3分,共18分)
1、当x 时,分式
3
3+-x x 的值为0。

2、要使式子
33-+x x ÷4
2
-+x x 有意义,x 的取值应为 。

3、①
())0(,10 53≠=a axy xy a ②=+--9
6922x x x __________。

4、若关于x 的分式方程
x
x
x x --=+-2132有增根,那么增根是__________。

5、已知,21=y x 则2
22
273223y
xy x y xy x +-+-的值为 。

6、某单位锅炉房运来了120吨煤,原计划用x 天,后来节约用煤,结果比原计划多用4天,后来比原计划每天少用 吨煤。

三、化简(每题4分共16分)
1、2
2
21106523x
y
x y x y ÷⋅⎪⎭⎫ ⎝⎛- 2、425222--+--+x x x x x x
3、1121222+-÷++-a a a a a a
4、)2
3
23()41223(
2+--÷-+-a a a a
四、解下列方程(每题5分共15分)
1、02311=-++x x
2、1
412132-=+---x x x 3、)(11b a x
b
b x a a ≠+=+
五、化简求值(6分)
1、3,3
2
,1)()2(
222222-==+--+÷+---b a b a a b a a b ab a a b a a 其中
六、材料题(7分)
24.阅读下列材料: ∵
)311(21311-=⨯ 5131(21531-=⨯) 7151(21751-=⨯) 1111
()20032005220032005
=-⨯……

111113355720032005++++⨯⨯⨯⨯ =11111111
(123355720032005
-+-+-++-)
解答下列问题: (1)在和式
+⨯+⨯+⨯7
51
531311中,第5项为____________,第n 项为___________,上述求和的想法是:将和式中的各分数转化为两个数之差,使得首末两项外的中间各项可以____________,从而达到求和目的。

(2)利用上述结论计算
111
1
(2)(2)(4)(4)(6)
(2004)(2006)
x x x x x x x x +++
+
+++++++
七、列方程解应用题(8分)
1、A 、B 两地相距160千米,甲车从A 地开出2小时后,乙车也从A 地开出,结果乙车比甲车迟40分钟到达B 地,已知甲车的速度是乙车的3
2
,求甲、乙两车的速度.
八、附加题(10分)(一班同学必做)
1、若.1
,11,11的值求
b
ab a c c b +=+=+
参考答案
一、选择题
1、C
2、D
3、B
4、C
5、A
6、C
7、D
8、D
9、A 10、B 二、填空题
1、=3
2、x ≠-2、x ≠
3、x ≠4 3、6a 2
、3
3
-+x x 4、x=2 5、101- 6、)
4(480+x x 三、化简
1、2
3
97y
x 2、2x 1+ 3、a 1 4、46+a 四、解下列方程 1、4
1
-
=x 2、x =-1增根(舍去) 3、x=ab 五、化简求值 化简得:原式=b a a -2当3,32-==b a 时,原式=11
4
六、材料题 (1)
1191⨯、)12()12(1+⨯-n n 、相互抵消(2))
2006(1003+x x 七、列方程解应用题
解:设乙的速度为x 千米/时,则甲的速度为
3
2
x 千米/时。

根据题意得:
32
16023
2160-=-x x 解得;x=60 检验:当x=60代入3x ≠0,所以x=60是原方程的解。


3
2
x =40 答:甲车的速度为40千米/时,乙车的速度为60千米/时。

八、附加题
11
=+b
ab。

相关文档
最新文档