静电场之均匀带电球面球体和球壳的电场

合集下载

求一均匀带电球面的电场能量

求一均匀带电球面的电场能量

2
4

r 2dr
ε0
Q
++ +
+
+r
++
+
R+
+
Q2
8 0 R
静电能就是电荷产生的电场的能量
思考题 有一半径为R的导体球,开始不带电,现将分散在无限远处 的元电荷聚集到导体球上,则当导体球上带有Q电量时,外 力做的功是多少? 同学们推导.
dW dA dq q dq 4 0 R
-e a
-e
电荷 分别与相邻的负电荷之 -e
间的相互作用能为W1
+2e
e2
W1

12 4π
ε
0a
-e -e
-e -e
(2)、6个面上其有12对 顶点负电荷 之间的相互作用 的相互作用能为W2
W2
12 4π
e2 ε0
2a
(3)、立方体对角线上四对负
电荷 的相互作用能W3
e2
W3

4 4π
ε
0
3a

1 2
dq
1

2
φ

S
dq
q2 8π ε 0R
Q +

+ dq
φ


R +

例题3、求电容器的能量
+ +
u
_ dq _
R
dq
ε
解法:(1)、将dq从负极搬到正极,电源克服电场力作功
q dA udq dq
C
A
Qq
Q2
udq dq
0C
2C

静电场的高斯定理

静电场的高斯定理
向平面)。
例7-10 求电荷呈“无限长”圆柱形轴对称均匀分布时 所激发的电场强度。
解:电场分布也应有柱对称性,方向沿径向。 作与带电圆柱同轴的圆柱形高斯面,
高为h,半径为r
•当r>R 时,
sE dS 侧面 E dS E 2 r h 为什么?
r h
E 2 r h h 0
P点的场强
E 2 0 r
1
0
d V
V
关于高斯定理的几点讨论
以上是通过用闭合曲面的电通量概念来说明高斯 定理,仅是为了便于理解而用的一种形象解释, 不是高斯定理的证明
高斯定理是在库仑定律基础上得到的,但是前者 适用范围比后者更广泛。后者只适用于真空中的 静电场,而前者适用于静电场和随时间变化的场, 高斯定理是电磁理论的基本方程之一。
③ 场源电荷为无限长均匀带电直线、均匀带电直圆柱面、直 圆柱体或同轴导体圆筒等,则电场的分布具有柱对称性。
(2) 选取高斯面
用高斯定理求场强时,选取恰当的高斯面是解题的关键。
选取高斯面的原则:
① 选取的高斯面必须通过所考查的场点。 ② 应使高斯面上各点的场强大小相等, 方向与该处面元 的
法线平行(这样则可将E提到积分号外,只对面积积分); 或者使高斯的部分面上各点场强大小相等,方向与 的法线 平行,另一部分面上各点场强为零或场强的方向与面元的 法线垂直(即通过这部分的E通量为零)。
高斯定理解题步骤: 总结
(1)分析电场的对称性
根据题意画出示意图,分析电场的分布情况 (最好画出电场 线),看是否具有某种特殊的对称性,这可从产生电场的场 源电荷的分布看出。
常见的情况有以下几种:
① 场源电荷为均匀带电球面、均匀带电球体、同心的均匀带 电导体球壳等,则电场的分布具有球对称性;

大学物理第9篇习题解答

大学物理第9篇习题解答

第9章 真空中的静电场 习题解答9-1 精密的实验已表明,一个电子与一个质子的电量在实验误差为e 2110-±的范围内是相等的,而中子的电量在e 2110-±的范围内为零。

考虑这些误差综合的最坏情况,问一个氧原子(含8个电子、8个质子、8个中子)所带的最大可能净电荷是多少?若将原子看成质点,试比较两个氧原子间的电力和万有引力的大小,其净力是引力还是斥力?解:(1)一个氧原子所带的最大可能净电荷为 e q 21max 1024-⨯±=(2)两个氧原子间的电力和万有引力的大小之比为6222711221921122222max 0108.2)1067.116(1067.6)106.11024(1085.84141------⨯≈⨯⨯⨯⨯⨯⨯⨯⋅⨯⨯=≤r r r m G r q f f G e ππε氧其净力是引力。

9-2 如习题9-2图所示,在直角三角形ABC 的A 点处,有点电荷q 1 = ×10-9C ,B 点处有点电荷q 2 = -×10-9C ,AC = 3cm ,BC = 4cm ,试求C 点的场强。

解:根据点电荷场强大小的公式22014q qE kr r==πε, 点电荷q 1在C 点产生的场强大小为112014q E AC =πε 994-1221.810910 1.810(N C )(310)--⨯=⨯⨯=⨯⋅⨯ 方向向下。

点电荷q 2在C 点产生的场强大小为2220||14q E BC =πε E 2 EE 1q 2A C q 1B θ994-1224.810910 2.710(N C )(410)--⨯=⨯⨯=⨯⋅⨯, 方向向右。

C 处的总场强大小为E =44-110 3.24510(N C )==⨯⋅,总场强与分场强E 2的夹角为12arctan33.69E E ==︒θ.9-3 半径为R 的一段圆弧,圆心角为60°,一半均匀带正电,另一半均匀带负电,其电荷线密度分别为+λ和-λ,求圆心处的场强。

均匀带电球体内外的电场强度公式

均匀带电球体内外的电场强度公式

一、电场的概念电场是指电荷周围空间内的物理场,它描述了电荷对空间内其它电荷的作用力。

在物理学中,电场是一种很重要的概念,它可以帮助我们理解电荷之间相互作用的规律,也是电磁学的重要内容之一。

二、均匀带电球体的电场强度定义均匀带电球体是指球体内每一点的电荷密度都是相同的,而且球体外部没有电荷分布。

对于这样的球体,可以利用高斯定律求出球体内外的电场强度。

三、均匀带电球体内部的电场强度1. 对于均匀带电球体内部的一点P,其到球心的距离记为r,球体的半径记为R。

2. 根据高斯定律,球体内部的电场强度公式为E = k * Q * r / R^3,其中,k为电场常数,Q为球体的总电荷量。

3. 由上式可以看出,均匀带电球体内部的电场强度与点P到球心的距离成正比,与球体的总电荷量成正比,与球体的半径的立方成反比。

这说明球体内部的电场强度分布是均匀的,且与点P到球心的距离成线性关系。

四、均匀带电球体外部的电场强度1. 对于均匀带电球体外部的一点Q,其到球心的距离记为r。

2. 根据高斯定律,球体外部的电场强度公式为E = k * Q / r^2,其中,k为电场常数,Q为球体的总电荷量。

3. 由上式可以看出,均匀带电球体外部的电场强度与点Q到球心的距离成反比,与球体的总电荷量成正比。

随着点Q到球心的距离增大,电场强度逐渐减小。

五、结论通过本文对均匀带电球体内外的电场强度公式的推导和分析,我们可以得出以下结论:1. 均匀带电球体内部的电场强度与点到球心的距离成正比,与球体的总电荷量成正比,与球体的半径的立方成反比。

2. 均匀带电球体外部的电场强度与点到球心的距离成反比,与球体的总电荷量成正比。

均匀带电球体内外的电场强度公式为E = k * Q * r / R^3 (r < R) 和 E = k * Q / r^2 (r > R)。

这些公式在电磁学理论研究和工程实践中具有重要的应用价值。

在物理学中,电场是一种很重要的概念,它可以帮助我们理解电荷之间相互作用的规律,也是电磁学的重要内容之一。

9.0静电场之基本内容

9.0静电场之基本内容
n
空间某点的所产生的场强等于各个 ri是电荷Qi到场点P的矢径。 点电荷在该点产生场强的矢量和 当电荷连续分布时,可将带电体分成许 dE = dq 3 r 4πε 0 r 多点电荷,每个点电荷产生的场强为 全部电荷产生 E = 1 dq r 4πε 0 ∫ r 3 的合场强为 点电荷dq可根据线密度λ, 面密度σ或体密度ρ决定 dq = λdl,dq = σdS和dq = ρdV。
4.典型源电荷的电场 (1)点电荷 E = 1 Q r 4πε 0 r 3 的电场为 其中r是点电荷 Q到场点的矢径。 Q>0 Q<0 r r P E EP
点电荷产生的场强与其电量Q成正比, 与场点到点电荷的距离的平方成反比, 方向在场点到点电荷的连线上。 正点电荷产生场强的方向沿径向向外, 负点电荷产生场强的方向沿径向向内。 (2)无限长均匀带 E = λ r 2 ε 2 π r 电直线的场强为 0
n
θ
E

S
E ⋅ dS 对于封闭的曲面,通常取外
法线方向为曲面的正方向。
7.高斯定理:在静电场中,通过任一闭合曲面(称为高 斯面)的电通量等于该曲面包围的电量的代数和除以ε0
ΦE =

S
E ⋅ dS =
1
ε0
高斯定理说明电场是有源场,正电荷 q ∑ i
i
是电场的源头,负电荷是电场的汇尾。
注意:任何一点的场强E是所有电荷在 该处产生的,而 ∑ qi 是高斯面内的电 i 荷,不包括高斯面外的电荷,因为高 斯面外的电荷产生的电通量为零。
湖南大学物电院周群益第九章第九章静电场静电场基本内容基本内容范例范例92电偶极子的电场电偶极子的电场范例范例93均匀带电线段的电场均匀带电线段的电场范例范例91点电荷的电场点电荷的电场范例范例94平行直线电荷的电场平行直线电荷的电场范例范例95均匀带电圆环圆盘和圆圈在轴线上的电场均匀带电圆环圆盘和圆圈在轴线上的电场范例范例98直线电荷与共面带电线段之间的作用力直线电荷与共面带电线段之间的作用力范例范例97均匀带电圆柱面圆柱体和圆柱壳的电场均匀带电圆柱面圆柱体和圆柱壳的电场范例范例99直线电荷与共面圆弧电荷之间的作用力直线电荷与共面圆弧电荷之间的作用力范例范例910点电荷在有孔带电平面轴线上的运动规律点电荷在有孔带电平面轴线上的运动规律范例范例96均匀带电球面球体以及球壳的电场均匀带电球面球体以及球壳的电场基本内容基本内容1

大学物理一复习 第五章 静电场和习题小结

大学物理一复习  第五章  静电场和习题小结
r
q 4 π
0


dr r
2
r
q
1 q ( ) 4 r r 4 r q
0 0
r
E
V
q 4 π 0r
q 0, V 0 q 0, V 0
三、电势叠加原理
点电荷系
Va
q1
q2

a
E dl
V1 V 2 V n
第 五 章 静电场
Nothing in life is to be feared. It is only to be understood. ----(Marie Curie)
本章参考作业:P190
5-1,5-2、5-9①、5-14、5-21、 5-23、5-26、5-27、5-30。
学 习 要 点
的大小处处相等,且有
cos 1
cos 0
(目的是把“ E ”从积分号里拿出来)
计算高斯面内的电荷,由高斯定理求 E。
高斯定理运用举例: ---计算有对称性分布的场强
掌握所有 例题
1、球对称——球体、球面、球壳等。 2、轴对称——无限长直线、圆柱体、圆柱面。 3、面对称——无限大均匀带电平面。
E
0
R
r
三、面对称——无限大均匀带电平面。
例6、求无限大均匀带电平面的场 分布。已知面电荷密度为
o
p
dE
dE
解:对称性分析: 垂直平面 E
选取闭合的柱形高斯面
左底 侧
右底
侧 0

左底
E S
S'
E S

右底
2 ES

均匀带电球体表面电场强度的计算 论文

均匀带电球体表面电场强度的计算  论文
当R <r<R 时,做高斯面S,如图所示:
图2.2球壳与高斯面几何模型
= ( ) (2.2.6)
E S=
E= = (2.2.7)
E= n(2.2.8)
当r>R 时,E= n(2.2.9)
作电场随r变化的曲线如图所示,此曲线为一连续曲线。即带电薄层内的场强从一壁到另一壁是连续变化的,在任何地方都没有突变。
角取值从0到
那么就有
E = (4.3)
令u=cos
则 (4.4)
在球面上时,即R=r
=
===ຫໍສະໝຸດ === = = (4.5)
由E = 可得:
在球面外,即r>R时
由图可知
= (4.6)
在球面内,即R<r时可知:
(4.7)
综上所述可知:
(4.8)
4.2均匀带电半球面轴线上的场强
有一个均匀带电的半球面,它的半径为R,电荷的面密度为 ,求球心处的电场强度。我在这里求轴线任意一点p上的电场强度?
方向沿x轴方向。这与电磁学书上给出的结论一致,可以保证它的正确性。
4.3不均匀带电球体表面空间场强的分布
在静电学中,我们经常可以见到均匀带电球面空间场强的计算这类问题,它是将现实中的问题理想化的模型,但是在现实生活中,我们遇见的问题比较复杂,就像我们要讨论的问题:不均匀带电球面空间场强的分布问题,例如我们会遇到带电球面电荷密度为极角θ的余弦的函数的情况,因此,研究非均匀带电球面场强分布对研究电荷分布有非常重要的意义。
1.电场强度与电场的叠加原理的概念
1.1电场强度
静止点电荷Q激发的静电场,把在电场中所要研究的点叫场点 。在场点中放置一个静止的试探电荷q,有库仑定律可知,它所受到的电场力为 ,其中 不但与场点有关,而且与试探电荷q有关,但 只和场点有关,我们将之称为该点的电场强度。以E为电场强度,其大小为 。

大学物理静电场习题答案

大学物理静电场习题答案

第12章 静电场P35.12.3 如图所示,在直角三角形ABCD 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,试求C 点的场强.[解答]根据点电荷的场强大小的公式22014q qE k r r ==πε, 其中1/(4πε0) = k = 9.0×109N·m 2·C -2.点电荷q 1在C 点产生的场强大小为112014q E AC =πε 994-1221.810910 1.810(N C )(310)--⨯=⨯⨯=⨯⋅⨯, 方向向下.点电荷q 2在C 点产生的场强大小为2220||14q E BC =πε994-1224.810910 2.710(N C )(410)--⨯=⨯⨯=⨯⋅⨯,方向向右.C 处的总场强大小为E =44-110 3.24510(N C )==⨯⋅,总场强与分场强E 2的夹角为12arctan33.69E E ==︒θ.12.4 半径为R 的一段圆弧,圆心角为60°,一半均匀带正电,另一半均匀带负电,其电线密度分别为+λ和-λ,求圆心处的场强.[解答]在带正电的圆弧上取一弧元 d s = R d θ,电荷元为d q = λd s ,在O 点产生的场强大小为220001d 1d d d 444q s E R R R λλθπεπεπε===, 场强的分量为d E x = d E cos θ,d E y = d E sin θ.对于带负电的圆弧,同样可得在O 点的场强的两个分量.由于弧形是对称的,x 方向的合场强为零,总场强沿着y 轴正方向,大小为2d sin y LE E E ==⎰θ/6/60000sin d (cos )22R R==-⎰ππλλθθθπεπε0(1)22R=-λπε.12.5 均匀带电细棒,棒长a = 20cm ,电荷线密度为λ = 3×10-8C·m -1,求:(1)棒的延长线上与棒的近端d 1 = 8cm 处的场强;(2)棒的垂直平分线上与棒的中点相距d 2 = 8cm 处的场强.[解答](1)建立坐标系,其中L = a /2 = 0.1(m),x = L+d 1 = 0.18(m).在细棒上取一线元d l ,所带的电量为d q = λd l ,根据点电荷的场强公式,电荷元在P 1点产图13.1生的场强的大小为1220d d d 4()q lE k r x l ==-λπε场强的方向沿x 轴正向.因此P 1点的总场强大小通过积分得120d 4()L L l E x l λπε-=-⎰014LLx lλπε-=-011()4x L x Lλπε=--+ 220124L x L λπε=-. ①将数值代入公式得P 1点的场强为8912220.13109100.180.1E -⨯⨯⨯=⨯⨯- = 2.41×103(N·C -1),方向沿着x 轴正向.(2)建立坐标系,y = d 2. 在细棒上取一线元d l ,所带的电量为 d q = λd l ,在棒的垂直平分线上的P 2点产生的场强的大小为2220d d d 4q lE kr r λπε==, 由于棒是对称的,x 方向的合场强为零,y 分量为 d E y = d E 2sin θ.由图可知:r = d 2/sin θ,l = d 2cot θ, 所以 d l = -d 2d θ/sin 2θ, 因此 02d sin d 4y E d λθθπε-=,总场强大小为02sin d 4Ly l LE d λθθπε=--=⎰02cos 4Ll Ld λθπε=-=LL=-==. ②将数值代入公式得P 2点的场强为89221/220.13109100.08(0.080.1)y E -⨯⨯⨯=⨯⨯+= 5.27×103(N·C -1). 方向沿着y 轴正向.[讨论](1)由于L = a /2,x = L+d 1,代入①式,化简得1011011144/1a E d d a d d a λλπεπε==++,保持d 1不变,当a →∞时,可得1014E d λπε→, ③这就是半无限长带电直线在相距为d 1的延长线上产生的场强大小.(2)由②式得y E ==,当a →∞时,得 022y E d λπε→, ④这就是无限长带电直线在线外产生的场强公式.如果d 1=d 2,则有大小关系E y = 2E 1.12.6 一均匀带电无限长细棒被弯成如图所示的对称形状,试问θ为何值时,圆心O 点处的场强为零.[解答]设电荷线密度为λ,先计算圆弧的电荷在圆心产生的场强.在圆弧上取一弧元 d s =R d φ, 所带的电量为d q = λd s ,在圆心处产生的场强的大小为2200d d d d 44q s E kr R Rλλϕπεπε===, 由于弧是对称的,场强只剩x 分量,取x 轴方向为正,场强为d E x = -d E cos φ. 总场强为2/20/2cos d 4x E R πθθλϕϕπε--=⎰2/20/2sin 4Rπθθλϕπε--=0sin 22R λθπε=,方向沿着x 轴正向.再计算两根半无限长带电直线在圆心产生的场强.根据上一题的公式③可得半无限长带电直线在延长上O 点产生的场强大小为`04E Rλπε=,由于两根半无限长带电直线对称放置,它们在O 点产生的合场强为``02coscos 222x E E R θλθπε==,方向沿着x 轴负向.当O 点合场强为零时,必有`x x E E =,可得 tan θ/2 = 1, 因此 θ/2 = π/4, 所以 θ = π/2.12.7 一宽为b 的无限长均匀带电平面薄板,其电荷密度为σ,如图所示.试求:(1)平板所在平面内,距薄板边缘为a处的场强.(2)通过薄板几何中心的垂直线上与薄板距离为d 处的场强.[解答](1)建立坐标系.在平面薄板上取一宽度为d x 的带电直线,电荷的线密度为d λ = σd x , 根据直线带电线的场强公式02E rλπε=, 得带电直线在P 点产生的场强为00d d d 22(/2)xE rb a x λσπεπε==+-,其方向沿x 轴正向.由于每条无限长直线在P 点的产生的场强方向相同,所以总场强为/20/21d 2/2b b E x b a x σπε-=+-⎰ /20/2ln(/2)2b b b a x σπε--=+-0ln(1)2baσπε=+. ①图13.4图13.5.场强方向沿x 轴正向.(2)为了便于观察,将薄板旋转建立坐标系.仍然在平面薄板上取一宽度为d x 的带电直线,电荷的线密度仍然为d λ = σd x ,带电直线在Q 点产生的场强为221/200d d d 22()xE rb x λσπεπε==+,沿z 轴方向的分量为221/20cos d d d cos 2()z xE E b x σθθπε==+,设x = d tan θ,则d x = d d θ/cos 2θ,因此d d cos d 2z E E σθθπε==积分得arctan(/2)0arctan(/2)d 2b d z b d E σθπε-=⎰ 0arctan()2bdσπε=. ② 场强方向沿z 轴正向.[讨论](1)薄板单位长度上电荷为λ = σb ,①式的场强可化为0ln(1/)2/b a E a b aλπε+=,当b →0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式,场强公式变为02E aλπε→, ③ 这正是带电直线的场强公式.(2)②也可以化为0arctan(/2)2/2z b d E d b dλπε=,当b →0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式,场强公式变为02z E dλπε→,这也是带电直线的场强公式.当b →∞时,可得2z E σε→, ④ 这是无限大带电平面所产生的场强公式.12.8 (1)点电荷q 位于一个边长为a 的立方体中心,试求在该点电荷电场中穿过立方体一面的电通量是多少?(2)如果将该场源点电荷移到立方体的的一个角上,这时通过立方体各面的电通量是多少?[解答]点电荷产生的电通量为Φe = q/ε0.(1)当点电荷放在中心时,电通量要穿过6个面,通过每一面的电通量为Φ1 = Φe /6 = q /6ε0.(2)当点电荷放在一个顶角时,电通量要穿过8个卦限,立方体的3个面在一个卦限中,通过每个面的电通量为Φ1 = Φe /24 = q /24ε0;立方体的另外3个面的法向与电力线垂直,通过每个面的电通量为零.12.9 面电荷密度为σ的均匀无限大带电平板,以平板上的一点O 为中心,R 为半径作一半球面,如图所示.求通过此半球面的电通量.[解答]设想在平板下面补一个半球面,与上面的半球面合成一个球面.球面内包含的电荷为q = πR 2σ, 通过球面的电通量为图13.7Φe = q /ε0, 通过半球面的电通量为Φ`e = Φe /2 = πR 2σ/2ε0.12.10 两无限长同轴圆柱面,半径分别为R 1和R 2(R 1 > R 2),带有等量异号电荷,单位长度的电量为λ和-λ,求(1)r < R 1;(2) R 1 < r < R 2;(3)r > R 2处各点的场强.[解答]由于电荷分布具有轴对称性,所以电场分布也具有轴对称性.(1)在内圆柱面内做一同轴圆柱形高斯面,由于高斯内没有电荷,所以E = 0,(r < R 1).(2)在两个圆柱之间做一长度为l ,半径为r 的同轴圆柱形高斯面,高斯面内包含的电荷为 q = λl , 穿过高斯面的电通量为d d 2e SSE S E rl Φπ=⋅==⎰⎰E S Ñ,根据高斯定理Φe = q /ε0,所以02E rλπε=, (R 1 < r < R 2). (3)在外圆柱面之外做一同轴圆柱形高斯面,由于高斯内电荷的代数和为零,所以E = 0,(r > R 2).12.11 一厚度为d 的均匀带电无限大平板,电荷体密度为ρ,求板内外各点的场强.[解答]方法一:高斯定理法.(1)由于平板具有面对称性,因此产生的场强的方向与平板垂直且对称于中心面:E = E`.在板内取一底面积为S ,高为2r 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为d e SΦ=⋅⎰E S2d d d S S S =⋅+⋅+⋅⎰⎰⎰E S E S E S 1`02ES E S ES =++=,高斯面内的体积为 V = 2rS , 包含的电量为 q =ρV = 2ρrS , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρr/ε0,(0≦r ≦d /2).①(2)穿过平板作一底面积为S ,高为2r 的圆柱形高斯面,通过高斯面的电通量仍为 Φe = 2ES , 高斯面在板内的体积为V = Sd , 包含的电量为 q =ρV = ρSd , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρd /2ε0,(r ≧d /2). ②方法二:场强叠加法. (1)由于平板的可视很多薄板叠而成的,以r 为界,下面平板产生的场强方向向上,上面平板产生的场强方向向下.在下面板中取一薄层d y ,面电荷密度为d σ = ρd y ,产生的场强为 d E 1 = d σ/2ε0, 积分得100/2d ()222rd y dE r ρρεε-==+⎰,③ 同理,上面板产生的场强为/2200d ()222d ry d E r ρρεε==-⎰,④ r 处的总场强为E = E 1-E 2 = ρr/ε0.(2)在公式③和④中,令r = d /2,得E 2 = 0、E = E 1 = ρd /2ε0,E 就是平板表面的场强.平板外的场强是无数个无限薄的带电平板产生的电场叠加的结果,是均强电场,方向与平板垂直,大小等于平板表面的场强,也能得出②式.12.1212.13 一半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为R`<R的小球体,如图所示,试求两球心O 与O`处的电场强度,并证明小球空腔内的电场为均强电场.[解答]挖去一块小球体,相当于在该处填充一块电荷体密度为-ρ的小球体,因此,空间任何一点的场强是两个球体产生的场强的叠加.对于一个半径为R ,电荷体密度为ρ的球体来说,当场点P 在球内时,过P 点作一半径为r 的同心球形高斯面,根据高斯定理可得方程2301443E r r ππρε=P 点场强大小为3E r ρε=.当场点P 在球外时,过P 点作一半径为r 的同心球形高斯面,根据高斯定理可得方程2301443E r R ππρε=P 点场强大小为3203R E rρε=. O 点在大球体中心、小球体之外.大球体在O 点产生的场强为零,小球在O 点产生的场强大小为320`3O R E aρε=, 方向由O 指向O `.O`点在小球体中心、大球体之内.小球体在O`点产生的场强为零,大球在O 点产生的场强大小为`03O E a ρε=, 方向也由O 指向O `.[证明]在小球内任一点P ,大球和小球产生的场强大小分别为 03r E r ρε=, `0`3r E r ρε=,方向如图所示.设两场强之间的夹角为θ,合场强的平方为222``2cos r r r r E E E E E θ=++2220()(`2`cos )3r r rr ρθε=++, 根据余弦定理得222`2`c o s ()a r rr r πθ=+--, 所以 03E a ρε=, 可见:空腔内任意点的电场是一个常量.还可以证明:场强的方向沿着O 到O `的方向.因此空腔内的电场为匀强电场.12.14 如图所示,在A 、B 两点处放有电量分别为+q 和-q 的点电荷,AB 间距离为2R ,现将另一正试验电荷q 0从O 点经过半圆弧路径移到C点,求移动过程中电场力所做的功.[解答]正负电荷在O 点的电势的和为零:U O = 0;图13.10图13.11在C 点产生的电势为0004346C q q q U RRRπεπεπε--=+=,电场力将正电荷q 0从O 移到C 所做的功为W = q 0U OD = q 0(U O -U D ) = q 0q /6πε0R .12.15 真空中有两块相互平行的无限大均匀带电平面A 和B .A 平面的电荷面密度为2σ,B 平面的电荷面密度为σ,两面间的距离为d .当点电荷q 从A 面移到B 面时,电场力做的功为多少?[解答]两平面产生的电场强度大小分别为E A = 2σ/2ε0 = σ/ε0,E B = σ/2ε0,两平面在它们之间产生的场强方向相反,因此,总场强大小为E = E A - E B = σ/2ε0, 方向由A 平面指向B 平面.两平面间的电势差为U = Ed = σd /2ε0,当点电荷q 从A 面移到B 面时,电场力做的功为W = qU = qσd /2ε0.12.16 一半径为R 的均匀带电球面,带电量为Q .若规定该球面上电势值为零,则无限远处的电势为多少?[解答]带电球面在外部产生的场强为204Q E rπε=,由于d d R RRU U E r ∞∞∞-=⋅=⎰⎰E l200d 44RR QQr r r πεπε∞∞-==⎰04Q Rπε=,当U R = 0时,04Q U Rπε∞=-.12.17 电荷Q 均匀地分布在半径为R 的球体内,试证明离球心r (r <R )处的电势为2230(3)8Q R r U Rπε-=. [证明]球的体积为343V R π=, 电荷的体密度为 334Q QV R ρπ==. 利用13.10题的方法可求球内外的电场强度大小为30034QE r r R ρεπε==,(r ≦R ); 204Q E rπε=,(r ≧R ).取无穷远处的电势为零,则r 处的电势为d d d RrrRU E r E r ∞∞=⋅=+⎰⎰⎰E l3200d d 44RrRQ Qr r r R r πεπε∞=+⎰⎰230084R rRQQ rRrπεπε∞-=+22300()84Q Q R r RRπεπε=-+2230(3)8Q R r Rπε-=. 12.18 在y = -b 和y = b 两个“无限大”平面间均匀充满电荷,电荷体密度为ρ,其他地方无电荷.(1)求此带电系统的电场分布,画E-y 图;(2)以y = 0作为零电势面,求电势分布,画E-y 图.[解答]平板电荷产生的场强的方向与平板垂直且对称于中心面:E = E`,但方向相反.(1)在板内取一底面积为S ,高为2y 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为d e SΦ=⋅⎰E Sd d d 2S S S ES =⋅+⋅+⋅=⎰⎰⎰E S E S E S 12.高斯面内的体积为 V = 2yS ,包含的电量为 q = ρV = 2ρSy , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρy/ε0, (-b ≦y ≦b ).穿过平板作一底面积为S ,高为2y 的圆柱形高斯面,通过高斯面的电通量仍为地Φe = 2ES ,高斯面在板内的体积为 V = S 2b , 包含的电量为 q = ρV = ρS 2b , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρb/ε0, (b ≦y );E = -ρb/ε0, (y ≦-b ).E-y 图如左图所示.(2)对于平面之间的点,电势为d d yU y ρε=-⋅=-⎰⎰E l 202y C ρε=-+,在y = 0处U = 0,所以C = 0,因此电势为22y U ρε=-,(-b ≦y ≦b ). 这是一条开口向下的抛物线.当y ≧b 时,电势为d d nqbnqbU y y C εε=-⋅=-=-+⎰⎰E l ,在y = b 处U = -ρb 2/2ε0,所以C = ρb 2/2ε0,因此电势为2002b b U y ρρεε=-+,(b ≦y ). 当y ≦-b 时,电势为00d d b bU y y C ρρεε=-⋅==+⎰⎰E l ,在y = -b 处U = -ρb 2/2ε0,所以C = ρd 2/2ε0,因此电势为2002b b U y ρρεε=+, 两个公式综合得200||2b b U y ρρεε=-+,(|y |≧d ). 这是两条直线.U-y 图如右图所示.U-y 图的斜率就形成E-y 图,在y = ±b 点,电场强度是连续的,因此,在U-y 图中两条直线与抛物线在y = ±b 点相切.[注意]根据电场求电势时,如果无法确定零势点,可不加积分的上下限,但是要在积分之后加一个积分常量.根据其他关系确定常量,就能求出电势,不过,线积分前面要加一个负号,即d U =-⋅⎰E l这是因为积分的起点位置是积分下限.12.19 两块“无限大”平行带电板如图所示,A 板带正电,B 板带负电并接地(地的电势为零),设A 和B 两板相隔5.0cm ,板上各带电荷σ=3.3×10-6C·m -2,求: (1)在两板之间离A板1.0cm 处P 点的电势;(2)A 板的电势.[解答]两板之间的电场强度为E=σ/ε0,方向从A 指向B .以B 板为原点建立坐标系,则r B = 0,r P = -0.04m ,r A = -0.05m . (1)P 点和B 板间的电势差为d d BBPPr r P B r r U U E r -=⋅=⎰⎰E l()B P r r σε=-, 由于U B = 0,所以P 点的电势为6123.3100.048.8410P U --⨯=⨯⨯=1.493×104(V). (2)同理可得A 板的电势为()A B A U r r σε=-=1.866×104(V).12.20 电量q 均匀分布在长为2L 的细直线上,试求:(1)带电直线延长线上离中点为r 处的电势;(2)带电直线中垂线上离中点为r 处的电势;(3)由电势梯度算出上述两点的场强. [解答]电荷的线密度为λ = q/2L . (1)建立坐标系,在细线上取一线元d l ,所带的电量为d q = λd l ,根据点电荷的电势公式,它在P 1点产生的电势为101d d 4lU r lλπε=-总电势为10d 4L L l U r lλπε-=-⎰ 0ln()4Ll Lr l λπε=--=-0ln8q r LLr Lπε+=-. (2)建立坐标系,在细线上取一线元d l ,所带的电量为d q = λd l ,在线的垂直平分线上的P 2点产生的电势为2221/20d d 4()lU r l λπε=+, 积分得2221/201d 4()LLU l r l λπε-=+⎰)4Ll Ll λπε=-=0ln8q Lπε=0ln4q LLrπε=.(3)P 1点的场强大小为11U E r∂=-∂ 011()8qL r L r L πε=--+22014qr L πε=-, ①方向沿着x 轴正向.P 2点的场强为22U E r∂=-∂01[4qL r πε==, ②方向沿着y 轴正向.[讨论]习题13.3的解答已经计算了带电线的延长线上的场强为1220124L E x L λπε=-, 由于2L λ = q ,取x = r ,就得公式①.(2)习题13.3的解答还计算了中垂线上的场强为y E =取d 2 = r ,可得公式②. 由此可见,电场强度可用场强叠加原理计算,也可以用电势的关系计算.12.21 如图所示,一个均匀带电,内、外半径分别为R 1和R 2的均匀带电球壳,所带电荷体密度为ρ,试计算:(1)A ,B 两点的电势;(2)利用电势梯度求A ,B 两点的场强.[解答](1)A 点在球壳的空腔内,空腔内的电势处处相等,因此A 点的电势就等于球心O 点的电势.在半径为r 的球壳处取一厚度为d r 的薄壳,其体积为d V = 4πr 2d r ,包含的电量为 d q = ρd V = 4πρr 2d r ,在球心处产生的电势为00d d d 4O q U r r rρπεε==, 球心处的总电势为2122210d ()2R O R U r r R R ρρεε==-⎰, 这就是A 点的电势U A .过B 点作一球面,B 的点电势是球面外的电荷和球面内的电荷共同产生的.球面外的电荷在B 点产生的电势就等于这些电荷在球心处产生的电势,根据上面的推导可得22120()2B U R r ρε=-. 球面内的电荷在B 点产生的电势等于这些电荷集中在球心处在B 点产生的电势.球壳在球面内的体积为3314()3B V r R π=-, 包含的电量为 Q = ρV ,这些电荷集中在球心时在B 点产生的电势为332100()43B BBQ U r R r r ρπεε==-. B 点的电势为U B = U 1 + U 2322120(32)6B BR R r r ρε=--. (2)A 点的场强为0AA AU E r ∂=-=∂. B 点的场强为3120()3B B B B BU R E r r r ρε∂=-=-∂.图13.18[讨论] 过空腔中A 点作一半径为r 的同心球形高斯面,由于面内没有电荷,根据高斯定理,可得空腔中A 点场强为E = 0, (r ≦R 1).过球壳中B 点作一半径为r 的同心球形高斯面,面内球壳的体积为3314()3V r R π=-,包含的电量为 q = ρV ,根据高斯定理得方程 4πr 2E = q/ε0, 可得B 点的场强为3120()3R E r rρε=-, (R 1≦r ≦R 2).这两个结果与上面计算的结果相同.在球壳外面作一半径为r 的同心球形高斯面,面内球壳的体积为33214()3V R R π=-,包含的电量为 q = ρV ,根据高斯定理得可得球壳外的场强为33212200()43R R qE r rρπεε-==,(R 2≦r ). A 点的电势为d d AAA r r U E r ∞∞=⋅=⎰⎰E l12131200d ()d 3AR R r RR r r r r ρε=+-⎰⎰2332120()d 3RR R r r ρε∞-+⎰ 22210()2R R ρε=-. B 点的电势为d d BBB r r U E r ∞∞=⋅=⎰⎰E l23120()d 3BR rR r r r ρε=-⎰2332120()d 3R R R r r ρε∞-+⎰ 322120(32)6B BR R r r ρε=--.A 和B 点的电势与前面计算的结果相同.12.21 (1)设地球表面附近的场强约为200V·m -1,方向指向地球中心,试求地球所带有的总电量.(2)在离地面1400m 高处,场强降为20V·m -1,方向仍指向地球中心,试计算在1400m 下大气层里的平均电荷密度.[解答]地球的平均半径为R =6.371×106m .(1)将地球当作导体,电荷分布在地球表面,由于场强方向指向地面,所以地球带负量.根据公式 E = -σ/ε0, 电荷面密度为 σ = -ε0E ; 地球表面积为 S = 4πR 2, 地球所带有的总电量为Q = σS = -4πε0R 2E = -R 2E /k ,k 是静电力常量,因此电量为629(6.37110)200910Q ⨯⨯=-⨯=-9.02×105(C). (2)在离地面高为h = 1400m 的球面内的电量为2()``R h E Q k+=-=-0.9×105(C),大气层中的电荷为q = Q - Q` = 8.12×105(C).由于大气层的厚度远小于地球的半径,其体积约为V = 4πR 2h = 0.714×1018(m 3), 平均电荷密度为ρ = q /V = 1.137×10-12(C·m -3).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

r
Q S2 P2 E
S1 P1 E r
高斯面所包围的电量为Q, 根据高斯定理ΦE = Q/ε0, 可得场 E Q kQ (r > R) 强大小 4π 0 r 2 r 2 当Q > 0时,场强的方向沿着径向向外; 当Q < 0时,场强的方向沿着径向向内。
对于球面内的点P2,同样作高斯面,高斯 面内Q = 0,根据高斯定理得E = 0 (r < R) 可见:在均匀带电球面内,场强为零;在 均匀带电球面外,各点的场强与电荷全部 集中在球心处的点电荷所激发的场强相同。
kQ 2 2 kQ (R r ) 3 2R R kQ 2 2 U (3 R r ) 3 2R
r
R
球面内部的场强为零,球面外 部场强随距离的增加而减小。
在球面的内外表面, 电场强度不连续。
均匀带电球面内外的电势是连续 的,球面内电势是一个常量,球 面外电势随距离的增加而减小。
球体内场强与距离成正比,球体 外的电场强度与球面外电场强度 的变化规律是相同的;在球的内 外表面,电场强度是连续的。
如图所示,A、B、C三点代表三个区域。 3Q 均匀带电球壳的 Q 3 V 4π(R3 R0 ) 电荷体密度为
B rB
O R0 A
rA
R
在球壳的空腔中同时填充两个半径为R0,电荷体密度为 ρ和-ρ的球体,空间各点的电势就是半径分别为R和R0, 电荷体密度分别为ρ和-ρ的均匀带电体球产生的。 2 2 A点在两个球体之内,正 (3R 2 r 2 ) U (3R0 r ) U A , A 6 0 负电荷球产生的电势为 6 0
R O
在球的外表面, 场强大小为
kQ E0 2 R
可见:球面内外 的场强发生跃变。
{范例9.6} 均匀带电球面、球体和球壳的电场
Q kQ E 2 (r > R) E = 0 (r < R) 2 4π 0 r r 取无穷远处的电势为零,取一条从P1开始 的电场线作为积分路径,则P1的电势为 kQ kQ kQ U E ds Edr 2 dr r r r r r r r 当r = R时,球壳 U kQ (r > R) 0 R 外表面的电势为
均匀带电球体中心的电势最高, 球体内的电势随距离的增加而加 速减小,球体外电势与球面外电 势的变化规律是相同的。
{范例9.6} 均匀带电球面、球体和球壳的电场
(2)一均匀带电球壳,内部是空腔,球壳内外半径分别为R0和 R,带电量为Q,求空间各点的电场强度和电势,对于不同的 球壳厚度,电场强度和电势随距离变化的规律是什么? 根据高斯定理可先求 电场强度,再求电势。 反过来,利用均匀带电球体的电 势先求球壳的电势,再求电场。 均匀带电球体的电量与 Q V 4 πR 3 电荷体密度的关系为 3 3 R 球体外部的电势用 U kQ 4 πR3 k (r > R) 电荷密度表示为
{范例9.6} 均匀带电球面、球体和球壳的电场
(1)一均匀带电球面,半径为R,带电量为Q,求电荷产生的电场强 度和电势。如果电荷均匀分布在同样大小的球体内,求球体的电 场强度和电势。(2)一均匀带电球壳,内部是空腔,球壳内外半径 分别为R0和R,带电量为Q,求空间各点的电场强度和电势,对于 不同的球壳厚度,电场强度和电势随距离变化的规律是什么? [解析](1)如图所示,不论球面还是球体,由 于电荷分布具有球对称性,所激发的电场 也是球对称的,用高斯定理求解比较简单。 r 设Q > 0,不论场点在球内还是 在球外,由于对称的缘故,电场 线都沿着球心到场点的连线。 对于球外的点P1,以O为球心,过 P1点作一个半径r的高斯球面S1。
r Q S2 P2 E S1 P1 E r
R O
球面所有电荷到 球心的距离都是 R,球面的电势 可见:均匀带电球面外各点的电势与电荷全 就是所有电荷在 部集中在球心处的点电荷所产生的电势相同。 球心产生的电势。
取一条从P2开始的电场线作为积分路径,则P2的电势为
R
球面内任何一点的电势都与表面的 电势相同,球内空腔是一个等势体。
Q
S1
R O
P1 E r
在P1点取一个面积元dS,其法线方向与场强方 向一致,通过该面积元的电通量为dΦE = E· dS。
{范例9.6} 均匀带电球面、球体和球壳的电场
dΦE = E· dS。 通过高斯面的电通量为
E 蜒 E dS
S

S
EdS E Ñ S dS =
E4πr2
U E ds Edr Edr
Qr3/R3,
r

R

高斯面内的电量为q = ρVr = QVr/VR =
根据高斯定理得方程ΦE = E4πr2 = q/ε0,
球体内 E Qr kQr (r < R) 3 3 4 π R R 场强为 0 球心处的场强为零,球内场强与半径成正比。 均匀带电球体不 在r = R处,E kQ E 场强在球面上的 是等势体,球心 0 2 R 场强有 变化是连续的。 处的电势最高。
r 3 r
3 0 r
球体内部的电势用电荷密度表示为 kQ 2 (3R 2 r 2 ) 2 2 2 2 U 3 (3R r ) πk (3R r ) 6 0 2R 3 其中ε0 = 1/4πk,称为真空介电常数。
(r < R)
{范例9.6} 均匀带电球面、球体和球壳的电场 rC 3 2 2 R C (3R r ) U (r < R) (r > R) U 6 0 3 0 r
kQ kQ U E ds E ds E ds 0 EdR) r R r r R R R
{范例9.6} 均匀带电球面、球体和球壳的电场
对于均匀带电球体,球体外 的电场强度和电势与均匀带 电球面的公式是相同的。 球体的全部体积为VR=4πR3/3, 电荷的体密度为ρ = Q/VR, 高斯面内的体积为Vr = 4πr3/3, 在球体内取一个高斯面, 高斯面内有电荷,并且电 荷的体密度处处相等。 取一条从P2开始的电场线作 为积分路径,则P2的电势为
相关文档
最新文档