2.4.1平面向量数量积的物理背景及其含义 导学案
人教a版必修4学案:2.4.1平面向量数量积的物理背景及其含义(含答案)

2.4.1 平面向量数量积的物理背景及其含义自主学习知识梳理1.平面向量数量积(1)定义:已知两个非零向量a 与b ,我们把数量____________叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,其中θ是a 与b 的夹角.(2)规定:零向量与任一向量的数量积为______.(3)投影:设两个非零向量a 、b 的夹角为θ,则向量a 在b 方向的投影是______________,向量b 在a 方向上的投影是__________.2.数量积的几何意义a ·b 的几何意义是数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影__________的乘积.3.向量数量积的运算律(1)a·b =________(交换律);(2)(λa )·b =________=__________(结合律);(3)(a +b )·c =__________(分配律).自主探究根据向量数量积的定义,补充完整数量积的性质.设a 与b 都是非零向量,θ为a 与b 的夹角.(1)a ⊥b ⇔__________;(2)当a 与b 同向时,a·b =________,当a 与b 反向时,a·b =________;(3)a·a =__________或|a |=a·a =a 2;(4)cos θ=__________;(5)|a·b |≤__________.对点讲练知识点一 求两向量的数量积例1 已知|a |=4,|b |=5,当(1)a ∥b ;(2)a ⊥b ;(3)a 与b 的夹角为30°时,分别求a 与b 的数量积.回顾归纳 求平面向量数量积的步骤是:①求a 与b 的夹角θ,θ∈[0°,180°];②分别求|a|和|b|;③求数量积,即a·b =|a|·|b|·cos θ,要特别注意书写时a 与b 之间用实心圆点“·”连结,而不能用“×”连结,也不能省去.变式训练1 已知正三角形ABC 的边长为1,求:(1)AB →·AC →;(2)AB →·BC →;(3)BC →·AC →.知识点二 求向量的模长例2 已知|a |=|b |=5,向量a 与b 的夹角为π3,求|a +b |,|a -b |.回顾归纳 此类求解模问题一般转化为求模平方,与向量数量积联系,要灵活应用a 2=|a |2,勿忘记开方.变式训练2 已知|a |=|b |=1,|3a -2b |=3,求|3a +b |.知识点三 向量的夹角或垂直问题例3 设n 和m 是两个单位向量,其夹角是60°,求向量a =2m +n 与b =2n -3m 的夹角.回顾归纳 求向量夹角时,应先根据公式把涉及到的量先计算出来再代入公式求角,注意向量夹角的范围是[0,π].变式训练3 已知|a |=5,|b |=4,且a 与b 的夹角为60°,则当k 为何值时,向量k a -b 与a +2b 垂直?1.两向量a 与b 的数量积是一个实数,不是一个向量,其值可以为正(当a ≠0,b ≠0,0°≤θ<90°时),也可以为负(当a ≠0,b ≠0,90°<θ≤180°时),还可以为0(当a =0或b =0或θ=90°时).2.数量积对结合律一般不成立,因为(a ·b )·c =|a ||b |·cos 〈a ,b 〉·c 是一个与c 共线的向量,而(a ·c )·b =|a |·|c |cos 〈a ,c 〉·b 是一个与b 共线的向量,两者一般不同.3.向量b 在a 上的投影不是向量而是数量,它的符号取决于θ角,注意a 在b 方向上的投影与b 在a 方向上的投影是不同的,应结合图形加以区分.课时作业一、选择题1.|a |=2,|b |=4,向量a 与向量b 的夹角为120°,则向量a 在向量b 方向上的投影等于( )A .-3B .-2C .2D .-12.已知a ⊥b ,|a |=2,|b |=3,且3a +2b 与λa -b 垂直,则λ等于( )A.32 B .-32 C .±32D .1 3.在边长为1的等边△ABC 中,设BC →=a ,CA →=b ,AB →=c ,则a·b +b·c +c·a 等于( )A .-32B .0 C.32D .3 4.设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则〈a ,b 〉等于( )A .150°B .120°C .60°D .30°5.若向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,则向量a 的模为( )A .2B .4C .6D .12二、填空题6.已知向量a ,b 且|a |=5,|b |=3,|a -b |=7,则a·b =________.7.已知向量a 与b 的夹角为120°,且|a |=|b |=4,那么b ·(2a +b )的值为________.8.已知a 是平面内的单位向量,若向量b 满足b·(a -b )=0,则|b |的取值范围是________.三、解答题9.已知|a |=4,|b |=3,当(1)a ∥b ;(2)a ⊥b ;(3)a 与b 的夹角为60°时,分别求a 与b 的数量积.10.已知|a |=1,|b |=1,a ,b 的夹角为120°,计算向量2a -b 在向量a +b 方向上的投影.§2.4 平面向量的数量积2.4.1 平面向量数量积的物理背景及其含义答案知识梳理1.(1)|a ||b |·cos θ (2)0 (3)|a |cos θ |b |cos θ2.|b |cos θ3.(1)b·a (2)λ(a·b ) a ·(λb ) (3)a·c +b·c自主探究(1)a·b =0 (2)|a||b | -|a||b | (3)|a |2(4)a·b |a||b |(5)|a||b | 对点讲练例1 解 (1)a ∥b ,若a 与b 同向,则θ=0°,a ·b =|a |·|b |·cos 0°=4×5=20;若a 与b 反向,则θ=180°,∴a ·b =|a |·|b |cos 180°=4×5×(-1)=-20.(2)当a ⊥b 时,θ=90°,∴a ·b =|a |·|b |cos 90°=0.(3)当a 与b 的夹角为30°时,a ·b =|a |·|b |cos 30°=4×5×32=10 3. 变式训练1 解 (1)∵AB →与AC →的夹角为60°. ∴AB →·AC →=|AB →||AC →|cos 60°=1×1×12=12. (2)∵AB →与BC →的夹角为120°.∴AB →·BC →=|AB →||BC →|cos 120°=1×1×⎝⎛⎭⎫-12=-12. (3)∵BC →与AC →的夹角为60°,∴BC →·AC →=|BC →||AC →|cos 60°=1×1×12=12. 例2 解 a·b =|a||b |cos θ=5×5×12=252. |a +b |=(a +b )2=|a |2+2a·b +|b |2= 25+2×252+25=5 3. |a -b |=(a -b )2=|a |2-2a·b +|b |2= 25-2×252+25=5. 变式训练2 解 由|3a -2b |=3,得9|a |2-12a·b +4|b |2=9,∵|a |=|b |=1,∴a·b =13, ∴|3a +b |=(3a +b )2=9|a |2+6a·b +|b |2=2 3.例3 解 ∵|n |=|m |=1且m 与n 夹角是60°,∴m·n =|m||n |cos 60°=1×1×12=12. |a |=|2m +n |=(2m +n )2=4×1+1+4m·n= 4×1+1+4×12=7, |b |=|2n -3m |=(2n -3m )2=4×1+9×1-12m·n= 4×1+9×1-12×12=7, a·b =(2m +n )·(2n -3m )=m·n -6m 2+2n 2=12-6×1+2×1=-72. 设a 与b 的夹角为θ,则cos θ=a·b |a||b |=-727×7=-12. 又θ∈[0,π],∴θ=2π3,故a 与b 的夹角为2π3. 变式训练3 解 要想(k a -b )⊥(a +2b ),则需(k a -b )·(a +2b )=0,即k |a |2+(2k -1)a·b -2|b |2=0,∴52k +(2k -1)×5×4×cos 60°-2×42=0,解得k =1415,即当k =1415时,向量k a -b 与a +2b 垂直. 课时作业1.D [a 在b 方向上的投影是|a |cos θ=2×cos 120°=-1.]2.A [∵(3a +2b )·(λa -b )=3λa 2+(2λ-3)a·b -2b 2=3λa 2-2b 2=12λ-18=0.∴λ=32.] 3.A [a·b =BC →·CA →=-CB →·CA →=-|CB →||CA →|cos 60°=-12. 同理b·c =-12,c·a =-12, ∴a·b +b·c +c·a =-32.] 4.B [∵a +b =c ,∴|c |2=|a +b |2=a 2+2a ·b +b 2.又|a |=|b |=|c |,∴2a ·b =-b 2,即2|a ||b |cos 〈a ,b 〉=-|b |2.∴cos 〈a ,b 〉=-12,∴〈a ,b 〉=120°.] 5.C [∵a·b =|a|·|b |·cos 60°=2|a |,∴(a +2b )·(a -3b )=|a |2-6|b |2-a·b=|a |2-2|a |-96=-72.∴|a |=6.]6.-152解析 |a -b |2=|a |2-2a·b +|b |2=49,∴a·b =-152. 7.0解析 b ·(2a +b )=2a·b +|b |2=2×4×4×cos 120°+42=0.8.[0,1]解析 b·(a -b )=a·b -|b |2=|a|·|b |cos θ-|b |2=0,∵a 是单位向量,∴|a |=1,∴|b |=|a |cos θ=cos θ (θ为a 与b 的夹角),θ∈[0,π], ∴0≤|b |≤1.9.解 (1)当a ∥b 时,若a 与b 同向,则a 与b 的夹角θ=0°, ∴a·b =|a||b |·cos θ=4×3×cos 0°=12.若a 与b 反向,则a 与b 的夹角为θ=180°,∴a·b =|a||b |cos 180°=4×3×(-1)=-12.(2)当a ⊥b 时,向量a 与b 的夹角为90°,∴a·b =|a||b |·cos 90°=4×3×0=0.(3)当a 与b 的夹角为60°时,∴a·b =|a||b |·cos 60°=4×3×12=6. 10.解 (2a -b )·(a +b )=2a 2+2a ·b -a ·b -b 2=2a 2+a ·b -b 2=2×12+1×1×cos 120°-12=12. |a +b |=(a +b )2=a 2+2a ·b +b 2=1+2×1×1×cos120°+1=1.∴|2a -b |cos 〈2a -b ,a +b 〉 =|2a -b |·(2a -b )·(a +b )|2a -b |·|a +b |=(2a -b )·(a +b )|a +b |=12. ∴向量2a -b 在向量a +b 方向上的投影为12.。
人教版高中数学全套教案导学案高中数学 (2.4.1 平面向量数量积的物理背景及其含义)教案 新人教A版必修4

2.4 平面向量的数量积2.4.1 平面向量数量积的物理背景及其含义整体设计教学分析前面已经知道,向量的线性运算有非常明确的几何意义,因此利用向量运算可以讨论一些几何元素的位置关系.既然向量可以进行加减运算,一个自然的想法是两个向量能否做乘法运算呢?如果能,运算结果应该是什么呢?另外,距离和角是刻画几何元素(点、线、面)之间度量关系的基本量.我们需要一个向量运算来反映向量的长度和两个向量间夹角的关系.众所周知,向量概念的引入与物理学的研究密切相关,物理学家很早就知道,如果一个物体在力F的作用下产生位移s(如图1),那么力F所做的功图1W=|F||s|cosθ功W是一个数量,其中既涉及“长度”,也涉及“角”,而且只与向量F,s有关.熟悉的数的运算启发我们把上式解释为两个向量的运算,从而引进向量的数量积的定义a·b=|a||b|cosθ.这是一个好定义,它不仅满足人们熟悉的运算律(如交换律、分配律等),而且还可以用它来更加简洁地表述几何中的许多结果.向量的数量积是一种新的向量运算,与向量的加法、减法、数乘运算一样,它也有明显的物理意义、几何意义.但与向量的线性运算不同的是,它的运算结果不是向量而是数量.三维目标1.通过经历探究过程,掌握平面向量的数量积及其几何意义.掌握平面向量数量积的重要性质及运算律.2.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,并掌握向量垂直的条件.3.通过问题的解决,培养学生观察问题、分析问题和解决问题的实际操作能力;培养学生的交流意识、合作精神;培养学生叙述表达自己解题思路和探索问题的能力.重点难点教学重点:平面向量数量积的定义.教学难点:平面向量数量积的定义及其运算律的理解和平面向量数量积的应用.课时安排1课时教学过程导入新课思路 1.我们前面知道向量概念的原型就是物理中的力、速度、位移以及几何中的有向线段等概念,向量是既有大小、又有方向的量,它与物理学中的力学、运动学等有着天然的联系,将向量这一工具应用到物理中,可以使物理题解答更简捷、更清晰,并且向量知识不仅是解决物理许多问题的有利工具,而且用数学的思想方法去审视相关物理现象,研究相关物理问题,可使我们对物理问题认识更深刻.物理中有许多量,比如力、速度、加速度、位移等都是向量,这些物理现象都可以用向量来研究.在物理课中,我们学过功的概念,即如果一个物体在力F 的作用下产生位移s,那么力F 所做的功W 可由下式计算:W =|F ||s|cos θ其中θ是F 与s 的夹角.我们知道力和位移都是向量,而功是一个标量(数量). 故从力所做的功出发,我们就顺其自然地引入向量数量积的概念.思路2.前面我们已学过,任意的两个向量都可以进行加减运算,并且两个向量的和与差仍是一个向量.我们结合任意的两个实数之间可以进行加减乘除(除数不为零)运算,就自然地会想到,任意的两个向量是否可以进行乘法运算呢?如果能,其运算结果是什么呢? 推进新课新知探究提出问题①a ·b 的运算结果是向量还是数量?它的名称是什么?②由所学知识可以知道,任何一种运算都有其相应的运算律,数量积是一种向量的乘法运算,它是否满足实数的乘法运算律?③我们知道,对任意a,b∈R ,恒有(a+b)2=a 2+2ab+b 2,(a+b)(a-b)=a 2-b 2.对任意向量a 、b ,是否也有下面类似的结论?(1)(a +b )2=a 2+2a ·b +b 2;(2)(a +b )·(a -b )=a 2-b 2.活动:已知两个非零向量a 与b ,我们把数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ(0≤θ≤π).其中θ是a 与b 的夹角,|a |cos θ(|b |cos θ)叫做向量a 在b 方向上(b 在a 方向上)的投影.如图2为两向量数量积的关系,并且可以知道向量夹角的范围是0°≤θ≤180°.图2在教师与学生一起探究的活动中,应特别点拨引导学生注意:(1)两个非零向量的数量积是个数量,而不是向量,它的值为两向量的模与两向量夹角的余弦的乘积;(2)零向量与任一向量的数量积为0,即a ·0=0;(3)符“·”在向量运算中不是乘,既不能省略,也不能用“×”代替;(4)当0≤θ<2π时cos θ>0,从而a ·b >0;当2π<θ≤π时,cos θ<0,从而a ·b <0.与学生共同探究并证明数量积的运算律.已知a ,b ,c 和实数λ,则向量的数量积满足下列运算律:①a ·b =b ·a (交换律);②(λa )·b =λ(a ·b )=a ·(λb )(数乘结合律);③(a +b )·c =a ·c +b ·c (分配律).特别是:(1)当a ≠0时,由a ·b =0不能推出b 一定是零向量.这是因为任一与a 垂直的非零向量b ,都有a ·b =0.图3(2)已知实数a 、b 、c(b≠0),则ab=bc ⇒a=c.但对向量的数量积,该推理不正确,即a ·b =b ·c 不能推出a =c .由图3很容易看出,虽然a ·b =b ·c ,但a ≠c .(3)对于实数a 、b 、c 有(a·b)c=a(b·c);但对于向量a 、b 、c ,(a ·b )c =a (b ·c )不成立.这是因为(a ·b )c 表示一个与c 共线的向量,而a (b ·c)表示一个与a 共线的向量,而c 与a 不一定共线,所以(a ·b )c =a (b ·c )不成立.讨论结果:①是数量,叫数量积.②数量积满足a ·b =b ·a (交换律);(λa )·b =λ(a ·b )=a ·(λb )(数乘结合律);(a +b )·c =a ·c +b ·c (分配律).③(1)(a +b )2=(a +b )·(a +b )=a ·b +a ·b +b ·a +b ·b =a 2+2a ·b +b 2;(2)(a +b )·(a -b )=a ·a -a ·b +b ·a -b ·b =a 2-b 2.提出问题①如何理解向量的投影与数量积?它们与向量之间有什么关系?②能用“投影”来解释数量积的几何意义吗?活动:教师引导学生来总结投影的概念,可以结合“探究”,让学生用平面向量的数量积的定义,从数与形两个角度进行探索研究.教师给出图形并作结论性的总结,提出注意点“投影”的概念,如图4.图4定义:|b |cos θ叫做向量b 在a 方向上的投影.并引导学生思考:1°投影也是一个数量,不是向量;2°当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ=0°时投影为|b |;当θ=180°时投影为-|b |.教师结合学生对“投影”的理解,让学生总结出向量的数量积的几何意义:数量积a ·b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.让学生思考:这个投影值可正、可负,也可为零,所以我们说向量的数量积的结果是一个实数.教师和学生共同总结两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1°e ·a =a ·e =|a |cos θ.2°a ⊥b ⇔a ·b =0.3°当a 与b 同向时,a ·b =|a ||b |;当a 与b 反向时,a ·b =-|a ||b |.特别地a ·a =|a |2或|a |=a a ∙.4°cos θ=||||b a b a ∙.5°|a ·b |≤|a ||b |.上述性质要求学生结合数量积的定义自己尝试推证,教师给予必要的补充和提示,在推导过程中理解并记忆这些性质.讨论结果:①略(见活动).②向量的数量积的几何意义为数量积a ·b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.应用示例思路1例 1 已知平面上三点A 、B 、C 满足|AB |=2,|BC |=1,|CA |=3,求AB ·BC +BC ·CA +CA AB 的值.活动:教师引导学生利用向量的数量积并结合两向量的夹角来求解,先分析题设然后找到所需条件.因为已知AB 、BC 、CA 的长度,要求得两两之间的数量积,必须先求出两两之间的夹角.结合勾股定理可以注意到△A BC 是直角三角形,然后可利用数形结合来求解结果.解:由已知,|BC |2+|CA |2=|AB |2,所以△A BC 是直角三角形.而且∠AC B=90°, 从而sin∠A BC=23,sin∠B AC=21. ∴∠A BC =60°,∠B AC =30°. ∴AB 与BC 的夹角为120°,BC 与CA 的夹角为90°,CA 与AB 的夹角为150°. 故AB ·BC +BC ·CA +CA ·AB =2×1×cos120°+1×3cos90°+3×2cos150°=-4.点评:确定两个向量的夹角,应先平移向量,使它们的起点相同,再考察其角的大小,而不是简单地看成两条线段的夹角,如例题中AB 与BC 的夹角是120°,而不是变式训练已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a -3b解:(a +2b )·(a -3b )=a ·a -a ·b -6b ·b=|a |2-a ·b -6|b |2=|a |2-|a ||b |cos θ-6|b |2=62-6×4×cos60°-6×42=-72.例2 已知|a |=3,|b |=4,且a 与b 不共线,当k 为何值时,向量a +k b 与a -k b 互相垂直? 解:a +k b 与a -k b 互相垂直的条件是(a +k b )·(a -k b )=0,即a 2-k 2b 2=0.∵a 2=32=9,b 2=42=16,∴9-16k 2=0. ∴k=±43. 也就是说,当k=±43时,a +k b 与a -k b 互相垂直. 点评:本题主要考查向量的数量积性质中垂直的充要条件.变式训练已知向量a 、b 满足:a 2=9,a ·b =-12,求|b |的取值范围.解:∵|a |2=a 2=9,∴|a |=3.又∵a ·b =-12,∴|a ·b |=12.∵|a ·b |≤|a ||b |,∴12≤3|b |,|b |≥4.故|b |的取值范围是[4,+∞).思路2例1 已知在四边形ABCD 中,AB =a ,BC =b ,CD =c ,DA =d ,且a ·b =c ·d =b ·c =d ·a ,试问四边形ABCD 的形状如何?解:∵AB +BC +CD +DA =0,即a +b +c +d =0,∴a +b =-(c +d ).由上可得(a +b )2=(c +d )2,即a 2+2a ·b +b 2=c 2+2c ·d +d 2.又∵a ·b =c ·d ,故a 2+b 2=c 2+d 2.同理可得a 2+d 2=b 2+c 2.由上两式可得a 2=c 2,且b 2=d 2,即|a |=|c |,且|b |=|d |,也即AB=CD,且BC=DA,∴A BCD 是平行四边形. 故AB =CD ,即a =-c .又a ·b =b ·c =-a ·b ,即a ·b =0,∴a ⊥b ,即AB ⊥BC .综上所述,ABCD 是矩形.点评:本题考查的是向量数量积的性质应用,利用向量的数量积解决有关垂直问题,然后结合四边形的特点进而判断四边形的形状.例2 已知a ,b 是两个非零向量,且|a |-|b |=|a +b |,求向量b 与a -b 的夹角.活动:教师引导学生利用向量减法的平行四边形法则,画出以a ,b 为邻边的ABCD,若AB =a ,CB =b ,则CA =a +b ,DB =a -b .由|a |-|b |=|a +b |,可知∠A BC =60°,b 与DB 所成角是150°.我们还可以利用数量积的运算,得出向量b 与a -b 的夹角,为了巩固数量积的有关知识,我们采用另外一种角度来思考问题,教师给予必要的点拨和指导,即由cos 〈b ,a -b 〉=||||)(b a b b a b --∙作为切入点,进行求解. 解:∵|b |=|a +b |,|b |=|a |,∴b 2=(a +b )2.∴|b |2=|a |2+2a ·b +|b |2.∴a ·b =-21|b |2. 而b ·(a -b )=b ·a -b 2=21-|b |2-|b |2=23-|b |2, ① 由(a -b )2=a 2-2a ·b +b 2=|b |2-2×(21-)|b |2+|b |2=3|b |2, 而|a -b |2=(a -b )2=3|b |2,∴|a -b |=3|b |. ② ∵cos〈b ,a -b 〉=,||||)(b a b b a b --∙ 代入①②,得cos 〈b ,a -b 〉=-2323||3||||2-=∙b b b . 又∵〈b ,a -b 〉∈[0,π],∴〈b ,a -b 〉=65π. 点评:本题考查的是利用平面向量的数量积解决有关夹角问题,解完后教师及时引导学生对本解法进行反思、总结、体会.变式训练设向量c =m a +n b (m,n∈R ),已知|a |=22,|c |=4,a ⊥c ,b ·c =-4,且b 与c 的夹角为120°,求m,n 的值.解:∵a ⊥c ,∴a ·c =0.又c =m a +n b ,∴c ·c =(m a +n b )·c ,即|c |2=m a ·c +n b ·c .∴|c |2=n b ·c .由已知|c |2=16,b ·c =-4,∴16=-4n.∴n=-4.从而c =m a -4b .∵b ·c =|b ||c |cos120°=-4,∴|b |·4·(21-)=-4.∴|b |=2. 由c =m a -4b ,得a ·c =m a 2-4a ·b ,∴8m -4a ·b =0,即a ·b =2m. ①再由c =m a -4b ,得b ·c =m a ·b -4b 2.∴m a ·b -16=-4,即m a ·b =12. ②联立①②得2m 2=12,即m 2=6. ∴m=±6.故m=±6,n=-4.知能训练课本本节练习.解答:1.p·q=24.2.a·b<0时,△A BC为钝角三角形;a·b=0时,△A BC为直角三角形.3.投影分别为32,0,-32.图略.课堂小结1.先由学生回顾本节学习的数学知识,数量积的定义、几何意义,数量积的重要性质,数量积的运算律.2.教师与学生总结本节学习的数学方法,归纳类比、定义法、数形结合等.在领悟数学思想方法的同时,鼓励学生多角度、发散性地思考问题,并鼓励学生进行一题多解.作业课本习题2.4 A组2、3、4.设计感想本节的重要性是显而易见的,但本节有几个常见思维误区:不能正确理解向量夹角的定义,两个向量夹角的定义是指同一点出发的两个向量所构成的较小的非负角,因此向量夹角定义理解不清而造成解题错误是一些常见的误区.同时利用向量的数量积不但可以解决两向量垂直问题,而且还可以解决两向量共线问题,要深刻理解两向量共线、垂直的充要条件,应用的时候才能得心应手.。
高中数学 241 平面向量数量积的物理背景及其含义教案

2.4.1 平面向量数量积的物理背景及其含义【学情分析】本节以力对物体做功作为背景,研究平面向量的数量积,以及对运算律的理解和平面向量的数量积的灵活应用.但是,学生作为初学者不清楚向量的数量积数数量还是向量,寻找两向量的夹角又容易想当然.通过情境创设、探究和思考引导学生认知、理解并掌握相关的内容.利用向量数量积运算讨论一些几何元素的位置关系、距离和角,这些刻画几何元素(点、线、面)之间度量关系的基本量学生容易混淆.利用数量积运算来反映向量的长度和两个向量间夹角的关系解决问题,是学生学习本节内容的重点又是难点.由向量的线性运算迁移,引申到向量的乘法运算这是个很自然的过渡,深入浅出、符合学生的认知规律,也有利于明确本节课的教学任务,激发学生的学习兴趣和求知欲望.【教学目标】(1)懂得平面向量数量积的含义及其物理背景;(2)会进行平面向量数量积的运算;(3)会用数量积判定两个向量的垂直关系;(4)能运用数量积求两个向量夹角的余弦值.【教学重点】平面向量数量积的概念和性质及运算律的探究和应用.【教学难点】平面向量数量积的定义及对运算律的探究、理解,平面向量数量积的灵活应用.cosθb叫做记作:a b cosθb(其与b的夹(cosθb)叫方向上(b在方向上)的投影.)a b=a b(a与都是非零向量);=a b,则至少有一个类比a,b属于ab=0等价于.而且此性质=b a b ;共线反=-b a b .22==a a a a 或2=a a a a与二次根式性质类比),这是求向量长度的又一方法.从例1得出性质≤b a b 和数量积的几何意义.b学生通过自主阅读,总结并发=b b a ; )()()λλ==a b a b a b )+=+a b c a c b c 对向量数量积的运算律进一步研究.)()()=a b c a b c 成立吗?显然,等式左边与向量a共线,右边与向量c 共线,而不一定共线,因此结论不一定成立;=a b b c 能否推出?(反例:当a =0,时,有0==a b b c ,但不能得到c =0).结合实数0),有ab=bc ⇒a=c 进行类比,辨析.与法则之间的区别与联系.注意利用学生的错误这一重要资源,和易混点,掌握知识.老师可以将例题内容与多 1.【教学反思】本节课教学效果不错,主要是把学习的主动权交还给学生,注意学生的主动探索、思考及师生互动,还以物理知识为背景,建立了数学的平面向量数量积的概念和运算,使得学习内容直观、生动,抓住重点.使学生懂得对已有的知识进行迁移、采用类比的方法让学生主动学习合作交流,体验数学的发现和创造过程,培养学生数学表达和交流的能力.在课堂中会体现自我,学会自己寻找解题的突破口,在探究中学会思考,在合作中学会推进,在观察中学会比较,进而推进整个教学程序的展开.但自我感觉“讲”的还是偏多了一点,对于学生解题中出项的错误这一资源展开、分析得不够,以后应该更加注意引导.。
平面向量数量积的物理背景及其含义导学案

b b a a图① 图②平面向量数量积的物理背景及其含义导学案姓名: 班级:【目标展示】1、掌握平面向量数量积的含义及其几何意义2、体会平面向量的数量积与向量投影的关系3、掌握平面向量数量积的性质和运算律【课程导读】 1.平面向量数量积(内积)的定义:已知两个非零向量a 与b ,我们把数量 叫做a 与b 的数量积(或内积),记作 ,即 ,其中θ是a 与b 的夹角.规定:零向量与任一向量的数量积均为 .2.向量的数量积的几何意义(1)θcos ||b 表示什么?(2)分别在图①②上画出a 在b 方向上的投影,及b 在a 方向上的投影:(3)数量积的几何意义:a b∙的几何意义是_______与b 在a 方向上的投影 的乘积. 3.向量的数量积的性质: 设a 与b 都是非零向量,θ为a 与b 的夹角. (1)a b ⊥⇔ ; (2)当a 与b 同向时,a b ∙= ,当a 与b 反向时,a b ∙= . (3)a a ∙= 或2a a a a =∙=;(4)cos θ= ; (5)a b ∙ a b .(填“=”、“≥”“≤”)4.向量数量积的运算律已知向量a ,b ,c 和实数λ,则(1)a b ∙= ;(交换律) (2)()a b λ∙= = ;(与数乘的结合律)(3)()a b c +∙= .(分配律)【方法导练】1 .已知|a |=5, |b |=4, a 与b 的夹角θ=120o ,则a ·b =________. 2、已知c b a ,,是三个非零向量,下列命题假命题的是( ) A 、b a b a b a //||||||⇔⋅=⋅ B 、||||b a b a b a ⋅-=⋅⇔反向与 C 、||||b a b a b a -=+⇔⊥ D 、||||||||c b c a b a ⋅=⋅⇔= 2、对于向量c b a ,,和实数λ,下列命题中真命题是( ) A 、若0=⋅b a ,则0 =a 或0 =b B 、若0 =a λ,则0=λ或0 =a C 、若22b a =,则b a =或b a -= D 、若c a b a ⋅=⋅,则c b =3、向量a ,b 满足4||,1||==b a ,且2=⋅b a ,则a 与b 的夹角是( )A 、6π B 、3π C 、4π D 、2π 4、向量a ,b 满足2||,1||==b a ,a 与b 的夹角为 60,则||b a -= 5、已知︱a ︱=6,︱b ︱=4, a 与b 的夹角为60°,求(a +2b )·(a -3b ).【当堂检测】 1、向量a ,b 满足6||,1||==b a ,且2)(=-⋅a b a ,则a 与b 的夹角是( )2、已知正三角形ABC 的边长为1,求:(1) AB AC ∙ (2) AB BC ∙ (3) BC AC ∙3、已知向量a 与b 的夹角为 120,且2||,4||==b a , 求:(1)b a ⋅;(2)||b a +;(3))2()(b a b a -⋅+.4、已知6||=a ,a 与b 的夹角为 60,且72)3()2(-=-⋅+b a b a ,求||b5、已知2||,1||==b a ,a 与b 不共线,k 为何值时,向量b k a +与b k a -垂直?6、设m 、n 是两个单位向量,其夹角为60°,求向量a =2m +n 与b =2n -3m 的夹角.。
导学案1:2.4.1 平面向量数量积的物理背景及其含义

必修四第二章 平面向量2.4.1 平面向量数量积的物理背景及其含义教学目标1、使学生了解向量的物理实际背景,理解平面向量的一些基本概念,能正确进行平面向量的几何表示.2、让学生经历类比方法学习向量及其几何表示的过程,体验对比理解向量基本概念的简易性,从而养成科学的学习方法.3、通过本节的学习,让学生感受向量的概念方法源于现实世界,从而激发学生学习数学的热情,培养学生学习数学的兴趣教学重点与难点1、重点:平面向量数量积的运算性质2、难点:平面向量数量积的运算性质知识要点.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |.特例:a ⋅a = |a |2或a a a ⋅=|| 4︒ cos θ =||||b a b a ⋅ 5︒ |a ⋅b | ≤ |a ||b |[预习自测]1.已知向量a =(1,-1),b =(2,x ),若a ·b =1,则x 等于 ( )A .-1B .-12 C.12 D .12.设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |等于( ) A. 5 B.10 C .2 5 D .103. 已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( ) A.⎝⎛⎭⎫79,73 B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79 D.⎝⎛⎭⎫-79,-73 4. 在△ABC 中,AB =3,AC =2,BC =10,则AB →·AC →等于 ( )A .-32B .-23 C.23 D.32归纳反思能力提升5.已知(2,3),(1,2),(2,1)a b c ==--=,试求()a b c 和()a b c 的值.6. 已知(1,2),(,1),2,2a b x u a b v a b ===+=-,根据下列情况求x :(1)//u v (2)u v ⊥参考答案预习自测:1、答案 D 解析 a ·b =(1,-1)·(2,x )=2-x =1⇒x =1.2、答案 B 解析 ∵a =(x,1),b =(1,y ),c =(2,-4),由a ⊥c 得a ·c =0,即2x -4=0,∴x =2.由b ∥c ,得1×(-4)-2y =0,∴y =-2. ∴a =(2,1),b =(1,-2).∴a +b =(3,-1),∴|a +b |=32+-12=10. 3、答案 D 解析 设c =(x ,y ),则c +a =(x +1,y +2),又(c +a )∥b ,∴2(y +2)+3(x +1)=0.①又c ⊥(a +b ),∴(x ,y )·(3,-1)=3x -y =0.②联立①②解得x =-79,y =-73. 4、答案 D解析 由于AB →·AC →=|AB →|·|AC →|·cos ∠BAC =12(|AB →|2+|AC →|2-|BC →|2)=12×(9+4-10)=32. 能力提升5.答案:()a b c =(-8,-12),()a b c =(-16,-8)6.答案:(1)12 (2)-2或72。
2.4.1平面向量的数量积 导学案

2.4.1 平面向量数量积的物理背景及其含义【课标要求】1.知道平面向量数量积的物理意义,记住其含义。
2.会用平面向量数量积的公式解决相关问题。
3. 利用平面向量数量积,可以处理有关长度、角度和垂直问题。
【考纲要求】1.会用平面向量数量积的公式解决相关问题。
2.利用平面向量数量积,可以处理有关长度、角度和垂直问题。
【学习目标续写】1.由向量的数量积体会向量和数量之间的联系。
2.总结用向量的数量积解决有关长度、角度和垂直问题的方法。
3.让我们充满激情的进入充满神秘色彩的数学世界。
【使用说明与学法指导】1.精读教材103-105页,用红笔勾画重点,理解和掌握定义,作答预习案、探究案。
2.找出自己的疑惑和需要讨论的问题,整理在导学案上,准备讨论质疑。
【预习案】(5分钟处理疑难)1.在等边三角形ABC中,求:(1)AB AC与的夹角;(2)AB BC与的夹角。
2.一些特殊角的余弦值:3.在两向量的夹角定义中,两向量夹角的范围是。
4.b在a上的投影是。
5.数量积a b⋅的几何意义是。
6.零向量与任一向量的数量积等于。
7.a b⋅是一个实数,那么它什么时候为正?什么时候为负?什么时候为零?8.总结数量积的性质和运算律,判断下列各题是否正确(1)00a⋅=()(2)00a⋅=()(3)a b a b⋅=()(4)若0a≠,则对于任一非零向量b有0a b⋅≠()(5)若a与b是两个单位向量,则22a b=()(6)对任意向量,,a b c,都有()()a b c a b c⋅⋅=⋅⋅()【我的质疑】【探究案】(25分钟讨论、展示、点评、质疑)一、向量数量积的概念(口展,命题真假说明原因)例1.已知,,a b c是三个非零向量,则下列命题中真命题的个数是()①a b a b a⋅=⇔∥b;②,a b a b a b⇔⋅=-反向;③a⊥b a b a b⇔+=-;④a b a c b c=⇔⋅=⋅。
A.1B.2C.3D.4二、平面向量数量积的运算(板展)(做第(2)问可用第(1)问结论,不必重做一次a b⋅)例2.05,4,60,1(2)(2)a b a b a b a a bθ===⋅⋅-已知与的夹角求()例3.向量a b 与夹角为3π,2,1ab ==,求2a b -的值。
平面向量数量积的物理背景及其含义导学案

平面向量的数量积第一课时 平面向量数量积的物理背景及其含义【知识·技能】1.通过物理中“功”等实例,理解平面向量数量积的含义及其几何意义。
2.体会平面向量数量积与向量投影的关系,理解掌握平面向量数量积的性质及其应用。
【学习方法】自主学习、分组讨论、探究展示【情感提升】体会数形结合、分类讨论、类比的数学思想和方法,进一步培养学生抽象概括和推理论证的能力。
【知识准备】1. 两个非零向量夹角是怎样求解的?为什么不能是零向量?零向量与任一向量的夹角是多少?夹角θ的范围是___________,其中90=θ时,b a ___;当0=θ或180=θ时,b a ___。
与任意向量的夹角________,为什么?2. 用五点法作出余弦函数[]πθθ2,0,cos ∈=y 的图象并填空。
当900<≤θ时,______cos ______θ,0=θ时,______cos =θ当90=θ时,______cos =θ当18090≤<θ时,______cos ______θ, 180=θ时,______cos =θ3. 我们研究了向量的哪些线性运算,这些运算的结果是向量还是数量?4. 我们是怎样引入向量的加法运算的?我们又是按照怎样的顺序研究这种运算的?5. 如图,小车在力F 的作用下产生位移S ,那么(1)力F 所做的功__________________=W ;(2)请同学们分析这个公式的特点:W (功)是____量,F (力)是____量, S (位移)是____量,θ是___________________。
(3)你能用文字语言表述“功的计算公式”吗?6. 平面向量数量积的概念:已知两个非零向量a 与,它们的夹角为θθ叫做a 与的数量积(或内积), 记作:⋅,即:___________________=⋅。
θ的范围是________________。
注意:① 数量积(内积)的运算结果是一个_________。
高中数学必修四2.4.1平面向量的数量积的物理背景及其含义导学案

高中数学必修四2.4.1平面向量的数量积的物理背景及其含义导学案2.4平面向量的数量积2.4.1平面向量的数量积的物理背景及其含义编审:周彦魏国庆【学习目标】1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;了解用平面向量的数量积可以处理垂直的问题;【自学新知】知识回顾:(1)两个非零向量夹角的概念:已知非零向量与,作=,=,则∠AOB=θ(0≤θ≤π)叫与的夹角.说明:(1)当θ=0时,与同向;(2)当θ=π时,与反向;(3)当θ=时,与垂直,记⊥ ;新知梳理:1.平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是θ,则叫与的数量积,记作,即有  = ,(0≤θ≤π). 并规定向量与任何向量的数量积为 .思考感悟:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?2、两个向量的数量积与实数乘向量的积有什么区别?(1)两个向量的数量积是一个,不是向量,符号由的符号所决定.(2)向量的数量积写成;符号“”既不能省略,也不能用“×”代替.(3)在实数中,若,且,则b=0;但是在数量积中,若  ,且  =0,不能推出 = .因cos有可能为02.“投影”的概念:作图:定义:| |cos叫做向量在方向上的投影. 思考感悟:投影不是向量,是一个数量。
当为锐角时投影为值;当为钝角时投影为值,当为直角时投影为;当=0时投影为| |;当 =180时投影为| |3.向量的数量积的几何意义:数量积  等于与 | |cos的乘积.4. 两个向量的数量积的性质:设,为两个非零向量,(1)   (2)当与同向时, = ,当与反向时, 特别的:  =| |2或;|  |≤| || |;平面向量数量积的运算律①交换律:  = ②数乘结合律:( ) = (  ) =( )③分配律:( + ) =  +说明:(1)一般地,( ) ≠ ()(2)==对点练习1.下列叙述不正确的是()A. 向量的数量积满足交换律B. 向量的数量积满足分配律向量的数量积满足结合律D.  是一个实数2.| |=3,| |=4,向量 + 与 - 的位置关系为()A.平行B.垂直夹角为 D.不平行也不垂直3.已知|m→|= ,n→=(cosθ,sinθ),m→n→=9 ,则m→, n→的夹角为()A.150ºB.120 º0 º D.30 º4.已知,,,则向量在向量方向上的投影是___________,向量在向量方向上的投影是___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4.1平面向量数量积的物理背景及其含义
【课标要求】
1、掌握平面向量数量积的意义,体会数量积与投影的关系。
2、平面向量积的重要性质及运算律。
【考纲要求】
1、能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。
2、会用向量方法解决某些简单的平面几何问题。
【学习目标叙写】
1、知道平面向量数量积的物理意义,记住其含义;
2、会用向量数量积的公式解决相关问题;
3、记住数量积的几个重要性质。
【使用说明与学法指导】
先阅读教材P103-P105.在理解物理学中作“功”的实例引出数量积的几何概念之后,学习向量数量积的性质与运算律。
【预习案】
问题1:如下图,如果一个物体在力F 的作用下产生位移s ,那么力F 所做的功W = ,其中θ是 . 思考:这个公式的有什么特点?请完成下列填空:
F (力)是 量;S (位移)是 量;θ是 ;W (功)是 量;
结论:功是一个标量,功是力与位移两个向量的大小及其夹角余弦的乘积 启示:能否把“功”看成是力与位移这两个向量的一种运算的结果呢?
问题2:向量的数量积(或内积)的定义
已知两个非零向量a 和b ,我们把数量cos a b θ叫做a 和b 的数量积(或内积),记作
a b ⋅,
即cos a b a b θ⋅=.其中θ是a 和b 的夹角(0≤θ≤π)
说明:①记法“a ·b ”中间的“· ”不可以省略,也不可以用“⨯ ”代替。
② 两个非零向量夹角的概念:非零向量a 与b ,作OA =a
,OB =b ,
则∠AOB=θ(0≤θ≤π)叫a 与b
的夹角(两向量必须是同起点)
注意:当θ=0时,a 与b 同向;当θ=π时,a 与b
反向;
当θ=2
π
时,a 与b 垂直,记a ⊥b ;
③“规定”:零向量与任何向量的数量积为零,即00a ⋅=。
思考:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小因素有哪些?
数量积的符号由cos θ的符号所决定,完成下表:
θ的范围 0°≤θ<90°
θ=90° 0°<θ≤180°
a ·
b 的符号
问题3:向量的数量积(或内积)几何意义 (1)向量投影的概念:如图,我们把cos a θ叫做向量a 在b 方向上的投影;cos b θ叫做向量b 在a 方向上的投影.
说明:如图,1cos OB b θ=. 向量投影也是一个数量,不是
向量;
当θ为锐角时投影为正值;当θ为钝角时投影为负值;
当θ = 0︒时投影为 |b |;当θ=90︒时投影为0;当θ = 180︒时投影为 -|b
| 作图:
(2)向量的数量积的几何意义:数量积a ·b 等于a 的长度︱a ︱与b 在a 的方向上的
投影︱b ︱cos α 的乘积。
问题4:由定义得到的数量积的性质。
设a 和b 都是非零向量,θ是a 与b 的夹角,则
⑴当a 与b 垂直时,90θ=,即a b a b ⊥⇔⋅= ; ⑵当a 与b 同向时,0θ=,a b ⋅= ;
当a 与b 反向时,180θ=,a b ⋅= ; ⑶当a b =,即a a ⋅= ,或a = ; ⑷cos θ =
||||
a b
a b ⋅ ⑸因为cos 1θ≤,所以a b ⋅ a b . 【探究案】
例:已知a =5,b =2,a 与b
的夹角为 120,求()()
23a b a b +•-的值.
变式:已知向量a 与b
的夹角为 120,且a =4,b =2,求: (1) a b + ;(2) 34a b -
1.在平行四边形ABCD 中,4AB =,2BC =,120BAD ∠=,则AB AD ⋅为( ) A.4 B.-4 C.8 D.-8
2.若a b •<0,则a 与b
的夹角θ的取值范围是( )
A. 0,2π⎡⎫⎪⎢⎣⎭
B. ,2ππ⎡⎫⎪⎢⎣⎭
C. ,2ππ⎛⎤ ⎥⎝⎦
D. ,2ππ⎛⎫ ⎪⎝⎭
3. a =4,a 与b
的夹角为 30,则a 在b 方向上的投影为 .
【训练案】
选作:已知a b ⊥,且a =2,b =1,若对两个不同时为零的实数,k t ,使得
(3)a t b +-与ka tb -+垂直,试求k 的最小值.
【二次备课】。