高考物理二极管是什么(二极管的类型)

合集下载

高考物理科普半导体与电子学基础

高考物理科普半导体与电子学基础

高考物理科普半导体与电子学基础高考物理科普:半导体与电子学基础一、引言物理学作为自然科学的一门学科,涵盖了众多的知识和概念。

在高考物理科目中,半导体与电子学是一个重要的基础知识点。

本文将介绍半导体与电子学的基本概念、特性以及应用,帮助大家更好地理解和掌握这一部分内容。

二、半导体的基本概念1. 半导体的定义半导体是一种介于导体和绝缘体之间的材料。

与导体不同的是,半导体在常温下的导电能力很弱,而与绝缘体不同的是,半导体在一定条件下具有较强的导电性能。

2. 电子带与材料分类半导体的导电性质与其能带结构有关。

电子带是电子运动状态的分布区域,包括导带和价带。

其中,导带中的电子能量较高,价带中的电子能量较低。

半导体材料根据电子带结构被分为两类:本征半导体和杂质半导体。

3. 本征半导体的导电性本征半导体是指纯净的半导体材料,如硅(Si)和锗(Ge)。

在常温下,本征半导体的导带中几乎没有电子,因此导电能力较弱。

但当温度升高时,导带中的电子会增加,从而提高导电性能。

4. 杂质半导体的导电性杂质半导体是指在本征半导体中加入少量外来原子,如磷(P)和硼(B)。

这些外来原子称为施主和受主杂质。

施主杂质会向导带输送电子,受主杂质会从价带吸收电子,从而增强半导体材料的导电性能。

三、半导体器件与电子学1. 半导体二极管半导体二极管是一种电子器件,由P型半导体和N型半导体组成。

其中P型半导体的施主杂质多于受主杂质,N型半导体的受主杂质多于施主杂质。

二极管具有只允许单向电流通过的特性,可用于整流、检波、信号调理等电路中。

2. 晶体管晶体管是一种由半导体材料制成的三极管。

它由一个P型半导体、一个N型半导体和一个中间的控制区域组成。

晶体管可以通过控制区域的电流来控制从集电极到发射极的电流,具有放大和开关功能。

晶体管被广泛应用于电子设备和通信技术中。

3. 集成电路(IC)集成电路是将大量晶体管、二极管和其他元件集成到一个芯片上的电子器件。

二极管的分类及参数

二极管的分类及参数

二极管的分类及参数二极管是最基本的半导体器件之一,广泛应用于电子设备中。

它具有单向导电性质,即只允许电流在一个方向上流动。

二极管可以通过对其工作电压、额定电流、频率等参数的不同分类和定义。

下面将详细介绍二极管的分类及参数。

1.按材料分类:(1)硅二极管:由硅(Si)材料制成,常用于中高功率电子设备中。

(2)锗二极管:由锗(Ge)材料制成,常用于低功率电子设备中。

(3)碳化硅二极管:由碳化硅(SiC)材料制成,具有较高的工作温度和电压能力,适用于高温、高频和高功率应用。

2.按结构分类:(1)点接触二极管:也称为瞬变二极管,使用金属-半导体结构制作。

(2)悬浮底座二极管:也称为漂移二极管,使用浮动喷射结构制作。

(3)整流器二极管:也称为整流二极管,使用P-N结构制作。

3.按工作模式分类:(1)正向偏置二极管:当正向电压施加到二极管上时,电流可以流过二极管。

(2)反向偏置二极管:当反向电压施加到二极管上时,电流几乎不能流过二极管。

4.参数定义:(1) 最大工作电压(Umax):指二极管能够承受的最大正向或反向电压值。

(2) 最大额定电流(Inom):指二极管能够承受的最大正向电流值。

(3) 最大功率(Pmax):指二极管能够承受的最大功率值,计算公式为Pmax = Umax * Inom。

(4) 额定频率(fnom):指二极管能够承受的最大工作频率。

频率越高,二极管的响应速度越快。

(5)正向导通压降(Vd):指正向电流流过二极管时的电压降。

不同类型的二极管具有不同的正向导通压降。

二极管的分类和参数可以根据具体应用的需求进行选择。

一般而言,硅二极管具有较高的工作电压能力和较低的正向导通压降,适用于中高功率电子设备。

锗二极管具有较低的工作电压能力和较高的正向导通压降,适用于低功率电子设备。

碳化硅二极管具有较高的工作温度和电压能力,适用于高温、高频和高功率应用。

总结:二极管作为最基本的半导体器件之一,在电子设备中有着广泛的应用。

二极管的类型及工作原理

二极管的类型及工作原理

二极管的类型及工作原理二极管(Diode)是一种基本的半导体器件,它通常由P型半导体和N型半导体组成。

二极管有许多类型,包括普通二极管、肖特基二极管、肖特基隧道二极管等。

二极管在电子学领域中有着广泛的应用,包括电源供应、信号整形、无线通信、光电探测等。

本文将从二极管的基本工作原理和各种类型进行详细介绍。

一、二极管的基本工作原理1. PN结的形成二极管是由P型半导体和N型半导体通过扩散或外延生长形成PN结,PN结即正负电荷区域。

当P型半导体和N型半导体相连接时,在PN结处形成空间电荷区,这个区域即为耗尽层。

耗尽层内部形成电场,使得P区电子向N区移动,N区空穴向P区移动,形成内建电场。

2. 正向偏置当二极管正向通电时,P区的P型载流子(空穴)和N区的N型载流子(自由电子)受到外加电压的驱动,穿越耗尽层,导致电流流动。

在正向偏置下,二极管的耗尽层变窄,电阻减小,使得电流可以通过二极管,此时二极管处于导通状态。

3. 反向偏置当二极管反向通电时,P区的正电荷和N区的负电荷受到外加电压的驱动,使得耗尽层变宽,电阻增大,导致极小的反向漏电流。

在反向偏置的情况下,二极管处于截止状态,不导通。

二、普通二极管1. 硅二极管硅二极管是最常见的一种二极管,广泛应用于各种电子电路中。

硅二极管具有正向导通压降约0.7V~0.8V,工作温度范围广,稳定性好等特点。

2. 锗二极管锗二极管是二极管的一种,其正向导通压降约为0.3V~0.4V,工作频率范围相对较宽,但稳定性比硅二极管差。

三、损耗二极管1. 肖特基二极管肖特基二极管是一种具有快速开关特性和低漏电流的二极管。

它是由金属和半导体直接接触形成,具有低正向导通压降和快速恢复时间。

肖特基二极管在高频整流电路和开关电源中有着广泛的应用。

2. 肖特基隧道二极管肖特基隧道二极管是一种具有负差阻特性的器件,其反向漏电流与电压成指数关系。

它具有极低的反向漏电流,适用于超低功耗和高灵敏度的电路应用。

二极管种类及应用

二极管种类及应用

二极管之邯郸勺丸创作一、二极管的种类二极管有多种类型:按资料分,有锗二极管、硅二极管、砷化镓二极管等;按制作工艺可分为面接触二极管和点接触二极管;按用途分歧又可分为整流二极管、检波二极管、稳压二极管、变容二极管、光电二极管、发光二极管、开关二极管、快速恢复二极管等;接构类型来分,又可分为半导体结型二极管,金属半导体接触二极管等;依照封装形式则可分为惯例封装二极管、特殊封装二极管等。

下面以用途为例,介绍分歧种类二极管的特性。

1.整流二极管整流二极管的作用是将交流电源整流成脉动直流电,它是利用二极管的单向导电特性工作的。

因为整流二极管正向工作电流较大,工艺上多采取面接触结构。

南于这种结构的二极管结电容较大,因此整流二极管工作频率一般小于3kHz。

整流二极管主要有全密封金属结构封装和塑料封装两种封装形式。

通常情况下额定正向T作电流LF在l A以上的整流二极管采取金属壳封装,以利于散热;额定正向工作电流在lA以下的采取全塑料封装。

另外,由于T艺技术的不竭提高,也有很多较大功率的整流二极管采取塑料封装,在使用中应予以区别。

由于整流电路通常为桥式整流电路(如图1所示),故一些生产厂家将4个整流二极管封装在一起,这种冗件通常称为整流桥或者整流全桥(简称全桥)。

罕见整流二极管的外形如图2所示。

选用整流二极管时,主要应考虑其最大整流电流、最大反向丁作电流、截止频率及反向恢复时间等参数。

普通串联稳压电源电路中使用的整流二极管,对截止频率的反向恢复时间要求不高,只要根据电路的要求选择最大整流电流和最大反向工作电流符合要求的整流二极管(例如l N系列、2CZ系列、RLR系列等)即可。

开关稳压电源的整流电路及脉冲整流电路中使用的整流二极管,应选用工作频率较高、反向恢复时间较短的整流二极管或快恢复二极管。

2.检波二极管检波二极管是把叠加在高频载波中的低频信号检出来的器件,它具有较高的检波效率和良好的频率特性。

检波二极管要求正向压降小,检波效率高,结电容小,频率特性好,其外形一般采取EA玻璃封装结构。

二极管的种类

二极管的种类

二极管的种类二极管是电子元件中最基本和最常见的一种。

它是一种基于半导体材料制成的控制电流流动方向的器件。

二极管具有两个电极,分别是阳极(Anode,A)和阴极(Cathode,K)。

通过对二极管施加正向电压(正向偏置),就可以促使电流经过二极管;而当施加反向电压时(反向偏置),二极管则会阻止电流的流动。

根据不同的应用场景和电学性能,二极管可以分为多种不同的类型。

下面就让我们来具体了解一下这些二极管的分类和特点。

1. 硅二极管:硅二极管是最常见且使用最广泛的二极管类型之一。

它以硅材料制造,具有较高的工作温度和较低的漏电流。

硅二极管的正向电压降较大,约为0.6-0.7伏特。

在低频和高频电路中,硅二极管经常用作检测、整流和开关器件。

2. 锗二极管:锗二极管是最早被发明和使用的二极管类型之一。

它以锗材料制造,与硅二极管相比,锗二极管具有较低的工作温度和较高的漏电流。

锗二极管的正向电压降约为0.2-0.3伏特。

由于其特殊的电学性能,锗二极管广泛应用于放大器、检波器和高速开关等领域。

3. 快恢复二极管:快恢复二极管(Fast Recovery Diode)具有较高的响应速度和较短的恢复时间。

它们被设计用于需要频繁开关的电路,以减少开关过程中的能量损失。

快恢复二极管通常采用多晶硅材料合金制造,以实现更高的频率响应和更低的开关损耗。

4. 肖特基二极管:肖特基二极管(Schottky Diode)是一种由金属和半导体材料组成的二极管。

它具有较低的正向电压降和较快的开关速度,适用于高频应用。

肖特基二极管在整流器、混频器和功率放大器等电路中发挥重要作用。

5. 整流二极管:整流二极管主要用于将交流信号转换为直流信号。

它们被广泛应用于电源和电子设备中,用于将电源交流电转换为供电设备所需的直流电。

整流二极管具有较高的正向电压降和较大的导通电流承载能力。

6. 可控整流二极管:可控整流二极管,也称为双向可控整流二极管(Thyristor),是一种特殊的二极管,它具有双向导电特性。

二极管的分类及参数

二极管的分类及参数

二极管的分类及参数二极管是电子器件中最简单的一种,广泛应用于电子电路中。

它具有单向导通性,即只有在正向电压作用下才会导电,而在反向电压作用下则会截止电流。

根据二极管的结构和功能,可以将其分为普通二极管、恒压二极管、整流二极管和特殊二极管等多个类别。

下面分别介绍这些二极管的分类及参数。

1.普通二极管:普通二极管是最基础、最常见的一类二极管。

它主要由一个PN结构组成,一般用硅(Si)或砷化镓(GaAs)等半导体材料制作而成。

普通二极管具有正向压降特性,即在正向电压作用下,从P区到N区的电子会流动,形成电流;而在反向电压作用下,由于P区的导电性差,电流无法流动,二极管截止。

普通二极管的主要参数有以下几个:-数字型号:例如1N4148、1N4007等;-最大正向电流:最大能够通过的正向电流;-最大反向电压:最大能够承受的反向电压;-正向压降:正向导通时的电压降;-反向漏电流:反向电压作用下的漏电流。

2.恒压二极管:恒压二极管,也称为稳压二极管或Zener二极管,是一种特殊的二极管。

它基本上与普通二极管相同,但能够在逆向击穿时产生一个稳定的电压(即Zener电压),并以此为参考进行稳压。

恒压二极管广泛应用于电源稳压电路、测量电路和放大器的偏置电路等。

恒压二极管的主要参数有以下几个:-数字型号:例如BZX55C5V1、BZV55-C24等;- Zener电压:逆向击穿时稳定的电压值;- 最大反向电流:在Zener电压下能够通过的最大反向电流;-最大功耗:能够承受的最大功耗,一般由封装类型决定。

3.整流二极管:整流二极管,也称为信号二极管或电势二极管,是一种特殊的二极管,用于将交流信号转换为直流信号。

整流二极管通常用于电源电路、继电器、调制解调器等电子器件中。

整流二极管的主要参数有以下几个:-数字型号:例如1N4148、1N4007等;-最大正向电流:最大能够通过的正向电流;-最大反向电压:最大能够承受的反向电压;-正向压降:正向导通时的电压降。

高中物理二极管基础知识

高中物理二极管基础知识

高中物理二极管基础知识
二极管是有源半导体器件,是由三层半导体结构组成的,它是电路中的重要部件,在半导
体电路设计中发挥着重要作用。

首先,二极管由N型半导体和P型半导体两层半导体物质组成,中间嵌入绝缘物质,形
成由N型半导体和P型半导体组成的多层结构。

其次,二极管有两种类型,分别是P-N结晶和P-N增强型二极管,P-N结晶型二极管是最简单的。

其工作效果为:当正向电压小于反向电压时二极管为关闭状态,反之大于时开启。

由此可见,二极管的工作原理很简单,它的作用是对电路输入电压的开启和关闭。

此外,二极管还具有反向阻抗性能。

当二极管处于开启状态时,反向电阻很大,这样即使
反向电流流入,也不会把正向电源电压拉低,因此二极管具有很好的反向阻抗性能。

再者,由于二极管的集成有限,其功能和能量损耗也很小,因此是用于移动电源供电非常
有用的装置。

总而言之,通过介绍可以认识到二极管几乎可以应用于所有的半导体电路中,其工作原理简单,反向阻抗性能好,功能及能量损耗也较小,应用面很广,可以很好地满足工程师们在日常工作中的需要。

物理高考光电效应解释

物理高考光电效应解释

物理高考光电效应解释光电效应是一种基本的物理现象,广泛应用于光电子器件和光电子技术领域。

在高考物理中,对于光电效应的解释是必要的内容之一。

本文将对光电效应的原理和应用进行详细阐述。

一、光电效应的原理光电效应是指当光照射到金属表面时,使金属表面的电子受到能量的激发,从而跃迁到金属内,形成光电流的现象。

光电效应是量子力学的实验证明,它的基本原理可以概括为以下几点:1. 光的粒子性:根据量子理论,光具有粒子性和波动性的特性。

根据爱因斯坦的光量子假说,光以能量子的形式传播,在与物质相互作用时,光的能量被传递给物质的电子。

2. 光子能量:光的能量由光子携带,光子的能量与光的频率相关。

根据普朗克的能量量子化假说,光的能量E与光的频率ν的关系为E = hν,其中h为普朗克常量。

3. 光电子发射:金属表面的自由电子在光照射下吸收足够能量后,可以克服束缚力逸出金属表面,形成光电子。

光电子具有动能和电荷,可以在外电路中形成电流。

二、光电效应的公式光电效应可以用公式来描述。

根据实验观测到的光电效应现象,可以得到以下两个重要的公式:1. 光电效应方程:光电效应的动能定律可以用如下方程表达:E = hf - φ其中E为光电子的最大动能,h为普朗克常量,f为光的频率,φ为金属的逸出功。

该方程量化了光电效应中光子能量与光电子动能之间的关系。

2. 阈频公式:根据实验观察到的光电效应现象,发现当光的频率小于一定频率时,光电效应不会发生。

这个频率被称为阈频。

阈频可以用如下公式计算:f0 = φ / h其中f0为阈频,φ为金属的逸出功,h为普朗克常量。

阈频是金属材料的特性参数,不同金属具有不同的阈频。

三、光电效应的应用光电效应作为一种重要的物理现象,广泛应用于光电子器件和光电子技术领域。

以下是一些光电效应的应用:1. 光电池:利用光电效应原理,将光能转化为电能的器件被称为光电池。

光电池的工作原理是光照射在半导体材料上,产生电子-空穴对,并通过外电路形成电流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二极管的类型二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。

根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管、隔离二极管、肖特基二极管、发光二极管等。

按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。

点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。

由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。

面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。

平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。

二极管的导电特性二极管最重要的特性就是单方向导电性。

在电路中,电流只能从二极管的正极流入,负极流出。

下面通过简单的实验说明二极管的正向特性和反向特性。

1. 正向特性。

在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。

必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。

只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。

导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。

2. 反向特性。

在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。

二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。

当二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。

二极管的主要参数用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。

不同类型的二极管有不同的特性参数。

对初学者而言,必须了解以下几个主要参数:1、额定正向工作电流是指二极管长期连续工作时允许通过的最大正向电流值。

因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为140左右,锗管为90左右)时,就会使管芯过热而损坏。

所以,二极管使用中不要超过二极管额定正向工作电流值。

例如,常用的IN4001-4007型锗二极管的额定正向工作电流为1A。

2、最高反向工作电压加在二极管两端的反向电压高到一定值时,会将管子击穿,失去单向导电能力。

为了保证使用安全,规定了最高反向工作电压值。

例如,IN4001二极管反向耐压为50V,IN4007反向耐压为1000V。

3、反向电流反向电流是指二极管在规定的温度和最高反向电压作用下,流过二极管的反向电流。

反向电流越小,管子的单方向导电性能越好。

值得注意的是反向电流与温度有着密切的关系,大约温度每升高10,反向电流增大一倍。

例如2AP1型锗二极管,在25时反向电流若为250uA,温度升高到35,反向电流将上升到500uA,依此类推,在75时,它的反向电流已达8mA,不仅失去了单方向导电特性,还会使管子过热而损坏。

又如,2CP10型硅二极管,25时反向电流仅为5uA,温度升高到75时,反向电流也不过160uA。

故硅二极管比锗二极管在高温下具有较好的稳定性。

半导体二极管参数符号及其意义CT---势垒电容Cj---结(极间)电容,表示在二极管两端加规定偏压下,锗检波二极管的总电容Cjv---偏压结电容Co---零偏压电容Cjo---零偏压结电容Cjo/Cjn---结电容变化Cs---管壳电容或封装电容Ct---总电容CTV---电压温度系数。

在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比CTC---电容温度系数Cvn---标称电容IF---正向直流电流(正向测试电流)。

锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管、硅堆在规定的使用条件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流IF(AV)---正向平均电流IFM(IM)---正向峰值电流(正向最大电流)。

在额定功率下,允许通过二极管的最大正向脉冲电流。

发光二极管极限电流。

IH---恒定电流、维持电流。

Ii--- 发光二极管起辉电流IFRM---正向重复峰值电流IFSM---正向不重复峰值电流(浪涌电流)Io---整流电流。

在特定线路中规定频率和规定电压条件下所通过的工作电流IF(ov)---正向过载电流IL---光电流或稳流二极管极限电流ID---暗电流IB2---单结晶体管中的基极调制电流IEM---发射极峰值电流IEB10---双基极单结晶体管中发射极与第一基极间反向电流IEB20---双基极单结晶体管中发射极向电流ICM---最大输出平均电流IFMP---正向脉冲电流IP---峰点电流IV---谷点电流IGT---晶闸管控制极触发电流IGD---晶闸管控制极不触发电流IGFM---控制极正向峰值电流IR(AV)---反向平均电流IR(In)---反向直流电流(反向漏电流)。

在测反向特性时,给定的反向电流;硅堆在正弦半波电阻性负载电路中,加反向电压规定值时,所通过的电流;硅开关二极管两端加反向工作电压VR时所通过的电流;稳压二极管在反向电压下,产生的漏电流;整流管在正弦半波最高反向工作电压下的漏电流。

IRM---反向峰值电流IRR---晶闸管反向重复平均电流IDR---晶闸管断态平均重复电流IRRM---反向重复峰值电流IRSM---反向不重复峰值电流(反向浪涌电流)Irp---反向恢复电流Iz---稳定电压电流(反向测试电流)。

测试反向电参数时,给定的反向电流Izk---稳压管膝点电流IOM---最大正向(整流)电流。

在规定条件下,能承受的正向最大瞬时电流;在电阻性负荷的正弦半波整流电路中允许连续通过锗检波二极管的最大工作电流IZSM---稳压二极管浪涌电流IZM---最大稳压电流。

在最大耗散功率下稳压二极管允许通过的电流iF---正向总瞬时电流iR---反向总瞬时电流ir---反向恢复电流Iop---工作电流Is---稳流二极管稳定电流f---频率n---电容变化指数;电容比Q---优值(品质因素)δvz---稳压管电压漂移di/dt---通态电流临界上升率dv/dt---通态电压临界上升率PB---承受脉冲烧毁功率PFT(AV)---正向导通平均耗散功率PFTM---正向峰值耗散功率PFT---正向导通总瞬时耗散功率Pd---耗散功率PG---门极平均功率PGM---门极峰值功率PC---控制极平均功率或集电极耗散功率Pi---输入功率PK---最大开关功率PM---额定功率。

硅二极管结温不高于150度所能承受的最大功率PMP---最大漏过脉冲功率PMS---最大承受脉冲功率Po---输出功率PR---反向浪涌功率Ptot---总耗散功率Pomax---最大输出功率Psc---连续输出功率PSM---不重复浪涌功率PZM---最大耗散功率。

在给定使用条件下,稳压二极管允许承受的最大功率RF(r)---正向微分电阻。

在正向导通时,电流随电压指数的增加,呈现明显的非线性特性。

在某一正向电压下,电压增加微小量△V,正向电流相应增加△I,则△V/△I称微分电阻RBB---双基极晶体管的基极间电阻RE---射频电阻RL---负载电阻Rs(rs)----串联电阻Rth----热阻R(th)ja----结到环境的热阻Rz(ru)---动态电阻R(th)jc---结到壳的热阻r δ---衰减电阻r(th)---瞬态电阻Ta---环境温度Tc---壳温td---延迟时间tf---下降时间tfr---正向恢复时间tg---电路换向关断时间tgt---门极控制极开通时间Tj---结温Tjm---最高结温ton---开通时间toff---关断时间tr---上升时间trr---反向恢复时间ts---存储时间tstg---温度补偿二极管的贮成温度a---温度系数λp---发光峰值波长△λ---光谱半宽度η---单结晶体管分压比或效率VB---反向峰值击穿电压Vc---整流输入电压VB2B1---基极间电压VBE10---发射极与第一基极反向电压VEB---饱和压降VFM---最大正向压降(正向峰值电压)VF---正向压降(正向直流电压)△VF---正向压降差VDRM---断态重复峰值电压VGT---门极触发电压VGD---门极不触发电压VGFM---门极正向峰值电压VGRM---门极反向峰值电压VF(AV)---正向平均电压Vo---交流输入电压VOM---最大输出平均电压Vop---工作电压Vn---中心电压Vp---峰点电压VR---反向工作电压(反向直流电压)VRM---反向峰值电压(最高测试电压)V(BR)---击穿电压Vth---阀电压(门限电压)VRRM---反向重复峰值电压(反向浪涌电压)VRWM---反向工作峰值电压V v---谷点电压Vz---稳定电压△Vz---稳压范围电压增量Vs---通向电压(信号电压)或稳流管稳定电流电压av---电压温度系数Vk---膝点电压(稳流二极管)VL ---极限电压二极管的识别小功率二极管的N极(负极),在二极管外表大多采用一种色圈标出来,有些二极管也用二极管专用符号来表示P极(正极)或N极(负极),也有采用符号标志为“P”、“N”来确定二极管极性的。

发光二极管的正负极可从引脚长短来识别,长脚为正,短脚为负。

用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。

晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。

当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。

当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。

当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。

当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。

相关文档
最新文档