矩形的性质练习题

合集下载

初一下册矩形的性质与判定练习题含答案

初一下册矩形的性质与判定练习题含答案

矩形:有一个角是直角的平行四边形叫做矩形,也说是长方形。

矩形的性质:矩形的四个角都是直角;矩形的对角线相等;矩形的对角线相等且互相平分。

特别提示:直角三角形斜边上的中线等于斜边的一半 矩形具有平行四边形的一切性质。

矩形的判定方法有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形 有三个角是直角的四边形是矩形【例题】专题一:矩形的性质矩形的性质性质1. 矩形的四个角都是直角。

几何语言:∵四边形ABCD 是矩形;∴∠BAD=∠ABC=∠BCD=∠ADC=90°性质2. 矩形的对角线相等且平分。

几何语言:∵四边形ABCD 是矩形;∴OA=OC=OB=OD=D B 21AC 21==性质3. 对边平行且相等几何语言:∵四边形ABCD 是矩形;∴AD=BC , AD ∥BC 或者 AB=CD , AB ∥CD3. 直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半。

几何语言:∵ 在Rt △ABC 中,OA=OC (OB 是AC 边上的中线)∴ OB=21AC在直角三角形中,30角所对的直角边等于斜边的一半。

矩形具有平行四边形的一切性质。

1.如图,矩形ABCD 中,BE ⊥AC 于E ,DF ⊥AC 于F ,若AE=1,EF =2,则FC = ,AB = 。

FEADBFC =1,AB =2.2.只用一把刻度尺检查一张四边形纸片是否是矩形,下列操作中最为恰当的是( )A. 先测量两对角线是否互相平分,再测量对角线是否相等 CB. 先测量两对角线是否互相平分,再测量是否有一个直角C. 先测量两组对边是否相等,再测量对角线是否相等D. 先测量两组对边是否互相平行,再测量对角线是否相等3.已知:如图3-32,矩形ABCD 中,对角线AC 、BD 相交于点O ,AC = 10cm ,∠ACB = 30°, 则∠AOB = °,AD = cm ;60 534.如图,将矩形纸片ABCD 沿对角线AC 折叠,使点B 落在点E 处,求证:EF =DF .5.如图,在Rt ⊿ABC 中,∠C = 90,AC = AB ,AB = 30,矩形 DEFG 的一边DE 在AB 上,顶点G 、F 分别在AC 、BC 上,若 DG :GF = 1:4,则矩形DEFG 的面积是 100 ;专题二:矩形的判定图3-32OBACDABCDF G矩形的判定方法方法1:矩形的定义:有一个角是直角的平行四边形叫做矩形。

矩形的性质专项练习30题(有答案)ok

矩形的性质专项练习30题(有答案)ok

矩形的性质专项练习30题(有答案)1.已知:如图,在矩形ABCD中,AF=DE,求证:BE=CF.2.如下图,已知矩形ABCD中,对角线AC、BD交于点O,作BE∥AC交DC的延长于点E.(1)请判断△DEB的形状,并说明理由;(2)若AD=8,DC=6,试△DEB的周长.3.如图,在矩形ABCD中,AB=12,AC=20,两条对角线相交于点O,以OB、OC为邻边作平行四边形OBB1C,求平行四边形OBB1C的面积.4.如图,已知在矩形ABCD中,AB=2,BC=4,四边形AFCE为菱形,求菱形的面积.5.如图,矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AB=2cm(1)求证:△AOB是等边三角形;(2)求矩形ABCD的面积.6.如图,四边形ABCD是矩形,△EAD是等腰直角三角形,△EBC是等边三角形.已知AE=DE=2,求AB的长.7.如图,已知在矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=3cm,BC=7cm.(1)求证:△AEF≌△DCE;(2)请你求出EF的长.8.如图,在矩形ABCD中,点E在AD上,CE平分∠BED.(1)△BEC是否为等腰三角形?为什么?(2)若AB=1,∠DCE=22.5°,求BC长.9.如图,ABCD是矩形纸片,翻折∠B、∠D,使BC、AD恰好落在AC上.设F、H分别是B、D落在AC上的点,E、G分别是折痕CE与AB、AG与CD的交点.(1)试说明四边形AECG是平行四边形;(2)若矩形的一边AB的长为3cm,当BC的长为多少时,四边形AECG是菱形?10.已知:如图,矩形ABCD的对角线AC的垂直平分线EF与AD、AC、BC分别交于点E、O、F.(1)求证:四边形AFCE是菱形;(2)若AB=5,BC=12,EF=6,求菱形AFCE的面积.11.如图所示,矩形ABCD的对角线AC、BD相交于点O,AE⊥BD,垂足为E,∠1=∠2,OB=6(1)求∠BOC的度数;(2)求△DOC的周长.12.如图,矩形ABCD的对角线交于点O,E是边AD的中点.(1)OE与AD垂直吗?说明理由;(2)若AC=10,OE=3,求AD的长度.13.如图,在矩形ABCD中,BM⊥AC,DN⊥AC,M、N是垂足.(1)求证:AN=CM;(2)如果AN=MN=2,求矩形ABCD的面积.14.如图,矩形ABCD中,角平分线AE交BC于点E,BE=5,CE=3.(1)求∠BAE的度数;(2)求△ADE的面积.15.如图,已知在矩形ABCD中,对角线AC、BD交于点O,CE=AE,F是AE的中点,AB=4,BC=8.求线段OF的长.16.如图,矩形纸片ABCD中,AB=8,AD=10,沿AE对折,点D恰好落在BC边上的F点处.17.如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.(1)猜想线段GF与GC有何数量关系?并证明你的结论;(2)若AB=3,AD=4,求线段GC的长.18.已知:如图,矩形ABCD的对角线AC和BD相交于点O,AC=2AB.求证:∠AOD=120°.19.在矩形ABCD中,对角线AC,BD交于点O,AB=6cm,AC=8cm.(1)求BC的长;(2)画出△AOB沿射线AD方向平移所得的△DEC;(3)连接OE,写出OE与DC的关系?说明理由.20.如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86cm,对角线长是13cm,那么矩形的周长是多少?21.如图,矩形ABCD纸片,E是AB上的一点,且BE:EA=5:3,CE=15,把△BCE沿折痕EC向上翻折,若点B恰好与AD边上的点F重合,求AB、BC的长.22.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD上,AH=2,连接CF.(1)当四边形EFGH为正方形时,求DG的长;(2)当△FCG的面积为1时,求DG的长;(3)当△FCG的面积最小时,求DG的长.23.设E,F分别在矩形ABCD边BC和CD上,△ABE、△ECF、△FDA的面积分别是a,b,c.求△AEF的面积S.24.如图,过矩形ABCD对角线AC的中点O作EF⊥AC,分别交AB、DC于E、F,点G为AE的中点,若∠AOG=30°,求证:OG=DC.25.如图,在矩形ABCD中,AB=6,AD=4,E是AD边上一点(点E与A、D不重合).BE的垂直平分线交AB 于M,交DC于N.(1)设AE=x,试把AM用含x的代数式表示出来;(2)设AE=x,四边形ADNM的面积为S.写出S关于x的函数关系式.(1)求∠COE的度数.(2)若AB=4,求OE的长.27.如图,在矩形ABCD中,AB=b,AD=a,过D和B作DE⊥AC,BF⊥AC,且AE=EF,试求a与b之间的关系.28.如图,设在矩形ABCD中,点O为矩形对角线的交点,∠BAD的平分线AE交BC于点E,交OB于点F,已知AD=3,AB=.(1)求证:△AOB为等边三角形;(2)求BF的长.29.如图,在等腰梯形ABCD中,AD∥BC,G是边AB上的一点,过点G作GE∥DC交BC边于点E,F是EC 的中点,连接GF并延长交DC的延长线于点H.求证:BG=CH.30.已知,矩形ABCD中,延长BC至E,使BE=BD,F为DE的中点,连接AF、CF.求证:(1)∠ADF=∠BCF;(2)AF⊥CF.参考答案:1.连接BF 、CE ,已知矩形ABCD ,∴AB=CD ,∠BAF=∠CDE=90°, 又AF=DE ,∴△AFB ≌△DEC , ∴BF=CE ,∠AFB=∠DEC , ∵矩形ABCD ,AD ∥BC ,∴∠CBF=∠AFB ,∠BCE=∠DEC , ∴∠CBF=∠BCE , BC=BC ,∴△BCF ≌△CBE , ∴BE=CF2.(1)△DEB 的形状为等腰三角形. 理由:∵矩形ABCD , ∴DC ∥AB ,AC=BD . ∵BE ∥AC ,∴四边形ABEC 为平行四边形. ∴AC=BE . ∴BE=BD .∴△DEB 的形状为等腰三角形. (2)∵AD=8,DC=6, ∴AC==10.∴BD=BE=10.∵BC ⊥DE , ∴CD=DE=6.∴△DEB 的周长=2(CD+BD )=2(6+10)=32 3.在Rt △ABC中,,∴,∵矩形ABCD 对角线相交于点O , ∴,∵四边形OBB 1C 是平行四边形, ∴.4.∵四边形AFCE 为菱形, ∴AF=CF=EC=AE ,∵四边形ABCD 是矩形, ∴∠B=90°,设AE=x ,则BE=BC ﹣EC=4﹣x ,∴x=,∴S 菱形AFCE =EC •AB=×2=5.∴菱形的面积为55.1)证明:在矩形ABCD 中,AO=BO , 又∠AOB=60°,∴△AOB 是等边三角形.(2)解:∵△AOB 是等边三角形 ∴OA=OB=AB=2(cm ), ∴BD=2OB=4cm , 在Rt △ABD ,(cm )∴S 矩形ABCD =2×2=4(cm 2),答:矩形ABCD 的面积是4cm 2.6.过点E 作EF ⊥BC ,交AD 于G ,垂足为F . ∵四边形ABCD 是矩形, ∴AD ∥BC , ∴EG ⊥AD .(1分)∵△EAC 是等腰直角三角形,EA=ED=2, ∴AG=GD ,AD=.∴EG==.(1分)∵EB=EC=BC=AD=2,∴BF=,(1分)∴EF=.(1分) ∴AB=GF=EF ﹣EG=7. (1)证明:在矩形ABCD 中,∠A=∠D=90°,∴∠ECD+∠CED=90°, ∵EF ⊥EC ,∴∠AEF+∠CED=90°, ∴∠ECD=∠AEF , 在△AEF 与△DCE 中,,∴△AEF ≌△DCE (AAS );∴AF=DE,∵DE=3cm,BC=7cm,∴AF=3cm,AE=AD﹣DE=BC﹣DE=7﹣3=4cm,在Rt△AEF中,EF===5.故答案为:58.(1)△BEC是等腰三角形,理由是:∵矩形ABCD,∴AD∥BC,∴∠DEC=∠ECB,∵CE平分∠BED,∴∠DEC=∠CEB,∴∠CEB=∠ECB,∴BE=BC,∴△BEC是等腰三角形.(2)解:∵矩形ABCD,∴∠A=∠D=90°,∵∠DCE=22.5°,∴∠DEB=2×(90°﹣22.5°)=135°,∴∠AEB=180°﹣∠DEB=45°,∴∠ABE=∠AEB=45°,∴AE=AB=1,由勾股定理得:BE=BC==,答:BC 的长是9.(1)由题意,得∠GAH=∠DAC,∠ECF=∠BCA,∵四边形ABCD为矩形,∴AD∥BC,∴∠DAC=∠BCA,∴∠GAH=∠ECF,∴AG∥CE,又∵AE∥CG∴四边形AECG是平行四边形;(2)∵四边形AECG是菱形,∴F、H重合,∴AC=2BC,在Rt△ABC中,设BC=x,则AC=2x,在Rt△ABC中AC2=AB2+BC2,即(2x)2=32+x2,解得x=,即线段BC 的长为cm.10.(1)∵四边形ABCD是矩形,∴AE∥FC,∴∠EAO=∠FCO,∵EF垂直平分AC,∴AO=CO,FE⊥AC,又∠AOE=∠COF,∴△AOE≌△COF,又∵FE⊥AC,∴平行四边形AFCE为菱形;(2)在Rt△ABC中,由AB=5,BC=12,根据勾股定理得:AC===13,又EF=6,∴菱形AFCE的面积S=AC•EF=×13×6=3911.(1)∵四边形ABCD为矩形,AE⊥BD,∴∠1+∠ABD=∠ADB+∠ABD=∠2+∠ABD=90°,∴∠ACB=∠ADB=∠2=∠1=30°,又AO=BO,∴△AOB为等边三角形,∴∠BOC=120°;(2)由(1)知,△DOC≌△AOB,∴△DOC为等边三角形,∴OD=OC=CD=OB=6,∴△DOC的周长=3×6=1812.(1)解:OE⊥AD,理由:∵四边形ABCD是矩形,∴AC=BD,AO=OC,DO=BO,∴AO=DO,又∵点E是AD的中点,∴OE⊥AD.(2)解:由(1)知OE⊥AD,AO=5,在Rt△AOE中,由勾股定理得:AE===4,∵E是边AD的中点,∴AD=2AE=8.答:AD的长度是813.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠DAC=∠BCA,又∵DN⊥AC,BM⊥AC,∴∠DNA=∠BMC,∴△DAN≌△BCM,∴AN=CM.(2)连接BD交AC于点O.∵AN=NM=2,∴AC=BD=6,又∵四边形ABCD是矩形,∴DN=,∴矩形ABCD的面积=,答:矩形ABCD的面积是12.14.(1)∵四边形ABCD是矩形,∴∠BAD=90°,∵AE平分∠BAD,∴∠BAE=∠BAD=×90°=45°.(2)∵四边形ABCD是矩形,∴AD∥BC,∠BAD=∠B=90°,∴∠DAE=∠AEB∵∠BAE=∠DAE=45°,∴∠AEB=45°,∴∠BAE=∠AEB,∴AB=BE=5,∴BC=3+5=8=AD,∴S△ADE =AD×AB=×8×5=2015.∵四边形ABCD是矩形,∴∠ADC=90°,AD=BC=8,CD=AB=4.(1分)设DE=x,那么AE=CE=8﹣x,(1分)∵在Rt△DEC中,CE2=DE2+CD2,(1分)∴(8﹣x)2=x2+42,(1分)∴x=3.(1分)∴CE=8﹣x=5.(1分)∵四边形ABCD是矩形,∴O为AC中点.(1分)又∵F是AE 的中点,∴.16.(1)设BF=x,CE=y,则CF=10﹣x,EF=DE=8﹣y,在Rt△ABF中根据勾股定理可得x2+82=102,在Rt△CEF中根据勾股定理可得y2+(10﹣x)2=(8﹣y)2,解得x=6,y=3,即BF=6,CE=3;(2)△ABF 的面积为×8×6=24,△ADE 的面积为×10×5=25,∴四边形AFCE的面积为8×10﹣24﹣25=31,答:BF的长为6,CE的长度为3,四边形AFCE的面积为31∵E是BC的中点,∴BE=EC,∵△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,∵在△GFE和△GCE中,,∴△GFE≌△GCE(HL),∴GF=GC;(2)设GC=x,则AG=3+x,DG=3﹣x,在Rt△ADG中,42+(3﹣x)2=(3+x)2,解得x=18.∵四边形ABCD是矩形,∴∠ABC=90°(矩形的四个角都是直角),∵在Rt△ABC中,AC=2AB,∴∠ACB=30°,∵四边形ABCD是矩形,∴OB=OD=BD,OC=OA=AC,AC=BD,∴BO=CO,∴∠OBC=∠OCB=30°,∵∠OBC+∠OCB+∠BOC=180°,∴∠BOC=120°,∴∠AOD=∠BOC=120°19.(1)∵矩形ABCD,∴∠CBA=90°,AB=6cm,AC=8cm,由勾股定理:BC===2(cm),答:BC的长是2cm.(2)解:如图所示(3)答:OE与DC的关系是互相垂直平分.理由是:∵矩形ABCD,∴OA=OC,OD=OB,AC=BD,∴OD=OC=DE=CE,∴四边形ODEC是菱形,∴OE⊥CD,OG=EG,CG=DG,即OE与DC的关系是互相垂直平分20.∵四边形ABCD是矩形,∴AC=BD=13cm,∵△AOB、△BOC、△COD和△AOD四个三角形的周长和为86cm,∴OA+OB+AB+OB+OC+BC+OC+OD+DC+OD+OA+A D=86cm,∴AB+BC+CD+DA=86﹣2(AC+BD)=86﹣4×13=34(cm).答:矩形ABCD的周长等于34cm.21.∵四边形ABCD是矩形∴∠A=∠B=∠D=90°,BC=AD,AB=CD,∴∠AFE+∠AEF=90°(2分)∵F在AD上,∠EFC=90°,∴∠AFE+∠DFC=90°,∴∠AEF=∠DFC,∴△AEF∽△DFC,(3分)∴.(4分)∵BE:EA=5:3设BE=5k,AE=3k∴AB=DC=8k,由勾股定理得:AF=4k ,∴∴DF=6k∴BC=AD=10k(5分)在△EBC中,根据勾股定理得BE2+BC2=EC2∵CE=15,BE=5k,BC=10k∴∴k=3(6分)∴AB=8k=24,BC=10k=3022.∴HG=HE,∵∠DHG+∠AHE=90°,∠DHG+∠DGH=90°,∴∠DGH=∠AHE,∴△AHE≌△DGH(AAS)∴DG=AH=2(2)作FM⊥DC,M为垂足,连接GE,∵AB∥CD,∴∠AEG=∠MGE∵HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠MGF.在△AHE和△MFG中,∠A=∠M=90°,HE=FG,∴△AHE≌△MFG.∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2.因此S△FCG =GC=1,解得GC=1,DG=6.(3)设DG=x,则由第(2)小题得,S△FCG=7﹣x,又在△AHE中,AE≤AB=7,∴HE2≤53,∴x2+16≤53,x ≤,∴S△FCG 的最小值为,此时DG=23.设AB=x1,BE=x2,EC=x3,CF=x4,则FD=x1﹣x4,AD=x2+x3,由题意得x1•x2=2a,x3•x4=2b,(x1﹣x4)×(x2+x3)=2c,即x2•x3﹣x2•x4=2(b+c﹣a),又x1x2x3x4=4ab代入x2x4=x1x3﹣2(b+c﹣a)得关于x1x3的一元二次方程,即(x1x3)2﹣2(b+c﹣a)x1x3﹣4ab=0解之得x1x3=(b+c﹣a)+又S矩形=x1(x2+x3)=2a+(b+c﹣a)+=(a+b+c)+∴S△AEF=S矩形﹣S△ABE﹣S△CEF﹣S△ADF=(a+b+c)+﹣a﹣b﹣c=∴△AOE是直角三角形∴OG=AG=GE,∴∠BAC=∠AOG=30°,∠AEO=60°,∠GOE=∠AOE ﹣∠AOG=60°,∴△OEG是正三角形,∴OG=OE=GE,∴∠ABO=∠BAC=30°,∴∠AOB=180°﹣30°﹣30°=120°,∴∠BOE=∠AOB﹣90°=30°,∴△OEB是等腰三角形,∴OE=EB,∴OG=AG=GE=EB=OE,∴OG=AB=DC.25.(1)连接ME.∵MN是BE的垂直平分线,∴BM=ME=6﹣AM,在△AME中,∠A=90°,由勾股定理得:AM2+AE2=ME2,AM2+x2=(6﹣AM)2,AM=3﹣x.(2)连接ME,NE,NB,设AM=a,DN=b,NC=6﹣b,因MN垂直平分BE,则ME=MB=6﹣a,NE=NB,所以由勾股定理得AM2+AE2=ME2,DN2+DE2=NE2=BN2=BC2+CN2即a2+x2=(6﹣a)2,b2+(4﹣x)2=42+(6﹣b)2,解得a=3﹣x2,b=x2+x+3,所以四边形ADNM的面积为S=×(a+b)×4=2x+12,即S关于x的函数关系为S=2x+12(0<x<2),答:S关于x的函数关系式是S=2x+1226.(1)∵四边形ABCD是矩形,DE平分∠ADC,∴∠CDE=∠CED=45°;∴EC=DC,又∵∠ADB=30°,∴∠CDO=60°;又∵因为矩形的对角线互相平分,∴OD=OC;∴△OCD是等边三角形;∴∠DCO=60°,∠OCB=90°﹣∠DCO=30°;∵DE平分∠ADC,∠ECD=90°,∠CDE=∠CED=45°,∴CD=CE=CO,∴∠COE=∠CEO;∴∠COE=(180°﹣30°)÷2=75°;(2)过O作OF⊥BC于F,∵AO=CO,∴BF=CF,∴OF=AB=2,∵∠ADB=30°,AB=4,∴AC=8,∴BC==4,∴BF=CF=2,∵CD=CE=4,∴EF=CE﹣CF=4﹣2,在Rt△OFE中,OE==4.27.:a与b的关系是b=a,理由是:∵矩形ABCD,∴AD=BC,AD∥BC,∴∠DAC=∠BCA,∵DE⊥AC,BF⊥AC,∴∠AED=∠CFB=90°,在△ADE和△CBF中,∴△ADE≌△CBF,∴AE=CF,∵AE=EF,∴AE=EF=CF,∵矩形ABCD,∴∠ABC=90°=∠BFC,∴∠BCF+∠CBF=90°,∠ABF+∠CBF=90°,∴∠ABF=∠BCF,∵∠AFB=∠CFB=90°,∴△ABF∽△BCF,∴==,矩形的性质专项练习--11设AE=EF=CF=c,则BF2=AF•CF=2c2,∴BF=c,∵AB=b,BC=a,∴==,∴b=a,即a与b之间的关系是b= a28.(1)证明:在Rt△ABD中,BD===2,∵矩形ABCD,∴OA=OB=BD=,∴△AOB为等边三角形;(2)解:∵AE是∠BAD的平分线,∴∠BAE=45°,∴△ABE是等腰直角三角形,△BEO是等腰三角形,又∠EBO=90°﹣60°=30°,∴∠BOE=(180°﹣30°)÷2=75°,在△BOC中∠COE=180°﹣30°×2﹣75°=45°,所以,在△BEF和△COE 中,∴△BEF≌△COE(ASA),∴BF=CE,又CE=BC﹣BE=3﹣,∴BF=3﹣.29.在△GEF和△HCF中,∵GE∥DC,∴∠GEF=∠HCF,∵F是EC的中点,∴FE=FC,而∠GFE=∠CFH(对顶角相等),∴△GEF≌△HCF,∴GE=HC,四边形ABCD为等腰梯形,∴∠B=∠DCB,∵GE∥DC,∴∠GEB=∠DCB,(2分)∴∠GEB=∠B,∴GB=GE=HC,∴BG=CH30.(1)在矩形ABCD中,∵AD=BC,∠ADC=∠BCD=90°,∴∠DCE=90°,在Rt△DCE中,∵F为DE中点,∴DF=CF,∴∠FDC=∠DCF,∴∠ADC+∠CDF=∠BCD+∠DCF,即∠ADF=∠BCF;(2)连接BF,∵BE=BD,F为DE的中点,∴BF⊥DE,∴∠BFD=90°,即∠BFA+∠AFD=90°,在△AFD和△BFC 中,∴△ADF≌△BCF,∴∠AFD=∠BFC,∵∠AFD+∠BFA=90°,∴∠BFC+∠BFA=90°,即∠AFC=90°,∴AF⊥FC.矩形的性质专项练习--12。

矩形性质和判定练习

矩形性质和判定练习

一、选择题1.矩形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两组对角分别相等C.两条对角线互相平分D.两条对角线相等2.在四边形ABCD中,AD∥BC,若四边形ABCD是平行四边形,则还应满足()A.∠A+∠B=180°B.∠A+∠C=180°C.∠A+∠D=180°D.∠A=∠B 3.在矩形ABCD中,两条对角线AC与BD相交于点O,AB=3,OA=2,则AD的长为() A.5 B. C. D.4.如图,四边形ABCD是平行四边形,延长BA到点E,使AE=AB,联结ED、EC、AC.添加一个条件,能使四边形ACDE成为矩形的是()A.AC=CD B.AB=AD C.AD=AE D.BC=CE.5.如图所示,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于()A.25:24 B.16:15 C.5:4 D.4:3(4)(5)(6)6.如图,在矩形ABCD中,DE平分∠ADC交BC于点E,连接AE若CD=6,AE=10,则AD的长为() A.12 B.14 C.16 D.207.如图,在矩形ABCD中,对角线AC、BD相交于点O,且AD=6,CD=8,P是AB 上的动点,PM⊥AC于M,PN⊥BD于N,则PM+PN的值为()A.4.8 B.6.4 C.9.6 D.2.48.如图,矩形ABCD中,DE⊥AC于E,若∠ADE=2∠EDC,则∠BDE的度数为()A.36°B.30°C.27°D.18°(7)(8)(9)9.如图,在矩形ABCD中,对角线AC、BD相交于点O,DF垂直平分OC,交AC于点E,交BC于点F,连接AF,若AD=3,则AF的长为()A.B.C.2D.310.如图,矩形ABCD中,对角线AC,BD交于点O,点E是边AB上一点,且OE ⊥AC.设∠AOD=α,∠AEO=β,则α与β间的关系正确的是()A.α=β B.α+β=180°C.2α+β=180°D.α+2β=180°二、填空题11.已知平面上四点A(0,0),B(4,0),C(4,2),D(0,2),直线y=mx﹣m+2将四边形ABCD分成面积相等的两部分,则m的值为__________ .12.如图,矩形ABCD的对角线AC、BD相交于点O,过点O作OE⊥AC交AD于点E,若AB=4,BC=8,则DE的长为_______ .13.如图,在矩形ABCD中对角线AC,BD交于点O,DE平分∠ADC交AB于点E,连接OE,若AD=6,AB=8,则OE=_______ .(12) (13)14. 如图,在Rt△ABC中,∠A=90°,AB=6,BC=10,P是BC边上的一点,作PE垂直AB,PF垂直AC,垂足分别为E、F,求EF的最小值是_______ .(14) (15)15.如图,长方形ABCD中,AD=BC=6,AB=CD=10.点E为射线DC上的一个动点,△ADE与△AD′E关于直线AE对称,当△AD′B为直角三角形时,DE的长为_______三、解答题16.如图,在平面直角坐标系xOy中,点A(0,4),B(3,4),将△ABO向右平移到△CDE位置,A的对应点是C,O的对应点是E,函数y=(k≠0)的图象经过点C和DE的中点F,则k的值是多少?17.如图,已知▱ABCD,延长AB到E,使BE=AB,连接BD,ED,EC,若ED=AD.(1)求证:四边形BECD是矩形;(2)连接AC,若AD=6,CD=3,求AC的长.18.如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=4,求▱ABCD的面积.19.如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.(1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.20.(10分)如图,将矩形纸片ABCD折叠,使点B与点D重合,点A落在点P 处,折痕为EF.(1)求证:△PDE≌△CDF;(2)若CD=4cm,EF=5cm,求BC的长.21.如图,已知在△ABC中,D为BC的中点,连接AD,E为AD的中点,过点A 作BC的平行线交BE的延长线于点F,连接CF.(1)求证:四边形ADCF为平行四边形.(2)当四边形ADCF为矩形时,AB与AC应满足怎样的数量关系?请说明理由.22.如图1,已知AD∥BC,AB∥DC,∠B=∠C.(1)求证:四边形ABCD为矩形;(2)如图2,M为AD的中点,N为AB的中点,BN=2.若∠BNC=2∠DCM,求BC的长.23.将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(3,0),点C(0,6),点P在边OC上(点P不与点O,C重合),折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O 的对应点O′落在第一象限.设OQ=t.(Ⅰ)如图①,当t=1时,求∠O′QA的大小和点O′的坐标;(Ⅱ)如图②,若折叠后重合部分为四边形,O′Q,O′P分别与边AB相交于点E,F,试用含有t的式子表示O′E的长,并直接写出t的取值范围;(Ⅲ)若折叠后重合部分的面积为3,则t的值可以是(请直接写出两个不同的值即可).。

矩形的性质相关练习题

矩形的性质相关练习题

矩形的性质相关练习题矩形的性质相关练习题矩形是一种常见的几何形状,具有一些独特的性质和特点。

在数学学习中,我们经常会遇到与矩形相关的练习题,通过解答这些问题,我们可以更好地理解和应用矩形的性质。

在本文中,我将为大家分享一些与矩形相关的练习题,并解答这些问题,帮助大家更好地掌握矩形的性质。

第一题:已知一个矩形的长为12 cm,宽为8 cm,求其周长和面积。

解答:矩形的周长等于两倍的长加两倍的宽,所以周长为(12 + 8)× 2 = 40 cm。

矩形的面积等于长乘以宽,所以面积为12 × 8 = 96cm²。

第二题:一个矩形的周长为30 cm,面积为84 cm²,求其长和宽。

解答:设矩形的长为x cm,宽为y cm。

根据题意,2x + 2y = 30,xy = 84。

解这个方程组可以得到x = 12 cm,y = 7 cm。

所以该矩形的长为12 cm,宽为7 cm。

第三题:一个矩形的长是宽的2倍,且周长为30 cm,求其长和宽。

解答:设矩形的宽为x cm,则长为2x cm。

根据题意,2(2x) + 2x = 30,解这个方程可以得到x = 5 cm。

所以该矩形的长为10 cm,宽为5 cm。

第四题:一个矩形的长和宽的比为5:3,且面积为120 cm²,求其长和宽。

解答:设矩形的长为5x cm,宽为3x cm。

根据题意,5x × 3x = 120,解这个方程可以得到x = 4 cm。

所以该矩形的长为20 cm,宽为12 cm。

通过解答以上练习题,我们可以看出,矩形的性质与其周长、面积之间存在一定的关系。

矩形的周长等于两倍的长加两倍的宽,面积等于长乘以宽。

通过利用这些性质,我们可以解决与矩形相关的各种问题。

除了上述练习题,我们还可以进一步探索矩形的其他性质,如对角线的长度、内角和等。

通过不断练习和思考,我们可以更加深入地理解矩形的性质,并能够灵活地运用到实际问题中。

矩形的性质练习题及答案

矩形的性质练习题及答案

矩形的性质练习题及答案
练题
1. 矩形是一种特殊的四边形,具有哪些特点?
2. 矩形的四边分别叫什么?
3. 矩形的对角线有什么特点?
4. 如何判断一个四边形是否为矩形?
5. 下列哪个形状不是矩形?
- (A) 正方形
- (B) 长方形
- (C) 梯形
- (D) 菱形
6. 一个矩形的长和宽分别为8cm和6cm,求他的面积和周长。

答案
1. 矩形具有以下特点:
- 四个角都是直角(90°)
- 两对相邻边相等
- 对角线相等
2. 矩形的四边分别叫:
- 上边(或上底)
- 下边(或下底)
- 左边(或左底)
- 右边(或右底)
3. 矩形的对角线有以下特点:
- 对角线长度相等
- 对角线互相垂直(成直角)
4. 判断一个四边形是否为矩形,需满足以下条件:- 四个角都是直角
- 两对相邻边相等
5. 下列哪个形状不是矩形?
- (C) 梯形
6. 长为8cm,宽为6cm的矩形的面积和周长计算如下:
- 面积:8cm × 6cm = 48cm²
- 周长:2 × (8cm + 6cm) = 28cm
注意:矩形的面积单位为平方单位,周长单位为长度单位。

---
以上为矩形的性质练习题及答案。

了解矩形的特点和计算方法能够帮助我们更好地理解和应用矩形的性质。

如果还有其他问题,欢迎继续咨询。

矩形的性质与判定练习题

矩形的性质与判定练习题

矩形的性质与判定练习题矩形是几何学中常见的形状之一,具有许多独特的性质和特点。

在本文中,我们将通过一些练习题来探讨和判定矩形的性质。

请阅读以下练习题并回答。

练习题一:判断矩形1. 给定四个点A(1, 1), B(5, 1), C(5, 4), D(1, 4),请判断这四个点能否构成一个矩形。

练习题二:矩形的性质1. 一条直线分割一个矩形,使其成为两个等面积的小矩形。

证明这条直线必定是通过矩形的中心点。

2. 如果一条直线沿着矩形的一条边切割,那么它将会切成两个全等的小矩形。

3. 证明:一个矩形的对角线相等。

练习题三:矩形的判定1. 给定四个点A(1, 1), B(5, 1), C(5, 4), D(1, 4),请判断这四个点能否构成一个正方形。

2. 如果一条矩形的两条对边相等且平行,则它必定是一个正方形。

练习题四:矩形的角度1. 一个矩形的四个内角的和是多少度?2. 证明:一个矩形的内角都是直角(90度)。

练习题五:矩形的边长关系1. 一个矩形的两条对边的长度分别是a和b,它的对角线的长度是多少?2. 如果一个矩形的一边的长度是a,另一条边的长度是b,那么它的面积是多少?练习题六:矩形的面积1. 已知一个矩形的长为5cm,宽为3cm,求它的面积。

2. 如果一个矩形的面积是24平方单位,且长比宽多2个单位,求矩形的长和宽。

根据上述练习题,我们可以通过判断和计算来了解矩形的性质和特点。

矩形具有对角线相等、相对边平行、内角为直角等特点,这些性质可以帮助我们对矩形进行判定和计算。

答案:练习题一:可以构成一个矩形;练习题二:1. 通过矩形的对角线可以证明;2. 正确;3. 通过矩形的对角线可以证明;练习题三:1. 不能构成一个正方形;2. 正确;练习题四:1. 360度;2. 通过矩形的对角线可以证明;练习题五:1. 对角线的长度可以通过勾股定理计算:√(a^2 + b^2);2. 面积可以通过长乘宽计算:a * b;练习题六:1. 面积等于长乘宽:5cm * 3cm = 15平方厘米;2. 设矩形的宽为x,则长为x+2,根据面积的计算公式得到:(x+2) * x = 24,解得x=4,所以矩形的长为6,宽为4。

中考数学复习之矩形的性质与判定,考点过关与基础练习题

 中考数学复习之矩形的性质与判定,考点过关与基础练习题

25.矩形➢考点分类考点1矩形的性质例1如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥BD,交BC于点E,若CO=√3,CE=1,则BE的长为.考点2矩形的判定例2如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC,且DE=12 AC,连接CE.(1)求证:四边形OCED为矩形;(2)连接AE,若DB=6,AC=8,求AE的长.➢真题演练1.下列说法正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相垂直的四边形是菱形D.一组对边相等,另一组对边平行的四边形是平行四边形2.如图,点P是Rt△ABC中斜边AC(不与A,C重合)上一动点,分别作PM⊥AB于点M,作PN⊥BC于点N,点O是MN的中点,若AB=9,BC=12,当点P在AC上运动时,则BO的最小值是()A.3B.3.6C.3.75D.43.如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,过点P作PE⊥AB于点E,PF⊥AC于点F,连接EF,则EF的最小值是()A.1.2B.1.5C.2D.2.44.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.2√2C.√10D.45.如图,在四边形ABCD 中,AB ∥CD ,AB ⊥BD ,AB =5,BD =4,CD =3,点E 是AC 的中点,则BE 的长为( )A .2B .52C .√5D .36.如图,在等腰直角△ABC 中,AB =BC ,点D 是△ABC 内部一点,DE ⊥BC ,DF ⊥AB ,垂足分别为E ,F ,若CE =3DE ,5DF =3AF ,DE =2.5,则AF =( )A .8B .10C .12.5D .157.如图:在菱形ABCD 中,对角线AC 、BD 交于点O ,过点A 作AE ⊥BC 于点E ,延长BC 至点F ,使CF =BE ,连接DF . (1)求证:四边形AEFD 是矩形; (2)若BF =16,DF =8,求CD 的长.8.如图,矩形ABCD 中,AB =4,AD =3,E 是射线AB 上一动点,连结DE 交对角线AC 于点F ,当DE 把△ABC 分成一个三角形和一个四边形时,这个三角形的面积恰好是△ABC 面积的13,则AE 的长为 .36.9.如图,四边形ABCD 为矩形,AB =3,BC =4,点P 是线段BC 上一动点,点M 为线段AP 上一点,∠ADM =∠BAP ,则BM 的最小值为 .10.如图,在矩形ABCD 中,E 为CD 中点,连接AE ,过B 作BF ⊥AE 交于点F ,若AF AE=15,BF =3,则BC 的长为 .11.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE ⊥BD ,交AD 于点E ,若∠ACB =20°,则∠AOE 的大小为 .12.如图,在矩形ABCD 中,AB =5,AD =12,P 是AD 上不与A 和D 重合的一个动点,过点P 分别作AC 和BD 的垂线,垂足分别为E 、F .则PE +PF = .13.矩形ABCD中,AB=8,AD=4,点A是y轴正半轴上任意一点,点B在x轴正半轴上.连接OD.则OD的最大值是.14.如图,在矩形ABCD中,AB=4,AD=6,点E、F分别在边AB、CD上,点M为线段EF上一动点,过点M作EF的垂线分别交边AD、BC于点G、点H.若线段EF恰好平分矩形ABCD的面积,且DF=1,则GH的长为.15.如图,在矩形ABCD中,E在CB延长线上,连接DE,交AB于点F,∠AED=2∠CED,若BE=1,DF=8,则CD的长为.➢课后练习1.如图,在等边△ABC中,CD⊥AB,垂足为D,以AD,CD为邻边作矩形ADCE,连接BE交CD边于点F,则cos∠CBE的值为()A.514√7B.27√7C.114√21D.17√212.如图,在矩形ABCD中,AC、BD交于点O,DE⊥AC于点E,∠AOD=124°,则∠CDE 的度数为()A.62°B.56°C.28°D.30°3.如图,在矩形ABCD中,点E在AD上,且EC平分∠BED,AB=2,∠ABE=45°,则DE的长为()A.2√2−2B.√12−1C.√3−1D.2√24.如图,在矩形ABCD中,AB=12,AD=10,点P在AD上,点Q在BC上,且AP=CQ,连结CP、QD,则PC+QD的最小值为()A.22B.24C.25D.265.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD、BC 于E、F两点.若AC=2√3,∠DAO=30°,则FC的长度为()A.1B.2√2C.√2D.36.如图,四边形ABCD中,∠B=∠C=90°,点E、F分别在边AB、BC上,DE⊥AB,DE=AB,AE=BE=3,BF=2,△ADF的面积等于15.(1)求DF的长度.(2)求证:∠ADE+∠BAF=∠DAF.7.如图,菱形ABCD的对角线交于点O,点E是菱形外一点,DE∥AC,CE∥BD.(1)求证:四边形DECO是矩形;(2)连接AE交BD于点F,当∠ADB=30°,DE=2时,求AF的长度.8.如图,在矩形ABCD中,AD=4,AB=2,E是BC的中点,连接AE,∠DAE的平分线AF与CD边交于点G,与BC的延长线交于点F,则CF的长为.9.如图,在矩形ABCD中,E、F分别为边AB、BC的中点,AF与ED、EC分别交于点P、Q.已知AB=6,BC=8,则AP的长为.10.如图,四边形ABCD是矩形,点E在线段AD的延长线上,连接BE交CD于点F,∠BEC=2∠AEB,点G是BF的中点,若DE=1,BF=10,则AB的长为.11.如图:在菱形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于点E,延长BC至点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若BF=16,DF=8,求CD的长.➢冲击A+某数学活动小组在一次活动中,对一个数学问题作如下探究:̂的中点,过C作【问题探究】如图1,AD,BD为⊙O的两条弦(AD<BD),点C为ABCE⊥BD、垂足为E.求证:BE=DE+AD.小明同学的思路是:如图2.在BE上截取BF=AD,连接CA,CB,CD,CF…请你按照小明的思路完成上述问题的证明过程.̂上一点,∠ACD=45°,【结论运用】如图3,△ABC是⊙O的内接等边三角形,点D是AB连接BD,CD.过点A作AE⊥CD,垂足为E.若AB=6√2,求△BCD的周长.̂的中点”改为“点C为优弧ACB 【变式探究】如图4,若将(问题探究)中“点C为AB的中点”,其他条件不变,请写出BE、AD、DE之间的等量关系,并加以证明.。

矩形的性质练习题

矩形的性质练习题

矩形的性质练习题矩形的性质练习题矩形是我们学习几何学时经常遇到的一种形状。

它有很多有趣的性质,通过解决一些练习题,我们可以更好地理解和掌握这些性质。

1. 假设矩形的长为a,宽为b,周长为20,求矩形的面积。

解析:根据矩形的性质,周长等于长和宽的两倍之和。

即2a + 2b = 20。

由此可得a + b = 10。

我们可以将这个方程表示为b = 10 - a。

矩形的面积等于长乘以宽,即ab。

将b的值代入,得到a(10 - a)。

展开后得到10a - a^2。

为了求得最大的面积,我们需要找到这个二次函数的顶点。

顶点的横坐标是a = -b/2a,即a = -10/(-2) = 5。

将a = 5代入原方程,得到b = 10 - 5 = 5。

所以矩形的长和宽都是5,面积为25。

2. 若一个矩形的面积是36,它的长和宽之间的差是3,求矩形的周长。

解析:设矩形的长为a,宽为b。

根据题意,ab = 36,a - b = 3。

我们可以将第二个方程表示为a = b + 3。

将这个值代入第一个方程,得到(b + 3)b = 36。

展开后得到b^2 + 3b - 36 = 0。

这是一个二次方程,可以因式分解为(b + 9)(b- 4) = 0。

所以b = -9或b = 4。

由于矩形的长和宽不能为负数,所以b = 4。

将b = 4代入a = b + 3,得到a = 7。

矩形的周长等于长和宽的两倍之和,即2a + 2b = 2(7) + 2(4) = 14 + 8 = 22。

3. 一个矩形的周长是32,它的长是宽的3倍,求矩形的面积。

解析:设矩形的宽为b,则长为3b。

根据矩形的性质,周长等于长和宽的两倍之和,即2(3b) + 2b = 32。

展开后得到8b = 32,解得b = 4。

将b = 4代入长的表达式,得到长为3(4) = 12。

矩形的面积等于长乘以宽,即12(4) = 48。

4. 一个矩形的周长是24,它的面积是16,求矩形的长和宽。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【基础诊断】1.矩形具有而一般的平行四边形不具有的性质是()A.对角相等B.对角线相等C.对角线互相平分D.对边相等2.如图18-2-1,矩形ABCD的对角线AC,BD相交于点O,以下说法不一定正确的是()A.∠ABC=90°B.OD=1 2ACC.∠OAB=∠OBA D.OA=AD图18-2-1图18-2-23.如图18-2-2,在直角三角形ABC中,斜边AB上的中线CD=AC,则∠B的度数为________.4.如图18-2-3所示,在矩形ABCD中,对角线AC,BD相交于点O,∠BOC=120°,AC=6.求:(1)AB的长;(2)矩形ABCD的面积.命题点1矩形的四个角都是直角5.M为矩形ABCD中AB边上的中点,且AB=2BC,那么∠BMC等于()A.30°B.45°C.60°D.75°6.矩形ABCD的三个顶点的坐标分别是A(0,1),B(0,0)和C(2,0),则点D的坐标是()A.(1,0) B.(1,1) C.(2,2) D.(2,1)7.矩形内有一点A,到各边的距离从小到大依次是1,2,3,4,则这个矩形的周长是()A.10 B.20 C.24 D.25图18-2-48.如图18-2-4,矩形ABCD的面积为36 cm2,E,F,G分别为AB,BC,CD的中点,H为AD上任一点,则图中阴影部分的面积为()A.18 cm2B.16 cm2C.20 cm2D.24 cm29.已知:如图18-2-5,P为矩形ABCD内一点,PC=PD,求证:PA=PB.图18-2-510.如图18-2-6,四边形ABCD 是矩形,点E 在BC 边上,点F 在BC 的延长线上,且∠CDF =∠BAE ,求证:四边形AEFD 是平行四边形.图18-2-6命题点 2 矩形的对角线相等11.如图18-2-7,矩形ABCD 的对角线AC 与BD 相交于点O ,∠ADB =30°,AB =4,则OC 等于( )A .5B .4C .D .312.如图18-2-8,在矩形ABCD 中,DE ⊥AC ,∠ADE =12∠CDE ,那么∠BDC 的度数为( )A .60°B .45°C .30°D .°18-2-718-2-818-2-913.如图18-2-9,在矩形ABCD中,对角线AC,BD相交于点O,E,F分别是AO,AD的中点,若AB=6 cm,BC=8 cm,则EF=________ cm.14.已知:如图18-2-10,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,交AB 的延长线于点E.求证:AC=CE.图18-2-1015.如图18-2-11,矩形ABCD中,AC,BD交于点O,AE平分∠BAD.若∠EAO=15°,求∠BOE的度数.图18-2-11命题点3直角三角形斜边上的中线等于斜边的一半[热度:90%]16.2018·黄冈如图18-2-12,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE 为AB边上的中线,AD=2,CE=5,则CD=()A.2 B.3C.4 D.2 3图18-2-12 图18-2-1317.如图18-2-13所示,在平面直角坐标系中,矩形ABCD的顶点A,B分别在y轴、x轴上,当点B在x轴正半轴上运动时,点A随之在y轴上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为________.18.如图18-2-14,四边形ABCD中,∠ABC=90°,∠ADC=90°,E为AC的中点,F为BD的中点.求证:EF⊥BD.图18-2-1419.如图18-2-15①,在矩形ABCD(AB<BC)的BC边上取一点E,使BA=BE,作∠AEF =90°,交AD于点F,易证EA=EF.(1)如图18-2-15②,若EF与AD的延长线交于点F,证明EA=EF仍然成立;(2)如图18-2-15③,若四边形ABCD是平行四边形(AB<BC),在BC边上取一点E,使BE=BA,作∠AEF=∠ABE,交AD于点F,则EA=EF是否成立若成立,请说明理由.图18-2-15答案1.B °4.解:(1)∵四边形ABCD 是矩形,∴OB =OC ,∠ABC =90°.又∵∠BOC =120°,∴∠OBC =∠OCB =30°,∴AB =12AC =12×6=3.(2)∵AB 2+BC 2=AC 2,∴BC =AC 2-AB 2=3 3, ∴矩形ABCD 的面积=AB ·BC =3×33=93.5.B [解析] 由四边形ABCD 是矩形,可知∠B =90°.∵M 为AB 的中点,AB =2BC ,∴BM =BC ,∴∠BMC =∠MCB =45°.6.D [解析] 根据矩形的性质,点D 到x 轴的距离DC =AB =1,点D 到y 轴的距离DA =BC =2,所以点D 的坐标为(2,1).7.B8.A [解析] 设矩形ABCD 中,AD =a cm ,AB =b cm ,则AE =12b =GC ,BF =12a , ∴S阴影=S矩形ABCD -S △AEH -S △HFC -S △HCG=36-12AE ·AH -12HD ·CG -12FC ·AB =36-12AD ·AE -12FC ·AB =36-12ab =18(cm 2).9.证明:∵四边形ABCD 是矩形,∴AD =BC ,∠ADC =∠BCD =90°.∵PD =PC ,∴∠PDC =∠PCD ,∴∠ADP =∠BCP ,∴△PAD ≌△PBC ,∴PA =PB .10.证明:∵四边形ABCD 是矩形, ∴AB =DC ,∠B =∠DCF =90°,BC =AD .又∵∠BAE =∠CDF ,∴△ABE ≌△DCF (ASA),∴BE =CF ,∴BC =EF ,∴EF =AD .又∵EF ∥AD ,∴四边形AEFD 是平行四边形.11.B [解析] 由于∠BAD =90°,∠ADB =30°,AB =4,∴BD =8.∵四边形ABCD 是矩形,∴OC =12AC =12BD =4.12.C [解析] 由题意知,在矩形ABCD 中,∠ADC =90°,∠ADE =12∠CDE ,∴∠ADE =30°,∠CDE =60°.∵DE ⊥AC ,∴∠DCE =30°.∵四边形ABCD 是矩形,∴OD =OC ,∴∠BDC =∠DCE =30°.[解析] ∵四边形ABCD 是矩形, ∴∠ABC =90°,BD =AC ,BO =OD .∵AB =6 cm ,BC =8 cm ,∴由勾股定理得:BD =AC =62+82=10(cm),∴OD =5 cm. ∵E ,F 分别是AO ,AD 的中点, ∴EF =12OD =52 cm.14.证明:∵四边形ABCD 是矩形,∴AC =BD ,AB ∥DC ,∴DC ∥BE .又∵CE ∥BD ,∴四边形CDBE 是平行四边形,∴BD =CE ,∴AC =CE .15.解:∵四边形ABCD 是矩形,∴∠BAD =∠ABC =90°,OA =OB =OC =OD . ∵AE 平分∠BAD ,∴∠BAE =45°, ∴∠BEA =45°=∠BAE ,∠BAO =∠BAE +∠EAO =45°+15°=60°,∴AB =BE ,△AOB 是等边三角形,∴∠ABO =60°,AB =OB ,∴∠OBE =30°,OB =BE ,∴∠BOE =12×(180°-30°)=75°.16.C [解析] ∵在Rt △ABC 中,∠ACB =90°,CE 为AB 边上的中线,CE =5,∴AE =CE =5.∵AD =2,∴DE =3.∵CD 为AB 边上的高,∴在Rt △CDE 中,CD =CE 2-DE 2=4.+1 [解析] 如图,取AB 的中点E ,连接OD ,OE ,DE .∵∠AOB =90°,AB =2,∴OE=AE =12AB =1.∵BC =1,四边形ABCD 是矩形,∴AD =BC =1,∴DE =AD 2+AE 2= 2.当O ,D ,E 三点共线时,点D 到点O 的距离最大,为2+1.18.证明:如图,连接BE ,DE ,∵∠ABC =90°,∠ADC =90°,E 是AC 的中点, ∴BE =DE =12AC .∵F 是BD 的中点,∴EF ⊥BD .19.解:(1)证明:∵四边形ABCD 是矩形, ∴∠B =90°,AD ∥BC .∵AB =BE ,∴∠AEB =∠FAE =45°. ∵∠AEF =90°,∴∠AFE =180°-90°-45°=45°, ∴∠FAE =∠AFE ,∴EA =EF . (2)EA =EF 成立.理由:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠B +∠BAD =180°,∠AEB =∠FAE . ∵BA =BE ,∴∠AEB =∠BAE =∠FAE .∵∠AEF =∠ABE ,∠AEB +∠AEF +∠FEC =180°,∴∠FEC =∠FAE . ∵AD ∥BC ,∴∠FEC =∠AFE , ∴∠FAE =∠AFE ,∴EA =EF .。

相关文档
最新文档