合肥一中2014年冲刺高考最后一卷数学理试题
2014高考安徽卷数学(理科)试题及详细答案解析

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.全卷满分150分,考试时间120分钟.参考公式:如果事件A与B互斥,那么P(A+B)=P(A)+P(B)如果事件A与B相互独立,那么P(AB)=P(A)P(B)第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i是虚数单位,z表示复数z的共轭复数.若z=1+i,则zi+i·z=().A.-2B.-2iC.2D.2i2.“x<0”是“ln(x+1)<0”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.如图所示,程序框图(算法流程图)的输出结果是().A.34B.55C.78D.894.以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l的参数方程是{x=t+1,y=t-3(t为参数),圆C的极坐标方程是ρ=4cosθ,则直线l被圆C截得的弦长为().A.√14B.2√14C.√2D.2√25. x , y满足约束条件{x+y-2≤0,x-2y-2≤0,2x-y+2≥0.若z=y-ax取得最大值的最优解不唯一...,则实数a的值为().A.12或-1 B.2或12C.2或1D.2或-16.设函数f (x)(x∈R)满足f(x+π)=f (x)+sin x.当0≤x<π时,f (x)=0,则f (23π6)=().12A .12B .√32C .0D . - 127.一个多面体的三视图如图所示,则该多面体的表面积为( ).A .21+√3B .18+√3C .21D .188.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( ).A.24对B.30对C.48对D.60对9.若函数f (x )=|x+1|+|2x+a|的最小值为3,则实数a 的值为( ).A.5或8B.-1或5C.-1或 - 4D.- 4或810.在平面直角坐标系xOy 中,已知向量a ,b ,|a |=|b |=1,a ·b =0,点Q 满足OQ⃗⃗⃗⃗⃗⃗ =√2(a +b ).曲线C={P|OP ⃗⃗⃗⃗⃗ =a cos θ+b sin θ,0≤θ<2π},区域Ω={P|0<r ≤|PQ ⃗⃗⃗⃗⃗ |≤R ,r<R }.若C ∩Ω为两段分离的曲线,则( ).A .1<r<R<3B .1< r <3≤ RC .r ≤ 1<R<3D .1<r<3<R第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.......... 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11.若将函数f (x )=sin 24x π⎛⎫+ ⎪⎝⎭的图象向右平移 φ 个单位,所得图象关于y 轴对称,则 φ 的最小正值是 .12.数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q= .13.设a ≠0,n 是大于1的自然数,(1+x a )n的展开式为a 0+a 1x+a 2x 2+…+a n x n .若点A i (i ,a i ) (i=0,1,2)的位置如图所示,则a= .14.设F1,F2分别是椭圆E:x2+y 2b=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为.15.已知两个不相等的非零向量a,b,两组向量x1,x2,x3,x4,x5和y1,y2,y3,y4,y5均由2个a和3个b排列而成.记S=x1·y1+x2·y2+x3·y3+x4·y4+x5·y5,S min表示S所有可能取值中的最小值.则下列命题正确的是(写出所有正确命题的编号).①S有5个不同的值;②若a⊥b则S min与|a|无关;③若a∥b,则S min与|b|无关;④若|b|>4|a|,则S min>0;⑤若|b|=2|a|,S min=8|a|2,则a与b的夹角为π4.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.(本小题满分12分)设△ABC的内角A,B,C所对边的长分别是a,b,c,且b=3,c=1,A=2B.(1)求a值;(2)求sin(A+π4)的值.17.(本小题满分12分)甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).18.(本小题满分12分)设函数f(x)=1+(1+a)x-x2-x3,其中a>0.(1)讨论f(x)在其定义域上的单调性;(2)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.3。
2014年高考安徽理科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【2014年安徽,理1,5分】设i 是虚数单位,z 表示复数z 的共轭复数.若1i z =+,则i izz +=( )(A )2- (B )2i - (C )2 (D )2i 【答案】C【解析】1ii i (1i)(i 1)(i 1)2i iz z ++⋅=+⋅-=--++=,故选C .(2)【2014年安徽,理2,5分】“0x <”是“()ln 10x +<”的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】B【解析】ln(1)001110x x x +<⇔<+<⇔-<<,所以“0x <”是“()ln 10x +<”的必要而不充分条件,故选B .(3)【2014年安徽,理3,5分】如图所示,程序框图(算法流程图)的输出结果是( )(A )34(B )55 (C )78 (D )89【答案】B 【解析】x 1 1 2 3 5 8 13 21 y 1 2 3 5 8 13 21 34z2 3 5 8 13 21 34 55 (4)【2014年安徽,理4,5分】以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( ) (A )14 (B )214 (C )2 (D )22 【答案】D【解析】将直线l 方程化为一般式为:40x y --=,圆C 的标准方程为:22(2)4x y -+=,圆C 到直线l 的距离为:22d ==,∴弦长22222L R d =-=,故选D .(5)【2014年安徽,理5,5分】,x y 满足约束条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,若z y ax =-取得最大值的最优解不唯一,则实数a 的值为( )(A )12或1- (B )2或12(C )2或1 (D )2或1-【答案】D 【解析】画出约束条件表示的平面区域如右图,z y ax =-取得最大值表示直线z y ax =-向上平移移动最大,a 表示直线斜率,有两种情况:1a =-或2a =,故选D .(6)【2014年安徽,理6,5分】设函数()()f x x R ∈满足()()sin f x f x x π+=+.当0x π≤<时,()0f x =,则236f π⎛⎫= ⎪⎝⎭( )(A )12 (B )3 (C )0 (D )12- 【答案】A【解析】2317171111175511171111()()sin ()sin sin ()sin sin sin 066666666662222f f f f ππππππππππ=+=++=+++=+-+=,故选A .(7)【2014年安徽,理7,5分】一个多面体的三视图如图所示,则该多面体的表面积为( )(A )213+ (B )183+ (C )21 (D )18 【答案】A【解析】如右图,将边长为2的正方体截去两个角,∴213226112(2)2132S =⨯⨯-⨯⨯+⨯⨯=+表,故选A .(8)【2014年安徽,理8,5分】从正方体六个面的对角线中任取两条作为一对,其中所成的角为060的共有( )(A )24对 (B )30对 (C )48对 (D )60对 【答案】C【解析】与正方体一条对角线成060的对角线有4条,∴从正方体六个面的对角线中任取两条作为一对,其中所成的角为060的共有41248⨯=(对),故选C .(9)【2014年安徽,理9,5分】若函数()|1||2|f x x x a =+++的最小值为3,则实数a 的值为( ) (A )5或8 (B )1-或5 (C )1-或4- (D )4-或8 【答案】D【解析】(1)当2a <时,12a-<-,此时31,11,1()2312x a x a x a x f x ax a x ---<-⎧⎪⎪--+-≤≤-=⎨⎪⎪++>-⎩;(2)当2a >时,12a->-,此时31,2()1,12311a x a x f x ax a x x a x ⎧---<-⎪⎪=⎨+--≤≤-⎪⎪++>-⎩, 在两种情况下,min ()()|1|322a af x f =-=-+=,解得4a =-或8a =,(此题也可以由绝对值的几何意义得min ()|1|32af x =-+=,从而得4a =-或8a =),故选D .(10)【2014年安徽,理10,5分】在平面直角坐标系xOy 中,向量,a b 满足||||1a b ==,0a b ⋅=.点Q 满足()2OQ a b =+,曲线{}|cos sin ,0C P OP a b θθθπ==+≤≤,区域{}|0||,P r PQ R r R Ω=<≤≤<.若C Ω为两段分离的曲线,则( )(A )13r R <<< (B )13r R <<≤ (C )13r R ≤<< (D )13r R <<< 【答案】A【解析】设(1,0),(0,1)a b ==则(cos ,sin )OP θθ=,(2,2)OQ =,所以曲线C 是单位元,区域Ω为圆环(如右图),∵||2OQ =,∴13r R <<<,故选A . 第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.(11)【2014年安徽,理11,5分】若将函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭的图像向右平移ϕ个单位,所得图像关于y 轴对称, 则ϕ的最小正值是 .【答案】38π 【解析】()sin[2()]sin(22)44f x x x ππϕϕϕ-=-+=+-,∴2,()42k k Z ππϕπ-=+∈,∴,()82k k Z ππϕ=--∈,当1k =-时min 38πϕ=.(12)【2014年安徽,理12,5分】已知数列{}n a 是等差数列,若11a +,33a +,55a +构成公比为q 的等比数列,则q = . 【答案】1q =【解析】∵{}n a 是等差数列且1351,3,5a a a +++构成公比为q 的等比数列,∴2111(1)(45)(23)a a d a d +++=++,即2111(1)[(1)4(1)[(1)2(1)]a a d a d ++++=+++, 令11,1a x d y +=+=,则有2(4)(2)x x y x y +=+,展开的0y =,即10d +=,∴1q =.(13)【2014年安徽,理13,5分】设0a ≠,n 是大于1的自然数,1nx a ⎛⎫+ ⎪⎝⎭的展开式为2012n n a a x a x a x ++++.若点()(),0,1,2i i A i a i =的位置如图所示,则a = . 【答案】3a =【解析】由图易知0121,3,4a a a ===,∴122113,()4n n C C a a ⋅=⋅=,∴23(1)42na n n a ⎧=⎪⎪⎨-⎪=⎪⎩,解得3a =. (14)【2014年安徽,理14,5分】设1F ,2F 分别是椭圆()222:101y E x b b+=<<的左、右焦点,过点1F 的直线交椭圆E 于A ,B 两点,若11||3||AF BF =,2AF x ⊥轴,则椭圆E 的方程为 .【答案】22312x y +=【解析】由题意得通径22AF b =,∴点B 坐标为251(,)33c B b --,将点B 坐标带入椭圆方程得22221()53()13b c b --+=,又221b c =-,解得222313b c ⎧=⎪⎪⎨⎪=⎪⎩,∴椭圆方程为22312x y +=.(15)【2014年安徽,理15,5分】已知两个不相等的非零向量,a b ,两组向量12345,,,,x x x x x 和12345,,,,y y y y y 均由2个a 和3个b 排列而成.记1122334455S x y x y x y x y x y =⋅+⋅+⋅+⋅+⋅,min S 表示S 所有可能取值中的最小值.则下列命题正确的是_________(写出所有正确命题的编号).①S 有5个不同的值;②若a b ⊥,则min S 与a 无关;③若//a b ,则min S 与||b 无关;④若||4||b a >,则min 0S >;⑤若||4||b a =,2min 8||S a =,则a 和b 的夹角为4π. 【答案】②④【解析】S 有下列三种情况:222222222123,,S a a b b b S a a b a b b b S a b a b a b a b b =++++=+⋅+⋅++=⋅+⋅+⋅+⋅+∵222212232()||0S S S S a b a b a b a b -=-=+-⋅=-=-≥,∴min 3S S =, 若a b ⊥,则2min 3S S b ==,与||a 无关,②正确; 若//a b ,则2min 34S S a b b ==⋅+,与||b 有关,③错误;若||4||b a >,则2222min 34||||cos ||4||||||||||0S S a b b a b b b b θ==⋅+≥-⋅+>-+=,④正确;若2min ||2||,8||b a S a ==,则2222min 348||cos 4||8||S S a b b a a a θ==⋅+=+=,∴1cos 2θ=,∴3πθ=,⑤错误.三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程.解答写在答题卡上的指定区域内. (16)【2014年安徽,理16,12分】设ABC ∆的内角A ,B ,C 所对边的长分别是a ,b ,c ,且3b =,1c =,2A B =.(1)求a 的值;(2)求sin 4A π⎛⎫+ ⎪⎝⎭的值.解:(1)∵2A B =,∴sin sin22sin cos A B B B ==,由正弦定理得22222a c b a b ac+-=⋅,∵3,1b c ==,∴212,a a ==(2)由余弦定理得22291121cos 2b c a A bc +-+-===-,由于0A π<<,∴sin A故1sin()sin cos cos sin ()4443A A A πππ+=++-. (17)【2014年安徽,理17,12分】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).解:用A 表示“甲在4局以内(含4局)赢得比赛”, k A 表示“第k 局甲获胜”, k B 表示“第k 局乙获胜”,则21(),(),1,2,3,4,533k k P A P B k ===.(1)121231234121231234()()()()()()()()()()(()()P A P A A P B A A P A B A A P A P A P B P A P A P A P B A P A =++=++2212221225633333333381=⨯+⨯⨯+⨯⨯⨯=. (2)X 的可能取值为2,3,4,5,121212125(2)()()()()()()9P X P A A P B B P A P A P B P B ==+=+=,1231231231232(3)()()()()()()()()9P X P B A A P A B B P B P A P A P A P B P B ==+=+=,123412341234123410(4)()()()()()()()()()()81P X P A B A A P B A B B P A P B P A P A P B P A P B P B ==+=+=8(5)1(2)(3)(4)81P X P X P X P X ==-=-=-==, 故X∴5234599818181EX =⨯+⨯+⨯+⨯=.(18)【2014年安徽,理18,12分】设函数()()()23110f x a x x x a =++-->.(1)讨论()f x 在其定义域上的单调性;(2)当[]0,1x ∈时,求()f x 取得最大值和最小值时的x 的值. 解:(1)()f x 的定义域为(,)-∞+∞,2'()123f x a x x =+--,令'()0f x =得1212x x x x =<,所以12'()3()()f x x x x x =---,当1x x <或2x x >时,'()0f x <;当12x x x <<时'()0f x >,故()f x 在1(,)x -∞和2(,)x +∞内单调递减,在12(,)x x 内单调递增. (2)∵0a >,∴120,0x x <>,(ⅰ)当4a ≥时21x ≥,由(1)知()f x 在[0,1]上单调递增,∴()f x 在0x =和1x =处分别取得最小值和最大值.(ⅱ)当40a >>时,21x <,由(1)知()f x 在2[0,]x 上单调递增,在2[,1]x 上单调递减, ∴()f x 在2143ax x -++==处取得最大值,又(0)1,(1)f f a ==,∴当10a >>时()f x 在1x =处取得最小值,当1a =时()f x 在0x =和1x =处同时取得最小值,当41a >>时,()f x 在0x =取得最小值.(19)【2014年安徽,理19,13分】如图,已知两条抛物线()2111:20E y p x p =>和()2122:20E y p x p =>,过原点O 的两条直线1l 和2l ,1l 与1E ,2E 分别交于1A ,2A 两点,2l 与1E ,2E 分别交于1B ,2B 两点. (1)证明:1122//A B A B ;(2)过原点O 作直线l (异于1l ,2l )与1E ,2E 分别交于1C ,2C 两点.记111A B C ∆与222A B C ∆的面积分别为1S 与2S ,求12SS 的值.解:(1)设直线12,l l 的方程分别为1212,,(,0)y k x y k x k k ==≠,则由1212y k x y p x=⎧⎨=⎩得11121122(,)p pA k k ;由1222y k x y p x=⎧⎨=⎩得22221122(,)p p A k k ,同理可得11122222(,)p pB k k ,22222222(,)p p B k k ,所以111111122222121212122221111(,)2(,)p p p p A B p k k k k k k k k =--=--,222222222222121212122221111(,)2(,)p p p p A B p k k k k k k k k =--=--,故111222p A B A B p =,所以1122A B A B //.(2)由(1)知1122A B A B //,同理可得1122B C B C //,1122AC A C //,所以111222A B C A B C ∆∆∽,因此2111222S ||()||A B S A B =, 又由(1)中的111222p A B A B p =知111222||||A B p p A B =,故211222S p S p =. (20)【2014年安徽,理20,13分】如图,四棱柱1111ABCD A B C D -中,1A A ⊥底面ABCD ,四边形ABCD 为梯形,//AD BC ,且2AD BC =.过1A ,C ,D 三点的平面记为α,1BB 与α的交点为M .(1)证明:M 为1BB 的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若14A A =,2CD =,梯形ABCD 的面积为6,求平面α与底面ABCD 所成二面角大小. 解:(1)∵1//BQ AA ,//BC AD ,BCBQ B =,1ADAA A =,∴平面//QBC 平面1A AD ,从而平面1ACD 与这两个平面的交线相互平行,即1QC A D //,故QBC ∆与1A AD ∆的对应边相互平行, 于是1A QBC AD ∆∆∽,∴11BQ BQ 1BB 2BC AA AD ===,即Q 为1BB 的中点.(2)如图,连接QA ,QD .设1AA h =,梯形ABCD 的高为d ,四棱柱被平面α所分成上下两部分的体积分别为V 上和V 下,BC a =,则2AD a =.11112323Q A AD V a h d ahd -=⋅⋅⋅⋅=,1211()3224Q ABCD a a V d h ahd -+=⋅⋅⋅=,∴1712Q A AD Q ABCD V V V ahd --=+=下,又111132A B C D ABCD V ahd -=,∴1111371121212A B C D ABCD V V V ahd ahd ahd -=-=-=下上,故117V V =上下.MD 1C 1B 1A 1A(3)解法一:如图,在ADC ∆中,作AE DC ⊥,垂足为E ,连接1A E ,又1DE AA ⊥,且1AE AA A =,∴1DE AEA ⊥平面,∴1DE A E ⊥,∴1AEA ∠为平面α和平面ABCD 所成二面角的平面角.∵ //AD BC ,2AD BC =, ∴2ADC ABC S S ∆∆=,又∵梯形ABCD 的面积为6,2DC =,∴4ADC S ∆=,4AE =,于是11tan 1AA AEA AE ∠==,14AEA π∠=,故平面α和底面ABCD 所成二面角的大小为4π.解法二:如图,以D 为原点,DA ,1DD 分别为x 轴和z 轴正方向,建立空间直角坐标系.设CDA θ∠=,因为22sin 62ABCD a a V θ+=⋅=,所以2sin a θ=,从而(2cos ,2sin ,0)C θθ,14(,0,4)sin A θ,设平面1A DC 的法向量为(,,1)n x y =,由1440sin 2cos 2sin 0DA n x DC n x y θθθ⎧⋅=+=⎪⎨⎪⋅=+=⎩得sin ,cos x y θθ=-=,所以(sin ,cos ,1)n θθ=-,又平面ABCD 的法向量(0,0,1)m =, 所以2cos ,||||m n m n m n ⋅<>==⋅α和底面ABCD 所成二面角的大小为4π. (21)【2014年安徽,理21,13分】设实数0c >,整数1p >,*n N ∈.(1)证明:当1x >-且0x ≠时,()11px px +>+;(2)数列{}n a 满足11pa c >,111p n n n p c a a a p p-+-=+,证明:11pn n a a c +>>.解:(1)用数学归纳法证明①当2p =时,22(1)1212x x x x +=++>+,原不等式成立.②假设(2,*)p k k k N =≥∈时,不等式(1)1k x kx +>+成立,当1p k =+时,1(1)(1)(1)(1)(1)k k x x x x kx ++=++>++21(1)1(1)k x kx k x =+++>++ 所以1p k =+时,原不等式成立.综合①、②可得当1x >-且0x ≠时,对一切整数1p >,不等式()11px px +>+均成立. (2)解法一:先用数学归纳法证明1p n a c >.①当1n =时由假设11pa c >知1pn a c >成立.②假设(1,*)n k k k N =≥∈时,不等式1pk a c >成立,由111pn n np c a a a p p-+-=+,易知0,*n a n N >∈, 当1n k =+时,1111(1)p k k p k k a p c c a a p p p a -+-=+=+-,由10p k a c >>得111(1)0p kcp p a -<-<-< 由(1)中的结论得111()[1(1)]1(1)p p k p p p k k k k a c c cp a p a p a a +=+->+⋅-=,因此1p k a c +>,即11p k a c +>,所以当1n k =+时,不等式1pn a c >也成立.综合①、②可得,对一切正整数n ,不等式1pn a c >均成立.再由111(1)n p n n a ca p a +=+-得11n na a +<,即1n n a a +<,综上所述,11,*p n n a a c n N +>>∈.解法二:设111(),p p p c f x x x x c p p --=+≥,则p x c ≥,并且11'()(1)(1)0p p p c p cf x p x p p p x---=+-=->,1p x c >由此可见,()f x 在1[,)p c +∞上单调递增,因而当1p x c >时11()()p pf x f c c ==. ① 当1n =时由110pa c >>,即1p a c >可知121111111[1(1)]p p p c ca a a a a p p p a --=+=+-<, 并且121()pa f a c =>,从而112pa a c >>,故当1n =时,不等式11pn n a a c +>>成立.② 假设(1,*)n k k k N =≥∈时,不等式11pk k a a c +>>成立,则当1n k =+时11()()()pk k f a f a f c +>>,即有112pk k a a c ++>>,所以当1n k =+时原不等式也成立. 综合①、②可得,对一切正整数n ,不等式11pn n a a c +>>均成立.。
2014年安徽省高考数学试卷(理科)答案与解析

2014年安徽省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2014•安徽)设i是虚数单位,表示复数z的共轭复数.若z=1+i,则+i•=()代入+i•∴∴==取相同的长度单位.已知直线l的参数方程是(t为参数),圆C的极坐标方程是ρ=4cosθ,则直线l被的参数方程是=<=2,5.(5分)(2014•安徽)x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a 或﹣16.(5分)(2014•安徽)设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,则f()(()+sin)+sin+sin)+sin+sin+sin=sin+sin+sin==8+=21+.=66解:,﹣﹣﹣∴﹣≥,+1>﹣,+1或﹣时,﹣10.(5分)(2014•安徽)在平面直角坐标系xOy中.已知向量、,||=||=1,•=0,点Q满足=(+),曲线C={P|=cosθ+sinθ,0≤θ≤2π},区域Ω={P|0<r≤||≤R,r<R}.若C∩Ω为两段分离的曲线,则()不妨令=),=||中.已知向量、,||=||=1•=0不妨令=),=则(+,=cos+|||二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置.11.(5分)(2014•安徽)若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.﹣轴对称可得,)的图象向右平移﹣,﹣﹣,故答案为:.的等比数列列式求出公差,则由得:整理得:q=13.(5分)(2014•安徽)设a≠0,n是大于1的自然数,(1+)n的展开式为a0+a1x+a2x2+…+a n x n.若点A i(i,)的展开式的通项为)的展开式的通项为,,14.(5分)(2014•安徽)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E 于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为x2+=1.(﹣,﹣bc,﹣代入椭圆方程可得==++15.(5分)(2014•安徽)已知两个不相等的非零向量,,两组向量,,,,和,,,,均由2个和3个排列而成,记S=•+•+•+•+•,S min表示S所有可能取值中的最小值.则下列命题正确的是②④(写出所有正确命题的编号).①S有5个不同的值;②若⊥,则S min与||无关;③若∥,则S min与||无关;④若||>4||,则S min>0;⑤若||=2||,S min=8||2,则与的夹角为.++++•+++=+•++•+=﹣•≥+2|||≥个个S=2+3S=+2•+2S=4•++++,=•+•+,=+•++•++2•+﹣2||≥⊥,则=||∥,则=4•,与||||4||=4|||4||||+>﹣=0||=2||=8|=与的夹角为.区域.16.(12分)(2014•安徽)设△ABC的内角为A、B、C所对边的长分别是a、b、c,且b=3,c=1,A=2B.(Ⅰ)求a的值;(Ⅱ)求sin(A+)的值.A+)的值.a=6a=2cosB=sinB=sinA=sin2B=,A+)则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;,,(+(+×(=,,=,,×+3×+4×+5×=.18.(12分)(2014•安徽)设函数f(x)=1+(1+a)x﹣x﹣x,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;<<)和(在(19.(13分)(2014•安徽)如图,已知两条抛物线E1:y=2p1x(p1>0)和E2:y=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1、A2两点,l2与E1、E2分别交于B1、B2两点.(Ⅰ)证明:A1B1∥A2B2;(Ⅱ)过O作直线l(异于l1,l2)与E1、E2分别交于C1、C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.的方程,然后分别和两抛物线联立求得交点坐标,得到的联立,解得联立,解得联立,解得联立,解得因此11111且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.(Ⅰ)证明:Q为BB1的中点;(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;,则,== ahd====,ahdahd所分成上、下两部分的体积之比=1,.21.(13分)(2014•安徽)设实数c>0,整数p>1,n∈N.(Ⅰ)证明:当x>﹣1且x≠0时,(1+x)p>1+px;(Ⅱ)数列{a n}满足a1>,a n+1=a n+a n1﹣p.证明:a n>a n+1>.=a+a a,写成相加,上式左边当且仅当,即a a,即>a a c成立,即从数列。
2014年 全国统一高考数学 试卷及解析(理科)(新课标ⅱ)

2014年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5 B.5 C.﹣4+i D.﹣4﹣i3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1 B.2 C.3 D.54.(5分)钝角三角形ABC 的面积是,AB=1,BC=,则AC=()A.5 B .C.2 D.15.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.456.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()1A .B .C .D .7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4 B.5 C.6 D.78.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()2A.0 B.1 C.2 D.39.(5分)设x,y 满足约束条件,则z=2x﹣y的最大值为()A.10 B.8 C.3 D.210.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A .B .C .D .11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A .B .C .D .12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为.315.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E 为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:4年份2007200820092010201120122013年份代号t12345672.93.3 3.64.4 4.85.2 5.9人均纯收入y(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.20.(12分)设F1,F2分别是C :+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN 的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).5请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.六、解答题(共1小题,满分0分)624.设函数f(x)=|x +|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.72014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}【分析】求出集合N的元素,利用集合的基本运算即可得到结论.【解答】解:∵N={x|x2﹣3x+2≤0}={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5 B.5 C.﹣4+i D.﹣4﹣i【分析】根据复数的几何意义求出z2,即可得到结论.【解答】解:z1=2+i对应的点的坐标为(2,1),8∵复数z1,z2在复平面内的对应点关于虚轴对称,∴(2,1)关于虚轴对称的点的坐标为(﹣2,1),则对应的复数,z2=﹣2+i,则z1z2=(2+i)(﹣2+i)=i2﹣4=﹣1﹣4=﹣5,故选:A.【点评】本题主要考查复数的基本运算,利用复数的几何意义是解决本题的关键,比较基础.3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1 B.2 C.3 D.5【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.94.(5分)钝角三角形ABC 的面积是,AB=1,BC=,则AC=()A.5 B .C.2 D.1【分析】利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.【解答】解:∵钝角三角形ABC 的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.【点评】此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.105.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.45【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()11A .B .C .D .【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.127.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4 B.5 C.6 D.7【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.138.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0 B.1 C.2 D.3【分析】根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.【解答】解:,∴y′(0)=a﹣1=2,∴a=3.故选:D.【点评】本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.9.(5分)设x,y 满足约束条件,则z=2x﹣y的最大值为()A.10 B.8 C.3 D.2【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).14由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()1516A .B .C .D .【分析】由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A ,B 两点的直线方程,和抛物线方程联立后化为关于y 的一元二次方程,由根与系数关系得到A ,B 两点纵坐标的和与积,把△OAB 的面积表示为两个小三角形AOF 与BOF 的面积和得答案.【解答】解:由y 2=2px ,得2p=3,p=,则F (,0).∴过A ,B 的直线方程为y=(x ﹣),即x=y +.联立 ,得4y 2﹣12y ﹣9=0.设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=3,y 1y 2=﹣.∴S △OAB =S △OAF +S △OFB =×|y 1﹣y 2|==×=.故选:D .【点评】本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,是中档题.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A .B .C .D .【分析】画出图形,找出BM与AN所成角的平面角,利用解三角形求出BM与AN所成角的余弦值.【解答】解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,如图:BC 的中点为O,连结ON,,则MN0B是平行四边形,BM与AN所成角就是∠ANO,∵BC=CA=CC1,设BC=CA=CC1=2,∴CO=1,AO=,AN=,MB===,在△ANO中,由余弦定理可得:cos∠ANO===.故选:C.【点评】本题考查异面直线对称角的求法,作出异面直线所成角的平面角是解题17的关键,同时考查余弦定理的应用.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【分析】由题意可得,f(x0)=±,且=kπ+,k∈Z,再由题意可得当m2最小时,|x0|最小,而|x0|最小为|m|,可得m2 >m2+3,由此求得m的取值范围.【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.【点评】本题主要正弦函数的图象和性质,函数的零点的定义,体现了转化的数学思想,属于中档题.18二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.【分析】在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x7的系数,再根据x7的系数为15,求得a的值.【解答】解:(x +a)10的展开式的通项公式为T r=•x10﹣r•a r,+1令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.【分析】由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sinx,从而求得函数的最大值.【解答】解:函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)=sin[(x+φ)+φ]﹣2sinφcos (x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ﹣2sinφcos(x+φ)=sin(x+φ)cosφ﹣cos(x+φ)sinφ19=sin[(x+φ)﹣φ]=sinx,故函数f(x)的最大值为1,故答案为:1.【点评】本题主要考查两角和差的正弦公式、余弦公式的应用,正弦函数的最值,属于中档题.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.2016.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1] .【分析】根据直线和圆的位置关系,画出图形,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN≤1,∴x0的取值范围是[﹣1,1].【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.21三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n +}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.【分析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】证明(Ⅰ)==3,∵≠0,∴数列{a n +}是以首项为,公比为3的等比数列;∴a n +==,即;(Ⅱ)由(Ⅰ)知,22当n≥2时,∵3n﹣1>3n﹣3n﹣1,∴<=,∴当n=1时,成立,当n≥2时,++…+<1+…+==<.时,++…+<.∴对n∈N+【点评】本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E 为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.23【分析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB ∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.【解答】(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∴CD⊥MD.∵二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,24∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD 的体积为:==.【点评】本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:25年份2007200820092010201120122013年份代号t12345672.93.3 3.64.4 4.85.2 5.9人均纯收入y(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.【分析】(Ⅰ)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.(Ⅱ)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.【解答】解:(Ⅰ)由题意,=×(1+2+3+4+5+6+7)=4,=×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∴==26=0.5,=﹣=4.3﹣0.5×4=2.3.∴y关于t 的线性回归方程为=0.5t+2.3;(Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入=0.5t+2.3,得:=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.【点评】本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题.20.(12分)设F1,F2分别是C :+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN 的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【分析】(1)根据条件求出M的坐标,利用直线MN 的斜率为,建立关于a,27c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c ,),若直线MN 的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,28设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a 代入得,解得a=7,b=.29【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).【分析】对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法利用的近似值,并寻求ln2,于是在b=2及b>2的情况下分别计算,最后可估计ln2的近似值.【解答】解:(Ⅰ)由f(x)得f′(x)=e x+e﹣x﹣2,即f′(x)≥0,当且仅当e x=e﹣x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.30(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g′(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x+2﹣2b).①∵e x+e﹣x>2,e x+e﹣x+2>4,∴当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即,得,此时,g′(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)∵1.4142<<1.4143,根据(Ⅱ)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,为了凑配ln2,并利用的近似值,故将ln 即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,31从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.【点评】1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.3.本题的难点在于如何寻求ln2,关键是根据第(2)问中g(x)的解析式探究b的值,从而获得不等式,这样自然地将不等式放缩为的范围的端点值,达到了估值的目的.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.32【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E 是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E 是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,33∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.34【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C 的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D 的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.六、解答题(共1小题,满分0分)24.设函数f(x)=|x +|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.35【分析】(Ⅰ)由a>0,f(x)=|x +|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x +|+|x﹣a|≥|(x +)﹣(x﹣a)|=|a +|=a +≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a +<5,即a2﹣5a+1<0,解得3<a <.当0<a≤3时,不等式即6﹣a +<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a 的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.36。
2014年安徽数学(理科)真题word版

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设是虚数单位,表示复数的共轭复数. 若则()A. B. C. D.(2)“”是“”的()A.充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是()A. 34B. 55C. 78D. 894.以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线的参数方程是,(t为参数),圆C的极坐标方程是则直线被圆C截得的弦长为()A. B. C. D.5.满足约束条件,若取得最大值的最优解不唯一,则实数的值为()A, B. C.2或1 D.6.设函数满足当时,,则()A. B. C.0 D.7.一个多面体的三视图如图所示,则该多面体的表面积为()A.21+B.18+C.21D.188.从正方体六个面的对角线中任取两条作为一对,其中所成的角为的共有()A.24对B.30对C.48对D.60对9.若函数的最小值为3,则实数的值为()A.5或8B.或5C.或D.或810.在平面直角坐标系中,已知向量点满足.曲线,区域.若为两段分离的曲线,则( )A. B. C. D.第卷(非选择题共100分)二.选择题:本大题共5小题,每小题5分,共25分.11.若将函数的图像向右平移个单位,所得图像关于轴对称,则的最小正值是________.12.数列是等差数列,若,,构成公比为的等比数列,则________.(13)设是大于1的自然数,的展开式为.若点的位置如图所示,则(14)设分别是椭圆的左、右焦点,过点的直线交椭圆于两点,若轴,则椭圆的方程为__________(15)已知两个不相等的非零向量两组向量和均由2个和3个排列而成.记,表示所有可能取值中的最小值.则下列命题的是_________(写出所有正确命题的编号).①有5个不同的值.②若则与无关.③若则与无关.④若,则.⑤若则与的夹角为三.解答题:本大题共6小题,共75分.解答应写出文子说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.设的内角所对边的长分别是,且(1)求的值;(2)求的值.17(本小题满分12分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记为比赛决出胜负时的总局数,求的分布列和均值(数学期望)18(本小题满分12分)设函数其中.(1)讨论在其定义域上的单调性;(2)当时,求取得最大值和最小值时的的值.(19)(本小题满分13分)如图,已知两条抛物线和,过原点的两条直线和,与分别交于两点,与分别交于两点.(1)证明:(2)过原点作直线(异于,)与分别交于两点。
14年高考真题——理科数学(安徽卷)

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设i 是虚数单位,z 表示复数z 的共轭复数。
若1z i =+,则ziz i+=( ) (A )2- (B )i 2- (C )2 (D )i 2(2)“0<x ”是“()ln 10x +<”的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是( ) (A )34 (B )55 (C )78 (D )89(4)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为( ) (A )14 (B )142 (C )2 (D )22(5)y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯一,则实数a 的值为( ) (A )12或1- (B )2或12(C )2或1 (D )2或1- (6)设函数()()f x x R ∈满足()()sin f x f x x π+=+。
当π<≤x 0时,()0f x =,则236f π⎛⎫=⎪⎝⎭( ) (A )12 (B )23 (C )0 (D )21- (7)一个多面体的三视图如图所示,则该多面体的表面积为( )(A)21 (B)18(C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为060的共有( )(A )24对 (B )30对 (C )48对 (D )60对(9)若函数()|1||2|f x x x a =+++的最小值为3,则实数a 的值为( ) (A )5或8 (B )1-或5 (C )1-或4- (D )4-或8(10)在平面直角坐标系xOy 中,向量,a b 满足||||1a b ==,0a b ⋅=。
2014新课标高考压轴最后一卷 理科数学 Word版含解析 2014

2014新课标1高考压轴卷理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},则∁U(M∪N)=()2. 复数的共轭复数是a+bi(a,b∈R),i是虛数单位,则点(a,b)为()3. 的值为()4. 函数f(x)=log2(1+x),g(x)=log2(1﹣x),则f(x)﹣g(x)是()5.在边长为1的正方形OABC中任取一点P,则点P恰好落在正方形与曲线围成的区域内(阴影部分)的概率为()A. B. C. D.6.一个空间几何体的三视图如右图所示,其中主视图和侧视图都是半径为1的圆,且这个几何体是球体的一部分,则这个几何体的表面积为( )A.3πB.4πC.6πD.8π7. 已知函数的图象(部分)如图所示,则ω,φ分别为()B8. “”是“数列{a n}为等比数列”的()9. 在△ABC中,角A、B、C的对边分别为a、b、c,如果cos(2B+C)+2sinAsinB<0,那么三边长a、b、c之间满足的关系是()10. 等腰Rt△ACB,AB=2,.以直线AC为轴旋转一周得到一个圆锥,D为圆锥底面一点,BD⊥CD,CH⊥AD于点H,M为AB中点,则当三棱锥C﹣HAM的体积最大时,CD 的长为()D11.定义域为R 的偶函数f (x )满足∀x ∈R ,有f (x+2)=f (x )﹣f (1),且当x ∈[2,3]时,f (x )=﹣2x 2+12x ﹣18.若函数y=f (x )﹣log a (x+1)至少有三个零点,则a 的取值范围是( ) ,,,12. 设双曲线﹣=1(a >0,b >0)的右焦点为F ,过点F 作与x 轴垂直的直线l 交两渐近线于A 、B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若=λ+μ(λ,μ∈R ),λμ=,则该双曲线的离心率为( )B13. 函数22631y x x =++的最小值是14.执行如图所示的程序框图,则输出的结果S 是________.15.已知平行四边形ABCD 中,点E 为CD 的中点,=m,=n(m•n≠0),若∥,则=___________________.16. 设不等式组表示的平面区域为M ,不等式组表示的平面区域为N .在M 内随机取一个点,这个点在N 内的概率的最大值是________________.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.17.已知(3,cos())a x ω=-,(sin(b x ω=,其中0ω>,函数()f x a b =⋅的最小正周期为π.(1)求()f x 的单调递增区间;(2)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .且()2Af =,a =,求角A 、B 、C 的大小.18.某市为准备参加省中学生运动会,对本市甲、乙两个田径队的所有跳高运动员进行了测试,用茎叶图表示出甲、乙两队运动员本次测试的跳高成绩(单位:cm ,且均为整数),同时对全体运动员的成绩绘制了频率分布直方图.跳高成绩在185cm 以上(包括185cm )定义为“优秀”,由于某些原因,茎叶图中乙队的部分数据丢失,但已知所有运动员中成绩在190cm 以上(包括190cm )的只有两个人,且均在甲队.(Ⅰ)求甲、乙两队运动员的总人数a 及乙队中成绩在[160,170)(单位:cm )内的运动员人数b ;(Ⅱ)在甲、乙两队所有成绩在180cm 以上的运动员中随机选取2人,已知至少有1人成绩为“优秀”,求两人成绩均“优秀”的概率;(Ⅲ)在甲、乙两队中所有的成绩为“优秀”的运动员中随机选取2人参加省中学生运动会正式比赛,求所选取运动员中来自甲队的人数X 的分布列及期望.19.等边三角形ABC 的边长为3,点D 、E 分别是边AB 、AC 上的点,且满足12AD CE DB EA == (如图1).将△ADE 沿DE 折起到△1A DE 的位置,使二面角1A DE B --为直二面角,连结11A B AC 、 (如图2).(Ⅰ)求证:1A D ⊥平面BCED ;(Ⅱ)在线段BC 上是否存在点P ,使直线1PA 与平面1A BD 所成的角为60?若存在,求出PB 的长,若不存在,请说明理由.20.在平面直角坐标系xOy 中,从曲线C 上一点P 做x 轴和y 轴的垂线,垂足分别为N M ,,点)0,(),0,(a B a A -(a a ,0>为常数),且02=+⋅ON BM AM λ(0≠λ) (1)求曲线C 的轨迹方程,并说明曲线C 是什么图形;(2)当0>λ且1≠λ时,将曲线C 绕原点逆时针旋转︒90得到曲线1C ,曲线C 与曲线1C 四个交点按逆时针依次为G F E D ,,,,且点D 在一象限 ①证明:四边形DEFG 为正方形; ②若D F AD ⊥,求λ值. 21. 已知21(),()2f x lnxg x ax bx ==+ (0),()()().a h x f x g x ≠=- (Ⅰ)当42a b ==,时,求()h x 的极大值点;(Ⅱ)设函数()f x 的图象1C 与函数()g x 的图象2C 交于P 、Q 两点,过线段PQ 的中点做x 轴的垂线分别交1C 、2C 于点M 、N ,证明:1C 在点M 处的切线与2C 在点N 处的切线不平行.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.已知AB 是圆O 的直径,C 为圆O 上一点,CD ⊥AB 于点D , 弦BE 与CD 、AC 分别交于点M 、N ,且MN = MC(1)求证:MN = MB ; (2)求证:OC ⊥MN 。
2014年高考安徽理科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【2014年安徽,理1,5分】设i 是虚数单位,z 表示复数z 的共轭复数.若1i z =+,则i izz +=( )(A )2- (B )2i - (C )2 (D )2i 【答案】C【解析】1ii i (1i)(i 1)(i 1)2i iz z ++⋅=+⋅-=--++=,故选C .(2)【2014年安徽,理2,5分】“0x <”是“()ln 10x +<”的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】B【解析】ln(1)001110x x x +<⇔<+<⇔-<<,所以“0x <”是“()ln 10x +<”的必要而不充分条件,故选B .(3)【2014年安徽,理3,5分】如图所示,程序框图(算法流程图)的输出结果是( )(A )34(B )55 (C )78 (D )89【答案】B 【解析】x 1 1 2 3 5 8 13 21 y 1 2 3 5 8 13 21 34z2 3 5 8 13 21 34 55 (4)【2014年安徽,理4,5分】以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( ) (A )14 (B )214 (C )2 (D )22 【答案】D【解析】将直线l 方程化为一般式为:40x y --=,圆C 的标准方程为:22(2)4x y -+=,圆C 到直线l 的距离为:22d ==,∴弦长22222L R d =-=,故选D .(5)【2014年安徽,理5,5分】,x y 满足约束条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,若z y ax =-取得最大值的最优解不唯一,则实数a 的值为( )(A )12或1- (B )2或12(C )2或1 (D )2或1-【答案】D 【解析】画出约束条件表示的平面区域如右图,z y ax =-取得最大值表示直线z y ax =-向上平移移动最大,a 表示直线斜率,有两种情况:1a =-或2a =,故选D .(6)【2014年安徽,理6,5分】设函数()()f x x R ∈满足()()sin f x f x x π+=+.当0x π≤<时,()0f x =,则236f π⎛⎫= ⎪⎝⎭( )(A )12 (B )3 (C )0 (D )12- 【答案】A【解析】2317171111175511171111()()sin ()sin sin ()sin sin sin 066666666662222f f f f ππππππππππ=+=++=+++=+-+=,故选A .(7)【2014年安徽,理7,5分】一个多面体的三视图如图所示,则该多面体的表面积为( )(A )213+ (B )183+ (C )21 (D )18 【答案】A【解析】如右图,将边长为2的正方体截去两个角,∴213226112(2)2132S =⨯⨯-⨯⨯+⨯⨯=+表,故选A . (8)【2014年安徽,理8,5分】从正方体六个面的对角线中任取两条作为一对,其中所成的角为060的共有( )(A )24对 (B )30对 (C )48对 (D )60对 【答案】C【解析】与正方体一条对角线成060的对角线有4条,∴从正方体六个面的对角线中任取两条作为一对,其中所成的角为060的共有41248⨯=(对),故选C .(9)【2014年安徽,理9,5分】若函数()|1||2|f x x x a =+++的最小值为3,则实数a 的值为( ) (A )5或8 (B )1-或5 (C )1-或4- (D )4-或8 【答案】D【解析】(1)当2a <时,12a-<-,此时31,11,1()2312x a x a x a x f x ax a x ---<-⎧⎪⎪--+-≤≤-=⎨⎪⎪++>-⎩;(2)当2a >时,12a->-,此时31,2()1,12311a x a x f x a x a x x a x ⎧---<-⎪⎪=⎨+--≤≤-⎪⎪++>-⎩,在两种情况下,min ()()|1|322a af x f =-=-+=,解得4a =-或8a =,(此题也可以由绝对值的几何意义得min ()|1|32af x =-+=,从而得4a =-或8a =),故选D .(10)【2014年安徽,理10,5分】在平面直角坐标系xOy 中,向量,a b 满足||||1a b ==,0a b ⋅=.点Q 满足()2OQ a b =+,曲线{}|cos sin ,0C P OP a b θθθπ==+≤≤,区域{}|0||,P r PQ R r R Ω=<≤≤<.若C Ω为两段分离的曲线,则( )(A )13r R <<< (B )13r R <<≤ (C )13r R ≤<< (D )13r R <<< 【答案】A【解析】设(1,0),(0,1)a b ==则(cos ,sin )OP θθ=,(2,2)OQ =,所以曲线C 是单位元,区域Ω为圆环(如右图),∵||2OQ =,∴13r R <<<,故选A . 第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.(11)【2014年安徽,理11,5分】若将函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭的图像向右平移ϕ个单位,所得图像关于y 轴对称, 则ϕ的最小正值是 .【答案】38π 【解析】()sin[2()]sin(22)44f x x x ππϕϕϕ-=-+=+-,∴2,()42k k Z ππϕπ-=+∈,∴,()82k k Z ππϕ=--∈,当1k =-时min 38πϕ=.(12)【2014年安徽,理12,5分】已知数列{}n a 是等差数列,若11a +,33a +,55a +构成公比为q 的等比数列,则q = . 【答案】1q =【解析】∵{}n a 是等差数列且1351,3,5a a a +++构成公比为q 的等比数列,∴2111(1)(45)(23)a a d a d +++=++,即2111(1)[(1)4(1)[(1)2(1)]a a d a d ++++=+++, 令11,1a x d y +=+=,则有2(4)(2)x x y x y +=+,展开的0y =,即10d +=,∴1q =.(13)【2014年安徽,理13,5分】设0a ≠,n 是大于1的自然数,1nx a ⎛⎫+ ⎪⎝⎭的展开式为2012n n a a x a x a x ++++.若点()(),0,1,2i i A i a i =的位置如图所示,则a = . 【答案】3a =【解析】由图易知0121,3,4a a a ===,∴122113,()4n n C C a a ⋅=⋅=,∴23(1)42na n n a ⎧=⎪⎪⎨-⎪=⎪⎩,解得3a =. (14)【2014年安徽,理14,5分】设1F ,2F 分别是椭圆()222:101y E x b b+=<<的左、右焦点,过点1F 的直线交椭圆E 于A ,B 两点,若11||3||AF BF =,2AF x ⊥轴,则椭圆E 的方程为 .【答案】22312x y +=【解析】由题意得通径22AF b =,∴点B 坐标为251(,)33c B b --,将点B 坐标带入椭圆方程得22221()53()13b c b --+=,又221b c =-,解得222313b c ⎧=⎪⎪⎨⎪=⎪⎩,∴椭圆方程为22312x y +=.(15)【2014年安徽,理15,5分】已知两个不相等的非零向量,a b ,两组向量12345,,,,x x x x x 和12345,,,,y y y y y 均由2个a 和3个b 排列而成.记1122334455S x y x y x y x y x y =⋅+⋅+⋅+⋅+⋅,min S 表示S 所有可能取值中的最小值.则下列命题正确的是_________(写出所有正确命题的编号).①S 有5个不同的值;②若a b ⊥,则min S 与a 无关;③若//a b ,则min S 与||b 无关;④若||4||b a >,则min 0S >;⑤若||4||b a =,2min 8||S a =,则a 和b 的夹角为4π. 【答案】②④【解析】S 有下列三种情况:222222222123,,S a a b b b S a a b a b b b S a b a b a b a b b =++++=+⋅+⋅++=⋅+⋅+⋅+⋅+∵222212232()||0S S S S a b a b a b a b -=-=+-⋅=-=-≥,∴min 3S S =, 若a b ⊥,则2min 3S S b ==,与||a 无关,②正确; 若//a b ,则2min 34S S a b b ==⋅+,与||b 有关,③错误;若||4||b a >,则2222min 34||||cos ||4||||||||||0S S a b b a b b b b θ==⋅+≥-⋅+>-+=,④正确;若2min ||2||,8||b a S a ==,则2222min 348||cos 4||8||S S a b b a a a θ==⋅+=+=,∴1cos 2θ=,∴3πθ=,⑤错误.三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程.解答写在答题卡上的指定区域内. (16)【2014年安徽,理16,12分】设ABC ∆的内角A ,B ,C 所对边的长分别是a ,b ,c ,且3b =,1c =,2A B =.(1)求a 的值;(2)求sin 4A π⎛⎫+ ⎪⎝⎭的值.解:(1)∵2A B =,∴sin sin 22sin cos A B B B ==,由正弦定理得22222a c b a b ac+-=⋅,∵3,1b c ==,∴212,a a ==(2)由余弦定理得22291121cos 2b c a A bc +-+-===-,由于0A π<<,∴sin A故1sin()sin coscos sin()4443A A A πππ+=+=-=(17)【2014年安徽,理17,12分】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).解:用A 表示“甲在4局以内(含4局)赢得比赛”, k A 表示“第k 局甲获胜”, k B 表示“第k 局乙获胜”,则21(),(),1,2,3,4,533k k P A P B k ===.(1)121231234121231234()()()()()()()()()()(()()P A P A A P B A A P A B A A P A P A P B P A P A P A P B A P A =++=++2212221225633333333381=⨯+⨯⨯+⨯⨯⨯=. (2)X 的可能取值为2,3,4,5,121212125(2)()()()()()()9P X P A A P B B P A P A P B P B ==+=+=,1231231231232(3)()()()()()()()()9P X P B A A P A B B P B P A P A P A P B P B ==+=+=,123412341234123410(4)()()()()()()()()()()81P X P A B A A P B A B B P A P B P A P A P B P A P B P B ==+=+=8(5)1(2)(3)(4)81P X P X P X P X ==-=-=-==, 故X∴5234599818181EX =⨯+⨯+⨯+⨯=.(18)【2014年安徽,理18,12分】设函数()()()23110f x a x x x a =++-->.(1)讨论()f x 在其定义域上的单调性;(2)当[]0,1x ∈时,求()f x 取得最大值和最小值时的x 的值. 解:(1)()f x 的定义域为(,)-∞+∞,2'()123f x a x x =+--,令'()0f x =得1212x x x x ==<,所以12'()3()()f x x x x x =---,当1x x <或2x x >时,'()0f x <;当12x x x <<时'()0f x >,故()f x 在1(,)x -∞和2(,)x +∞内单调递减,在12(,)x x 内单调递增. (2)∵0a >,∴120,0x x <>,(ⅰ)当4a ≥时21x ≥,由(1)知()f x 在[0,1]上单调递增,∴()f x 在0x =和1x =处分别取得最小值和最大值.(ⅱ)当40a >>时,21x <,由(1)知()f x 在2[0,]x 上单调递增,在2[,1]x 上单调递减, ∴()f x 在2143ax x -++==处取得最大值,又(0)1,(1)f f a ==,∴当10a >>时()f x 在1x =处取得最小值,当1a =时()f x 在0x =和1x =处同时取得最小值,当41a >>时,()f x 在0x =取得最小值.(19)【2014年安徽,理19,13分】如图,已知两条抛物线()2111:20E y p x p =>和()2122:20E y p x p =>,过原点O 的两条直线1l 和2l ,1l 与1E ,2E 分别交于1A ,2A 两点,2l 与1E ,2E 分别交于1B ,2B 两点. (1)证明:1122//A B A B ;(2)过原点O 作直线l (异于1l ,2l )与1E ,2E 分别交于1C ,2C 两点.记111A B C ∆与222A B C ∆的面积分别为1S 与2S ,求12SS 的值.解:(1)设直线12,l l 的方程分别为1212,,(,0)y k x y k x k k ==≠,则由1212y k x y p x =⎧⎨=⎩得11121122(,)p pA k k ;由1222y k x y p x=⎧⎨=⎩得22221122(,)p p A k k ,同理可得11122222(,)p p B k k ,22222222(,)p p B k k ,所以111111122222121212122221111(,)2(,)p p p p A B p k k k k k k k k =--=--, 222222222222121212122221111(,)2(,)p p p p A B p k k k k k k k k =--=--,故111222p A B A B p =,所以1122A B A B //.(2)由(1)知1122A B A B //,同理可得1122B C B C //,1122AC A C //,所以111222A B C A B C ∆∆∽,因此2111222S ||()||A B S A B =, 又由(1)中的111222p A B A B p =知111222||||A B p p A B =,故211222S p S p =. (20)【2014年安徽,理20,13分】如图,四棱柱1111ABCD A B C D -中,1A A ⊥底面ABCD ,四边形ABCD 为梯形,//AD BC ,且2AD BC =.过1A ,C ,D 三点的平面记为α,1BB 与α的交点为M .(1)证明:M 为1BB 的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若14A A =,2CD =,梯形ABCD 的面积为6,求平面α与底面ABCD 所成二面角大小. 解:(1)∵1//BQ AA ,//BC AD ,BCBQ B =,1ADAA A =,∴平面//QBC 平面1A AD ,从而平面1A CD 与这两个平面的交线相互平行,即1QC A D //,故QBC ∆与1A AD ∆的对应边相互平行,于是1A QBC AD ∆∆∽,∴11BQ BQ 1BB 2BC AA AD ===,即Q 为1BB 的中点. (2)如图,连接QA ,QD .设1AA h =,梯形ABCD 的高为d ,四棱柱被平面α所分成上下两部分的体积分别为V 上和V 下,BC a =,则2AD a =.11112323Q A AD V a h d ahd -=⋅⋅⋅⋅=,1211()3224Q ABCD a a V d h ahd -+=⋅⋅⋅=,∴1712Q A AD Q ABCD V V V ahd --=+=下,又111132A B C D ABCD V ahd -=,∴1111371121212A B C D ABCD V V V ahd ahd ahd -=-=-=下上,故117V V =上下.MD 1C 1B 1A 1A(3)解法一:如图,在ADC ∆中,作AE DC ⊥,垂足为E ,连接1A E ,又1DE AA ⊥,且1AEAA A =,∴1DE AEA ⊥平面,∴1DE A E ⊥,∴1AEA ∠为平面α和平面ABCD 所成二面角的平面角.∵ //AD BC ,2AD BC =, ∴2ADC ABC S S ∆∆=,又∵梯形ABCD 的面积为6,2DC =,∴4ADC S ∆=,4AE =,于是11tan 1AA AEA AE ∠==,14AEA π∠=,故平面α和底面ABCD 所成二面角的大小为4π.解法二:如图,以D 为原点,DA ,1DD 分别为x 轴和z 轴正方向,建立空间直角坐标系.设CDA θ∠=,因为22sin 62ABCD a a V θ+=⋅=,所以2sin a θ=,从而(2cos ,2sin ,0)C θθ,14(,0,4)sin A θ,设平面1A DC 的法向量为(,,1)n x y =,由1440sin 2cos 2sin 0DA n x DC n x y θθθ⎧⋅=+=⎪⎨⎪⋅=+=⎩ 得sin ,cos x y θθ=-=,所以(sin ,cos ,1)n θθ=-,又平面ABCD 的法向量(0,0,1)m =, 所以2cos ,||||m n m n m n ⋅<>==⋅α和底面ABCD 所成二面角的大小为4π. (21)【2014年安徽,理21,13分】设实数0c >,整数1p >,*n N ∈.(1)证明:当1x >-且0x ≠时,()11px px +>+; (2)数列{}n a 满足11pa c >,111p n n np c a a a p p-+-=+,证明:11p n n a a c +>>. 解:(1)用数学归纳法证明①当2p =时,22(1)1212x x x x +=++>+,原不等式成立.②假设(2,*)p k k k N =≥∈时,不等式(1)1k x kx +>+成立,当1p k =+时,1(1)(1)(1)(1)(1)k k x x x x kx ++=++>++21(1)1(1)k x kx k x =+++>++ 所以1p k =+时,原不等式成立.综合①、②可得当1x >-且0x ≠时,对一切整数1p >,不等式()11px px +>+均成立. (2)解法一:先用数学归纳法证明1p n a c >.①当1n =时由假设11pa c >知1pn a c >成立.②假设(1,*)n k k k N =≥∈时,不等式1pk a c >成立,由111pn n n p c a a a p p-+-=+,易知0,*n a n N >∈, 当1n k =+时,1111(1)p k k p k k a p c c a a p p p a -+-=+=+-,由10p k a c >>得111(1)0p kcp p a -<-<-< 由(1)中的结论得111()[1(1)]1(1)p p k p p p k k k ka c c cp a p a p a a +=+->+⋅-=,因此1p k a c +>,即11p k a c +>,所以当1n k =+时,不等式1pn a c >也成立.综合①、②可得,对一切正整数n ,不等式1pn a c >均成立.再由111(1)n p n n a ca p a +=+-得11n na a +<,即1n n a a +<,综上所述,11,*p n n a a c n N +>>∈.解法二:设111(),p p p c f x x x x c p p--=+≥,则p x c ≥,并且11'()(1)(1)0p p p c p cf x p x p p p x ---=+-=->,1p x c >由此可见,()f x 在1[,)p c +∞上单调递增,因而当1p x c >时11()()p pf x f c c ==. ① 当1n =时由110pa c >>,即1p a c >可知121111111[1(1)]p p p c ca a a a a p p p a --=+=+-<, 并且121()pa f a c =>,从而112pa a c >>,故当1n =时,不等式11pn n a a c +>>成立.② 假设(1,*)n k k k N =≥∈时,不等式11pk k a a c +>>成立,则当1n k =+时11()()()pk k f a f a f c +>>,即有112pk k a a c ++>>,所以当1n k =+时原不等式也成立. 综合①、②可得,对一切正整数n ,不等式11pn n a a c +>>均成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合肥一中2014冲刺高考最后一卷
理科数学试题
命题人:郭建德
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知复数13(22i i ω=-+为虚数单位),则4ω等于 A.1 B.1322i -+ C.1322i - D.1322
i + 2.已知双曲线的渐近线方程为20x y ±=,则该双曲线的离心率为 A.
52 B.5 C.32 D.5或52
3.已知随机变量(5,9)X N ,随机变量32
X η-=,且2(,)N ημδ,则 A.1,1μδ== B.11,3
μδ== C.71,3μδ== D.43,9
μδ== 4.已知,x y 满足不等式组40x y e x y ⎧≥⎨-≥⎩
,则2y x x +的取值范围是 A.[1,4] B.[21,9]e +
C.[3,21]e +
D.[1,]e
5.执行如图所示的程序框图,输出的c 值为 A.5 B.8
C.13
D.21
6.将一个边长为2的正方形ABCD 沿其对角线AC 折起,其俯视图如图所示,
此时连接顶点,B D 形成三棱锥B ACD -,则其正(主)视图的面积为
A.2
B.3
C.2
D.1
7.对于任意实数,[]x x 表示不超过x 的最大整数,那么“[][]x y =”是“||1x y -<”的
( )条件
A.充分而不必要
B.必要而不充分
C.充要
D.既不充分又不必要
8.已知函数(),[1,3]y f x x =∈-的图象如图所示,
令1()(),(1,3]x g x f t dt x -=
∈-⎰,则()g x 的图象是
9.合肥一中第二十二届校园文化艺术节在2014年12月开幕,在其中一个场馆中,由吉他社,口琴社各表演两个节目,国学社表演一个节目,要求同社团的节目不相邻,节目单排法的种数是
A.72
B.60
C.48
D.24
10.定义在R 上的奇函数()f x 的最小正周期为10,在区间(0,5)内仅(1)0f =,那么函数(3)5x f -在区间[100,200]-的零点个数是 A.24 B.25 C.26 D.28
二、本大题共5小题,每小题5分,共25分,请将答案填在答题卡的相应位置.
12.某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,采用分层抽样的方法从中抽取一个容量为若干户的样本,若高收入家庭抽取了25户,则低收入家庭被抽取的户数为
13.数列{}n a 中,若*175,n n a a n n N ++=+∈,则1100a a +=
14.在极坐标系中,曲线1C 的方程为cos()24π
ρθ+=,曲线2C 的方程为2cos()ρπθ=-,
若点P 在曲线1C 上运动,过点P 作直线l 与曲线2C 相切于点M ,则||PM 的最小值为 15.已知平面上定点,,O A B ,向量,a OA b OB ==,且||2,||1,||7a b a b ==+=
,点C 是平面上的动点,记c OC =,若(2)()0a c b c -⋅-=,给出以下命题:
①||3a b -=;
②点C 的轨迹是一个圆;
③||AC 的最大值为
712+,最小值为712
-; ④||BC 的最大值为312+,最小值为312-. 其中正确的有 (填上你认为正确的所有命题的序号)
三、本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.
16(本小题满分12分)
在ABC ∆中,角,,A B C 所对的边分别是,,a b c 且sin cos 1sin
2B B B +=-. (Ⅰ)求cos B 的值
(Ⅱ)若4a c +=,求ABC ∆的面积的最大值.
17(本小题满分12分)
如图,已知直角梯形ACDE 所在的平面垂直于平面,90,ABC BAC ACD ∠=∠= 60,.EAC AB AC AE ∠===,
(Ⅰ)在直线BC 上是否存在一点P ,使得//DP 平面?EAB 若存在,求出这个点,若不存在,请说明理由;
(Ⅱ)求平面EBD 与平面ABC 所成的锐二面角的余弦值.
(Ⅰ)已知01x <<,求证:
ln 121x x x
-<+; (Ⅱ)已知k 为正常数,且0a >,曲线:kx C y e =上有两点(,),(,)ka ka P a e Q a e --,分别过点P
和Q 作曲线C 的切线,求证:两切线的交点的横坐标大于零.
19(本小题满分13分)
已知数列{}n a 的前n 项和为n S ,且对任意*n N ∈,都有2n n S a n +=成立.
(Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)设1111,11n n n n n n b a a x b b ++=-=
++-,若记数列{}n x 的前n 项和为n T ,求证:122
n T n >-
.
合肥一中每年五月举行校园微型博览会,在会馆入口处准备了,,A B C 三种形式的校长签名纪念卡片供参观同学抽取.
(Ⅰ)若有大量纪念卡,其中20%的A 卡,现抽取了5张,求其中A 卡的张数X 的分布列及其数学期望()E X ;(注:在总体数量特别大时,无放回抽样可以近似看作有放回抽样)
(Ⅱ)活动结束,剩余若干纪念卡,从中任意抽取1张纪念卡,得到A 卡的概率是
37
,任意抽取2张卡,没有B 卡的概率是14,求证:任意抽取2张卡,至少得到1张A 卡的概率不大于57,并指出余下的卡中那种卡最少.
21(本小题满分13分)
在一张画有直角坐标系的纸片中,作以点(1,0)M -为圆心,半径为的圆,折叠纸片使圆周上的某一个点P 恰好与定点(1,0)N 重合,连接PM 与折痕交于点Q ,反复这样折叠得到动点Q 的集合.
(Ⅰ)求动点Q 的轨迹E 的方程;
(Ⅱ)过直线2x =上的点T 向圆22:2O x y +=作两条切线,切点分别为,A B ,若直线AB 与(Ⅰ)中的轨迹E 相交于,C D 两点,求
||||
AB CD 的取值范围.。