刀具及切削参数对加工表面粗糙度的影响
影响机械加工表面粗糙度的几个因素及措施

职教类影响机械加工表面粗糙度的几个因素及措施摘要:表面粗糙度是零件表面所具有的微小峰谷的不平程度,它是评价零件的一项重要指标。
一般说来,它的波距和波高都比较小,是一种微观的几何形状误差。
对机械加工表面,表面粗糙度是由切削时的刀痕,刀具和加工表面之间的摩擦,切削时的塑性变形,以及工艺系统中的高频振动等原因所造成的。
表面粗糙度是检验零件质量的主要依据,它的选择直接关系到生产成本、产品的质量、使用寿命。
关键词:机械加工表面粗糙度提高措施随着工业技术的飞速发展,机器的使用要求越来越高,一些重要零件在高压力、高速、高温等高要求条件下工作,表面层的任何缺陷,不仅直接影响零件的工作性能,而且还可能引起应力集中、应力腐蚀等现象,将进一步加速零件的失效,这一切都与加工表面质量有很大关系。
因而表面质量问题越来越受到各方面的重视。
一、机械加工表面粗糙度对零件使用性能的影响表面粗糙度对零件的配合精度,疲劳强度、抗腐蚀性,摩擦磨损等使用性能都有很大的影响。
1、表面质量对零件配合精度的影响(1)对间隙配合的影响由于零件表面的凹凸不平,两接触表面总有一些凸峰相接触。
表面粗糙度过大,则零件相对运动过程中,接触表面会很快磨损,从而使间隙增大,引起配合性质改变,影响配合的稳定性。
特别是在零件尺寸和公差小的情况下,此影响更为明显。
(2)对过盈配合的影响粗糙表面在装配压入过程中,会将相接触的峰顶挤平,减少实际有效过盈量,降低了配合的连接强度。
2、表面质量对疲劳强度的影响零件表面越粗糙,则表面上的凹痕就越深明,产生的应力集中现象就越严重。
当零件受到交变载荷的作用时,疲劳强度会降低,零件疲劳损坏的可能性增大。
3、表面质量对零件抗腐蚀性的影响零件表面越粗糙,则积聚在零件表面的腐蚀气体或液体也越多,且通过表面的微观凹谷向零件表层渗透,形成表面锈蚀。
4、表面质量对零件摩擦磨损的影响两接触表面作相对运动时,表面越粗糙,摩擦系数越大,摩擦阻力越大,因摩擦消耗的能量也越大,并且还影响零件相对运动的灵活性。
浅谈加工表面粗糙度和物理力学性能的影响因素研究

浅谈加工表面粗糙度和物理力学性能的影响因素研究浅谈加工表面粗糙度和物理力学性能的影响因素研究机械零件的破坏,一般总是从表面层开始的。
产品的性能,尤其是它的可靠性和耐久性,在很大程度上取决于零件表面层的质量。
表面面质量对零件耐磨性、疲劳强度、耐蚀性、配合质量都有严重的影响。
机械机械加工表面质量的内容主要包括:表面粗糙度、表面层的物理力学性能和表面波度等。
本文主要以影响加工表面粗糙度和加工表面物理力学性能变化的因素进行分析研究。
1 影响表面粗糙度的因素1.1 切削加工影响表面粗糙度的因素从几何因素方面分析,刀具相对于工件作进给运动时,在加工表面留下了切削层残留面积,其形状是刀具几何形状的复映。
残留面积的大小与进给量、刀尖圆弧半径及刀具的主偏角、副偏角有关。
对于宽刃刀具、定尺寸刀具和成形刀具等,其切削刃本身的表面粗糙度对加工表面粗糙度的影响也很大。
从物理因素方面分析,主要是切削过程中刀具刃口钝圆半径及后刀面对工件的挤压、摩擦作用使金属材料发生塑性变形,使表面粗糙度恶化。
当低速切削塑性材料(如低碳钢和不锈钢等)时,由刀具对金属的挤压产生了塑性变形,加之刀具迫使切屑与工件分离的撕裂作用,产生积屑瘤和鳞刺,使表面粗糙度值加大。
工件材料韧性愈好,金属的塑性变形愈大,加工表面就愈粗糙。
当加工脆性材料时,其切屑呈碎粒状,由于切屑的崩碎而在加工表面留下许多麻点,使表面粗糙。
精加工时,因切削深度小,刀刃容易打滑,也影响表面粗糙度。
综上所述,在切削加工中影响表面粗糙度的工艺因素主要有:1)切削用量切削速度v在一定的范围内容易产生积屑瘤和鳞刺;减少进给量f可降低残留面积高度。
因些合理选择切削用量是降低粗糙度的重要条件。
2)刀具材料和几何参数实践表明,在切削条件相同时,用硬质合金刀具加工的工作表面粗糙度比用高速钢刀具加工的低。
用金钢石车刀加工因不易形成积屑瘤,故可获得粗糙度很低的表面。
刀类圆弧半径rE、主偏角KC和副偏角kcC均影响残留面积的大小。
CNC机床加工中的切削参数对加工质量的影响

CNC机床加工中的切削参数对加工质量的影响CNC(数控)机床是一种利用计算机程序控制的机床,能够通过控制切削参数来进行高精度的加工。
在CNC机床加工中,切削参数的选择和设定对加工质量有着重要的影响。
本文将从几个重要的切削参数入手,分析它们对加工质量的具体影响。
切削速度是CNC机床中最基本的切削参数之一。
它指的是加工过程中刀具在工件上运动的速度。
切削速度的选择直接影响着加工表面的粗糙度和切削温度。
当切削速度过高时,刀具与工件之间的摩擦会增加,导致加工表面粗糙度增加。
同时,过高的切削速度会产生过多的热量,容易导致刀具磨损和工件变形。
相反,切削速度过低则会导致加工效率低下。
因此,在选择切削速度时,需要综合考虑加工要求和刀具材料的特性,寻找最佳的速度范围。
进给速度是指在切削速度确定的情况下,刀具在单位时间内切削的长度。
进给速度决定了加工的效率和加工表面的粗糙度。
过高的进给速度会导致切削力过大,加工表面粗糙度增加,甚至会引起刀具折断等问题。
而进给速度过低则会降低加工效率。
因此,在选择进给速度时,需要根据工件材料、切削工艺和刀具性能等因素进行合理搭配,以获得高效的切削效果。
切削深度是指刀具在一次下刀过程中切削的厚度。
它是影响切削力和切削温度的重要参数。
切削深度过大会增加切削力,容易导致刀具振动和加工表面的粗糙度增加。
切削深度过小则会增加进给次数,导致加工效率降低。
因此,在确定切削深度时,需要考虑刀具和工件的刚性,并结合加工要求和刀具磨损情况进行合理选择。
切削角度是指刀具切削部分与工件表面法线之间的夹角。
切削角度的选择直接影响切削力的大小和切屑的排出。
合适的切削角度可以减小切削力,降低切削过程中的振动和声音,同时利于切削液和切屑的顺利排出。
因此,在选择切削角度时,需要考虑工件材料、切削工艺和刀具结构等因素,以保证加工过程的稳定和加工质量的提高。
除了以上几个重要的切削参数外,切削液的选择也对加工质量有着重要影响。
影响加工表面粗糙度的工艺因素及其改善措施

3. 采用适当的冷却方法,如切削液,以降低切削温度和减少热量对刀具的影响。
4. 定期检查和更换刀具,以确保刀具处于良好状态,从而保证加工表面质量。
工件材料对表面粗糙度的影响
04
硬度过低的工件材料在加工过程中容易产生塑性变形,使得工件表面粗糙度增加。
刀具磨损对表面粗糙度的影响
03
总结词
随着刀具磨损的增加,切削力通常会增大。这主要是因为刀具磨损导致切削刃变钝,切削刃与工件之间的摩擦增大,切削力也随之增大。
详细描述
在切削过程中,刀具的切削刃会逐渐磨损,导致切削刃变钝。钝的切削刃与工件表面的摩擦增大,使得切削力增加。这不仅会影响切削过程的稳定性,还可能导致切削热增加,进一步加剧刀具磨损。
影响加工表面粗糙度的工艺因素及其改善措施
汇报人:
2024-01-04
切削用量对表面粗糙度的影响刀具几何参数对表面粗糙度的影响刀具磨损对表面粗糙度的影响工件材料对表面粗糙度的影响切削液对表面粗糙度的影响改善加工表面粗糙度的措施
目录
切削用量对表面粗糙度的影响
01
01
02
在切削塑性材料时,适当降低切削速度可以有效减小表面粗糙度值。在切削脆性材料时,切削速度对表面粗糙度的影响较小。
切削速度越高,切削力越大,切削温度越高,从而使得工件材料软化,容易产生塑性变形,导致表面粗糙度值增大。
进给量增大,切削厚度增加,切削力也相应增大,切削过程中工件材料的塑性变形增大,导致表面粗糙度值增大。
适当减小进给量,可以减小表面粗糙度值。但进给量过小会导致切削力过小,反而使得表面粗糙度值增大。因此,需要根据工件材料、刀具材料和加工要求等因素选择合适的进给量。
切削参数变化对加工表面质量的影响—

从图可以看出,残留应力在切削速度方向和进给方向呈现 出不同的变化规律。在切削速度方向随着切削速度增大, 残留应力由残留压应力逐渐变为残留拉应力;在进给方向, 改变切削速度时,残留应力一直是残留压应力。 改变切削速度时,相应地改变了已加工表面所承受的塑性 变形、切削温度的大小与分布情况,因而影响己加工表面 的残留应力。提高切削速度时,切削温度引起的热应力所 占比重增大,因而切削速度方向的残留压应力减小而残留 拉应力增大。
由残留压应力逐渐变为残留拉应力;在进给方向, 改变切削速度时,残留应力仍然是残留压应力。 2. 当进给量增大时,进给方向的残留压应力逐渐减 小。 3. 切削深度变化时,当切削深度为某一数值时,进 给方向的残留压应力有一极大值。
切削用量选择的基本原则:
1.根据工件加工余量和粗、精加工要求,选定背 吃刀量。 2.根据加工工艺系统允许的切削力,其中包括机 床进给系统、工件刚度及精加工时表面粗糙度要求, 确定进给量。 3.根据刀具耐用度,确定切削速度。
2.3切削参数变化对 加工表面质量的影响
表面质量
已加工表面质量:是指零件在加工后其表面
的状态。 包括: 1、零件表面层的微观几何结构,即表面形貌。 2、表层金属材料性质发生变化的情况。
表面质量包括:表面形貌和表面层材质变化
•表面粗糙度 •表面波度
•残余应力 •加工硬化 •表层金相组织变化
切削参数的影响
► 切削参数包括:
1、切削速度v。2、进给量ƒ。3、切削深度ap。ຫໍສະໝຸດ 1、切削速度对表面质量的影响
在不使用切削液的条件下,切削速度增大到一定值后,表面 粗糙度随着切削速度增大而降低。
在实际生产中,切削液的使用很好的改善了加工表面质量。 切削速度增大一定值时,其变化对表面粗糙度的影响不明显。 较大的切削速度下,都可以得到镜面。
金属切削中的切削参数对加工表面粗糙度的影响因素分析

金属切削中的切削参数对加工表面粗糙度的影响因素分析金属切削是一种常见的加工方法,其表面粗糙度直接影响着工件的质量和性能。
而切削参数是控制金属切削加工过程中的重要因素之一。
本文将分析不同切削参数对加工表面粗糙度的影响因素。
切削速度是切削过程中最直接影响加工表面粗糙度的参数之一。
一方面,较高的切削速度可以有效减小切削力,防止刀具磨损过快,从而减少加工表面的毛刺和热裂纹等缺陷。
另一方面,切削速度过高也会增加切削温度,容易导致材料软化和工件表面烧伤。
因此,在实际应用中需要根据具体材料和切削条件进行合理的选择。
切削深度是指每次切削过程中微小切削层的厚度。
切削深度的增加会增加金属切削过程中的切削力和切削温度。
当切削深度过大时,刀具容易磨损,加工表面粗糙度也会相应增加。
因此,在切削深度的选择上,需要综合考虑材料的性质、刀具的工作特点以及加工表面的粗糙度要求。
进给量是指刀具在单位时间内沿工件表面移动的距离。
较大的进给量会导致切削力的增大,从而增加加工表面的粗糙度。
因此,在控制加工表面粗糙度时,需要选择适当的进给量,以确保加工质量和生产效率的平衡。
刀具的选择对加工表面粗糙度也有重要影响。
刀具的几何形状、材料和涂层等因素会直接影响加工表面的质量和粗糙度。
例如,具有较小刀尖半径的刀具可以得到较好的加工表面质量,但刀具寿命会相应减少。
相反,较大刀尖半径的刀具可以提高刀具寿命,但加工表面的粗糙度会相应增加。
因此,在选择刀具时,需要根据具体的加工要求进行合理搭配。
除了以上切削参数外,材料的性质也会对加工表面粗糙度产生影响。
不同的材料对切削力、切削温度等参数的响应不同,因此加工表面的粗糙度也会有差异。
例如,硬材料通常需要较高的切削速度和切削深度,以获得更好的加工表面质量。
此外,切削液的使用也可以改善加工表面粗糙度。
切削液能够冷却切削区域,降低切削温度,减少切削力,从而有助于提高加工表面的质量。
同时,切削液还能起到润滑和清洁的作用,延长工具的使用寿命。
切削工艺参数对铣削表面粗糙度的影响及优化

切削工艺参数对铣削表面粗糙度的影响及优化概述:在金属加工中,铣削是一种常见的切削加工方法,用于加工各种复杂形状的零件。
铣削表面粗糙度是衡量加工质量的重要指标之一,对于提高零件的功能性和耐久性至关重要。
本文将探讨切削工艺参数对铣削表面粗糙度的影响,并提出优化方案。
1. 切削工艺参数对表面粗糙度的影响1.1 切削速度切削速度是指铣刀在单位时间内切削材料的线速度。
增加切削速度可以提高金属材料的切削效率,但过高的切削速度会导致刀具磨损加剧,形成较大的切削力,从而使铣削表面粗糙度增加。
1.2 进给速度进给速度是指铣刀在切削过程中,每刀具齿与工件接触一次时向前移动的距离。
过大或过小的进给速度都会影响表面粗糙度。
过大的进给速度会导致切削过程中碎屑堆积,增加表面的毛刺,导致表面粗糙度增加。
而过小的进给速度则会造成过度切削,形成较大的切削力,同样会使表面粗糙度增加。
1.3 切削深度切削深度是指切削刀具与工件接触时切削部分的最大厚度。
增加切削深度可以提高加工效率,但过大的切削深度会导致切削力增加,刀具磨损严重,从而增加表面粗糙度。
2. 优化切削工艺参数的方法2.1 切削速度的优化通过实验方法确定最适合的切削速度,一般根据材料的硬度、韧性和机械特性来选择。
较硬材料可采用较高的切削速度,较软材料则应选择较低的切削速度。
同时,及时更换磨损严重的刀具也是保持切削速度的关键。
2.2 进给速度的优化进给速度的优化主要目标是控制金属屑的去向和形态,以减少毛刺和表面质量降低。
实践证明,选择适当的进给速度可以达到较好的切削效果。
一般而言,较硬材料可选择较大的进给速度,较软材料则应选择较小的进给速度。
2.3 切削深度的优化切削深度的优化是保证表面质量和加工效率的重要因素。
根据材料硬度、切削轴向力等参数来确定最佳切削深度。
一般而言,较硬材料可选择较浅的切削深度,较软材料则可以选择较大的切削深度。
3. 其他影响表面粗糙度的因素除了切削工艺参数之外,还有一些其他因素也会影响铣削表面的粗糙度。
切削速度与表面粗糙度关系

切削速度与表面粗糙度关系引言:在机械加工过程中,切削速度是一个重要的参数,它直接影响到加工表面的质量和粗糙度。
切削速度的选择对于提高加工效率、降低成本以及改善产品质量具有重要意义。
本文将探讨切削速度与表面粗糙度之间的关系,并分析其影响因素。
一、切削速度对表面粗糙度的影响切削速度是指在单位时间内切削刀具相对于工件的线速度。
切削速度的变化会直接影响到切削刀具与工件之间的摩擦情况,从而影响到加工表面的粗糙度。
一般来说,切削速度越高,加工表面的粗糙度越低;反之,切削速度越低,加工表面的粗糙度越高。
二、切削速度与切削力的关系切削速度的增加会使切削力增加,而切削力的大小直接影响到加工表面的质量。
当切削速度过高时,切削力增大,易导致切削刀具与工件之间的磨损加剧,从而影响到加工表面的粗糙度。
因此,在选择切削速度时,需要综合考虑切削力的大小,以确保加工表面的质量。
三、切削速度与切削温度的关系切削速度的增加会使切削温度升高,而切削温度的高低也会对加工表面的粗糙度产生影响。
当切削温度过高时,易导致工件表面产生热变形和热裂纹,从而影响到加工表面的质量。
因此,在选择切削速度时,需要兼顾切削温度的控制,以确保加工表面的粗糙度达到要求。
四、切削速度与切削液的关系切削液在机械加工中起着冷却、润滑和清洁的作用,对于控制切削温度、减小切削力以及改善加工表面的质量具有重要意义。
切削速度的增加会使切削液的使用效果降低,从而影响到加工表面的粗糙度。
因此,在选择切削速度时,需要根据具体情况合理选择切削液的类型和使用方式,以最大程度地提高加工表面的质量。
五、其他影响切削速度与表面粗糙度的因素除了切削速度外,还有一些其他因素也会对加工表面的粗糙度产生影响,如切削刀具的材料和几何形状、切削深度、进给量等。
这些因素与切削速度之间存在着复杂的相互关系,需要综合考虑,进行合理的调整,以达到最佳的加工效果。
结论:切削速度是影响加工表面粗糙度的重要因素之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
刀具及切削用量对加工表面粗糙度的影响
华菱超硬在提供高速切削和难加工材料切削方面的刀具解决方案时,对于“以车代磨”方案设计积累的关于提高加工表面光洁度经验,现从刀具材质、刀具的几何参数、切削用量(切削参数)等因素分析加工表面粗糙度,分享如下,抛砖引玉。
一,粗糙度的定义:
经机械加工后的零件表面,不可能是绝对平整和光滑的,实际上存在着一定程度宏观和微观几何形状误差,一般用粗糙度值来表示,所以表面粗糙度是反映微观几何形状误差的一个指标,表面粗糙度值即微小的峰谷高低程度及其间距状况。
以前,加工表面粗糙度被称为表面光洁度,其表示方式和数值换算如下表:
表面粗糙度作为表面质量的一项重要衡量指标,不仅直接决定了机械产品的外观精美程度,而且对机器的装配质量以及零件的使用寿命都有着很大的影响。
二、刀具对表面粗糙度的影响
(1)刀具几何参数
刀具几何参数中对表面粗糙度影响较大的是主偏角Kr、副偏角Kr'和刀尖圆弧半径re。
当主、副偏角小时,已加工表面残留面积的高度亦小,因而可减小表面粗糙度;副偏角越小,表面粗糙度越低,但减小副偏角容易引起震动,故减小副偏角,要根据机床的刚性而定。
刀尖圆弧半径re对表面粗糙度的影响:在刚度允许的情况下re增大时,表面粗糙度将降低,增大re是降低表面粗糙度的好方法。
因此减少主偏角Kr、副偏角Kr’以及增大刀尖圆弧半径r,均可减小
残留面积的高度,从而降低表面租糙度。
以解决难加工材料切削和高速切削问题知名的华菱超硬刀具,“对于刀尖圆弧角的选择建议依据加工工件的刚性和粗糙度要求选择,如果刚性好,尽量选择大的圆弧角,不但可提高加工效率,亦可提高加工表面光洁度;但镗孔时或者切削细长轴或薄壁零件时因为系统刚性差,常选用较小的刀尖圆弧半径”,其刀具工程师做刀具选型方案时如是说。
具体的刀尖圆弧角与粗糙度值参见后文(走刀量、刀尖圆弧角、加工表面粗糙度三者的关系)。
(2)刀具材料
当刀具材料与被加工材料金属分子亲和力大时,被加工材料容易与刀具粘结而生成积屑瘤和鳞刺,因此凡是粘结严重的,摩擦严重的,表面粗糙度就大,反之就小。
加工同样的工件,不同的刀具材料获得不同的表面粗糙度,例如加工铸铁件,硬质合金刀片很难达到Ra1.6的粗糙度;而BN-S30牌号或BN-K20牌号的立方氮化硼由于刀具材料摩擦系数低,而且高温热稳定性和耐磨性优异,所以加工铸铁粗糙度完全可以达到Ra0.8-Ra1.6,如下图:
(3)刀具磨损
刀具的磨损分为三个阶段:初期磨损、正常磨损和剧烈磨损。
由于刀具表面会存在一些毛刺和不规则的微凸体、微裂痕等,所以在切削的初期阶段,磨损比较剧烈,造成了表面粗糙度变化幅度大;之后进入正常磨损,切削过程比较平稳,因此表面粗糙度变化幅度减小;随着磨损量的增大,刀具进入剧烈磨损阶段,刀具后刀面磨损率急剧上升,系统又趋向于不稳定,振动随之增大,表面粗糙度的变化幅度也急剧上升。
三、切削用量对表面粗糙度的影响
(1)切削速度v的影响
加工塑性材料时,切削速度避开低速和中速区域,就减少了鳞刺和积屑瘤
的产生,表面粗糙度就会降低,为什么淬火后的钢件可以用BN-H10或BN-H20牌号超硬刀具实现以车代磨,而且线速度越高,精车后的粗擦度越低的原因。
而加工脆性材料时,一般不会产生积屑瘤和鳞刺,所以对粗糙度的影响不大。
(2)进给量f的影响
减小进给量可以降低残留面积的高度,因而可以减小表面粗糙度。
但当进给量减小到一定值时再减小,表面粗糙度不会明显下降,当进给量更小时,粗糙度会反而上升。
(3)切削深度的影响
一般来说,切削深度对表面粗糙度的影响不大,在实际工作中可以忽略不计,也可以选用小的切削厚度。
减小工件振动,降低表面粗糙度。
四、走刀量、刀尖圆弧角、粗糙度三者的关系
粗加工时按刀尖圆弧半径选择刀具最大走刀量,或通过经验公式计算刀具走刀量;精加工时按工件表面粗糙度要求计算精加工走刀量。
1)粗加工选用最大走刀量参考表
刀尖圆弧半径mm 0.4 0.8 1.2 1.6 2.4
最大走刀量mm/r 0.25-0.35 0.4-0.7 0.5-1.0 0.7-1.3 1.0-1.8
粗加工走刀量经验计算公式:
f粗=0.5 R
式中:R-刀尖圆弧半径mm
f粗-粗加工走刀量mm
2)精加工
根据表面粗糙度理论公式推算精加工走刀量f公式:
式中:Rt-轮廓深度µm
f-进给量mm/r
rε-刀尖圆弧半径mm
五、其他因素对表面粗糙度的影响
(1)工件材料性质的影响
一般加工塑性材料时,由于刀具对加工表面的挤压和摩擦,会产生塑性变形,最后导致表面粗糙度值较大;而脆性材料加工时塑性变形小,容易达到表面粗糙度的要求。
为了减小加工表面粗糙度值,常在切削加工前对材料进行调质或正火处理,以获得均匀细密的晶粒组织和较高的硬度。
(2)切削液的影响
选用合理的切削液,可以减少切屑、刀具、工件接触面间的摩擦,降低切削区温度,使切削区金属表面的塑性变形程度下降,抑制积屑瘤的产生,因此可大大减小表面粗糙度值。
六、关于以车代磨的粗糙度:
作为“以车代磨”的典型应用,连续切削用精加工刀具牌号BN-H10已经很普及的应用在齿轮端面热后硬车的生产实践中,硬车削与磨削加工相比,确实大大提高了工作效率。
用BN-H10牌号精车淬硬钢后的工件表面粗糙度为Ra0.3~0.6μm,尺寸精度可达0.013mm,若能采用刚性好的标准数控车床加工,刀具的刚性好和刃口锋利,则精车后的工件表面粗糙度可达Ra0.3μm,尺寸精度可达0.01mm,可达到用数控磨床加工的水平。
且以车代磨时,BN-H10牌号刀具的金属切除率通常是磨削加工的3~4 倍,所消耗的电能及人工,物料耗材却只有磨削的1/5。
延伸阅读:用立方氮化硼刀具加工铸铁和淬火钢的表面粗糙度。