图形旋转与点的坐标问题——专题复习
中考数学复习《图形的旋转》章末专题整合学案

中考数学复习《图形的旋转》章末专题整合专题一、利用旋转探究数学问题例1.如图,在平面直角坐标系中,把矩形COAB 绕点C 顺时针旋转α角,得到矩形CFED ,设FC 与AB 交于点H ,且A (0,4),C (6,0).(1)当60α=︒时,判断△CBD 的形状;(2)当AH =HC 时,求直线FC 的解析式.解析:(1)在图形的旋转问题中,应考虑到对应点到旋转中心的距离相等.(2)利用勾股定理求H 点的坐标,进而求直线FC 的解析式.答案:(1)等边三角形.∵CB =CD ,∠BCD =60︒,∴△CBD是等边三角形.(2)设H (a ,4),∴BH =6a -,BC =4,CH =AH =a ,由勾股定理,得()22264a a =-+,解得133a =,即H (133,4),C (6,0).可得解析式:127255y x =-+. 智慧背囊:认真审题,明确题目要求,运用旋转的特征解决问题.活学活用:如图,在平面直角坐标系中,矩形OABC的顶点B 的坐标为(-2,3),点P 的坐标为(1,0).(1)将矩形OABC 绕点P 顺时针旋转90︒,请你画出旋转后的图形;(2)求直线AA '的解析式.单元综合测评一、选择题(每题3分,共24分)1.下列现象属于旋转的是( )(A )摩托车在急刹车是向前滑动.(B )拧开自来水龙头.(C )雪橇在雪地里滑动.(D )空中下落的物体.2.如图所示的图形旋转一定角度后能与自身重合,则旋转的角度可能是( )(A )30︒.(B )60︒.(C )90︒.(D )120︒.(第2题) (第3题) (第4题)3.如图,若将△ABC 绕点C 顺时针旋转90︒后得到△A 'B 'C ',则点A 的对应点A '的坐标为( )(A )(-3,-2).(B )(2,-2).(C )(3,0).(D )(2,1).4.万花筒的一个图案如图所示,图中所有小三角形均是全等三角形,其中把菱形ABCD 以A 为中心旋转多少度后可得图中另一阴影的菱形( )(A )顺时针旋转60︒.(B )顺时针旋转120︒.(C )逆时针旋转60︒.(D )逆时针旋转120︒.5.已知点P (1a -,1)和Q (2,1b -)关于原点对称,则()2008a b +的值为( ) (A )1.(B )0.(C )-1.(D )()20053-.6.下列图案中,可以由一个“基本图案”连续旋转45︒得到的是( )(A ) (B ) (C ) (D )7.下列命题中的真命题是( )(A)全等的两个图形是中心对称图形.(B)关于中心对称的两个图形全等.(C)中心对称图形都是轴对称图形.(D)轴对称图形都是中心对称图形.8.如图,在这四个图案中都是某种衣物的洗涤说明,请指出不是利用图形的平移、旋转和轴对称设计的是()(A)(B)(C)(D)二、填空题(每题3分,共18分)9.等边三角形至少旋转_____________度才能与自身重合.10.某公园的一段路面是用型号相同的特殊的五边形地砖铺成的.如图所示,是拼铺图案的一部分,其中每个五边形有三个内角相等,那么这三个内角等于_____________度.(第10题)(第11题)(第12题)11.把△ABC绕着点C顺时针旋转35︒,得到△A'B'C',A'B'交AC于点D,若∠A'DC =90︒,则∠A的度数是______________.12.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B、O两点对应点分别为C、D,则图中除△ABC个,还有等边三角形是_______________.13.如果一个四边形绕对角线的交点旋转90︒,所得的四边形与原来的四边形重合,那么这个四边形是________________.14.已知六边ABCDEF是中心对称图形,AB=1,BC=2,CD=3,那么EF=_________.三、解答题(每题5分,共20分)15.如图,四边形ABCD中,∠BAD=∠C=90︒,AB=AD,AE⊥BC于E,△BEA旋转后能与△DFA重合.(1)旋转中心是哪一点?旋转了多少度?(2)若AE=5cm,求四边形AECF的面积.16.有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.17.如图,线段AC,BD相交于点O,且AB∥CD,AB=CD,此图形是中心对称图形吗?为什么?18.如图,△ABC是等腰三角形,∠ACB=90︒,延长BC到D,连接AD,过点B作BE ⊥AD于E,交AC于F,在这个图形中,哪两个三角形可以看成是其中一个三角形沿着某一点旋转而得到的?试说明理由.四、解答题(每题6分,共24分)19.在如图所示的正方形网格中,把△ABC向右平移5个方格,再绕点B的对应点顺时针方向旋转90︒.(1)画出平移和旋转后的图形,并标明字母;(2)能否把两次变换合成一种变换,如果能,说出变换过程(可适当在图形中标记);如果不能,说明理由.20.如图,下列一些图标(文字部分忽略不计)都可以由“基本图形”能过变换得到,请你根据要求用图标的序号填空:(1)通过平移变换但不能通过旋转变换得到的图案是______________;(2)可以通过旋转变换但不能通过平移变换得到的图案是_______________;(3)既可以由平移变换,也可以由旋转变换得到的图案是_______________.(A)(B)(C)(D)(E)21.如图所示.(1)观察①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助图⑤中的网格,请你设计一个新图案,使该图案同时具有(1)中所写出的两上共同特征(注意:新图案与图①~④中的图案不能重合).①②③④⑤22.某产品的标志如图①所示,要在所给的图形②中,把A、B、C三个菱形通过一种变换或几种变换,使之变为与图①一样的图案.(1)请你在图②中作出变换后的图案(最终图案用实线表示);(2)你所用的变换方法是_______________________________________(选择一种正确的填在横线上,也可以用自己的话表述).①将菱形B向上平移;②将菱形B绕点O旋转120︒;③将菱形B绕点O旋转180︒.五、解答题(每题7分,共14分)23.有一组数排成方阵,如图所示,试计算这组数的和.小明想了想,方阵象正方形,正方形是轴对称图形,又是中心对称图形,能否利用轴对称和中心对称的思想来解决方阵的计算问题呢?小明试了试,竟得到了非常巧妙的方法,你能试试看吗?24.如图①,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图②),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图③的形状,但点B、C、F、D在同一条直线上,且点C与点F重合(在图③至图⑥中统一用F表示)(图①)(图②)(图③)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.(1)将图③中的△ABF沿BD向右平移到图④的位置,使点B与点F 重合,请你求出平移的距离;(2)将图③中的△ABF绕点F顺时针方向旋转30°到图⑤的位置,A1F交DE于点G,请你求出线段FG的长度;(3)将图③中的△ABF沿直线AF翻折到图⑥的位置,AB1交DE于点H,请证明:AH DH.(图④)(图⑤)(图⑥)。
中考数学总复习图形的旋转1及答案解析 (51)

图形的变化——图形的旋转1一.选择题(共9小题)1.如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣2,b)B.(a+2,b)C.(﹣a﹣2,﹣b)D.(a+2,﹣b)2.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70° B.65° C.60° D.55°3.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,则点B转过的路径长为()A.B.C.D.π4.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6 B.4 C.3 D.35.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A. B.C.D.6.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30° B.60° C.90° D.150°7.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.18如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为()A.πB.6πC.3πD.1.5π9.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30° B.40° C.50° D.60°二.填空题(共8小题)10.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=_________ .11如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E 的对应点为F,则∠EAF的度数是_________ .12.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为_________ .13.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于_________ .14.如图,在△A BC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为_________ .15如图,AB是⊙O的直径,分别以OA,OB为直径作半圆.若AB=4,则阴影部分的面积是_________ .16.如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为_________ .17如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A 顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=_________ .三.解答题(共7小题)18.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.19.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.20.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.21.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.(1)AE的长为_________ cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.22.正方形ABCD中,E是CD边上一点,(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是_________ ,∠AFB=∠_________(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.23.(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.24.如图,在等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)证明:△ABE≌△C1BF;(2)证明:EA1=FC;(3)试判断四边形ABC1D的形状,并说明理由.图形的变化——图形的旋转1参考答案与试题解析一.选择题(共9小题)1.如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣2,b)B.(a+2,b)C.(﹣a﹣2,﹣b)D.(a+2,﹣b)考点:坐标与图形变化-旋转.专题:压轴题.分析:先根据图形确定出对称中心,然后根据中点公式列式计算即可得解.解答:解:由图可知,△ABC与△A′B′C′关于点(﹣1,0)成中心对称,设点P′的坐标为(x,y),所以,=﹣1,=0,解得x=﹣a﹣2,y=﹣b,所以,P′(﹣a﹣2,﹣b).故选C.点评:本题考查了坐标与图形变化﹣旋转,准确识图,观察出两三角形成中心对称,对称中心是(﹣1,0)是解题的关键.2如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70°B.65°C.60°D.55°考点:旋转的性质.专题:几何图形问题.分析:根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,然后根据旋转的性质可得∠B=∠A′B′C.解答:解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,由旋转的性质得∠B=∠A′B′C=65°.故选:B.点评:本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.3.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,则点B转过的路径长为()A.B C.D.π考点:旋转的性质;弧长的计算.专题:几何图形问题.分析:利用锐角三角函数关系得出BC的长,进而利用旋转的性质得出∠BCB′=60°,再利用弧长公式求出即可.解答:解:∵在△ABC中,∠ACB=90°,∠ABC=30°,AB=2,∴cos30°=,∴BC=ABcos30°=2×=,∵将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,∴∠BCB′=60°,∴点B转过的路径长为:=π.故选:B.点评:此题主要考查了旋转的性质以及弧长公式应用,得出点B转过的路径形状是解题关键.4.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A. 6 B4C3D.3考点:旋转的性质.专题:几何图形问题.分析:利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.解答:解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选:A.点评:此题主要考查了旋转的性质以及直角三角形的性质等知识,得出AB′=B′C=2是解题关键.5.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B C D.考点:旋转的性质;正方形的性质.专题:几何图形问题.分析:连接AC1,AO,根据四边形AB1C1D1是正方形,得出∠C1AB1=∠AC1B1=45°,求出∠DAB1=45°,推出A、D、C1三点共线,在Rt△C1D1A中,由勾股定理求出AC1,进而求出DC1=OD,根据三角形的面积计算即可.解答:解:连接AC1,∵四边形AB1C1D1是正方形,∴∠C1AB1=×90°=45°=∠AC1B1,∵边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,∴∠B1AB=45°,∴∠DAB1=90°﹣45°=45°,∴AC1过D点,即A、D、C1三点共线,∵正方形ABCD的边长是1,∴四边形AB1C1D1的边长是1,在Rt△C1D1A中,由勾股定理得:AC1==,则DC1=﹣1,∵∠AC1B1=45°,∠C1DO=90°,∴∠C1OD=45°=∠DC1O,∴DC1=OD=﹣1,∴S△ADO=×OD•AD=,∴四边形AB1OD的面积是=2×=﹣1,故选:C.点评:本题考查了正方形性质,勾股定理等知识点,主要考查学生运用性质进行计算的能力,题目比较好,但有一定的难度.6.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30°B60°C.90°D.150°考点:旋转的性质.专题:几何图形问题.分析:根据直角三角形两锐角互余求出∠A=60°,根据旋转的性质可得AC=A′C,然后判断出△A′AC是等边三角形,根据等边三角形的性质求出∠ACA′=60°,然后根据旋转角的定义解答即可.解答:解:∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故选:B.点评:本题考查了旋转的性质,直角三角形两锐角互余,等边三角形的判定与性质,熟记各性质并准确识图是解题的关键.7.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.1考点:旋转的性质.分析:连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.解答:解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故选:C.点评:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.8.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为()A.πB6πC.3πD.1.5π考点:旋转的性质;弧长的计算.专题:计算题.分析:根据弧长公式列式计算即可得解.解答:解:的长==1.5π.故选:D.点评:本题考查了旋转的性质,弧长的计算,熟记弧长公式是解题的关键.9.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°考点:旋转的性质.专题:计算题.分析:先根据平行线的性质得∠DCA=∠CAB=65°,再根据旋转的性质得∠BAE=∠CAD,AC=AD,则根据等腰三角形的性质得∠ADC=∠DCA=65°,然后根据三角形内角和定理计算出∠CAD=180°﹣∠ADC﹣∠DCA=50°,于是有∠BAE=50°.解答:解:∵DC∥AB,∴∠DCA=∠CAB=65°,∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD,∴∠ADC=∠DCA=65°,∴∠CAD=180°﹣∠ADC﹣∠DCA=50°,∴∠BAE=50°.故选:C.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.二.填空题(共8小题)10.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=55°.考点:旋转的性质.分析:根据题意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即可得出∠A的度数.解答:解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,∠A′DC=90°,∴∠ACA′=35°,则∠A′=90°﹣35°=55°,则∠A=∠A′=55°.故答案为:55°.点评:此题主要考查了旋转的性质以及三角形内角和定理等知识,得出∠A′的度数是解题关键.11.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是60°.考点:旋转的性质;等边三角形的性质.专题:计算题.分析:根据等边三角形的性质以及旋转的性质得出旋转角,进而得出∠EAF的度数.解答:解:∵将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,∴旋转角为60°,E,F是对应点,则∠EAF的度数为:60°.故答案为:60°.点评:此题主要考查了等边三角形的性质以及旋转的性质,得出旋转角的度数是解题关键.12如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为12﹣4.考点:旋转的性质;菱形的性质.分析:根据菱形的性质得出DO的长,进而求出S正方形DNMF,进而得出S△ADF即可得出答案.解答:解:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=,∴∠AOE=45°,ED=1,∴AE=EO=,DO=﹣1,∴S正方形DNMF=2(﹣1)×2(﹣1)×=8﹣4,S△ADF=×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣4=12﹣4.故答案为:12﹣4.点评:此题主要考查了菱形的性质以及旋转的性质,得出正确分割图形得出DO的长是解题关键.13.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1 .考点:旋转的性质;等腰直角三角形.专题:压轴题.分析:根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=AC′=1,进而求出阴影部分的面积.解答:解:∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.点评:此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.14.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为 6 .考点:旋转的性质;相似三角形的判定与性质.专题:几何图形问题.分析:利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.解答:解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴=,∴=,解得AD=8,∴BD=AD﹣AB=8﹣2=6.故答案为:6.点评:此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C是解题关键.15.如图,AB是⊙O的直径,分别以OA,OB为直径作半圆.若AB=4,则阴影部分的面积是2π.考点:旋转的性质.分析:首先计算出圆的面积,根据图示可得阴影部分面积为半圆的面积,进而可得答案.解答:解:∵AB=4,∴BO=2,∴圆的面积为:π×22=4π,∴阴影部分的面积是:×4π=2π,故答案为:2π.点评:此题主要考查了旋转的性质,关键是掌握圆的面积公式.16.如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为2﹣.考点:旋转的性质.专题:几何图形问题.分析:利用正方形和旋转的性质得出A′D=A′E,进而利用勾股定理得出BD的长,进而利用锐角三角函数关系得出DE的长即可.解答:解:由题意可得出:∠BDC=45°,∠DA′E=90°,∴∠DEA′=45°,∴A′D=A′E,∵在正方形ABCD中,AD=1,∴AB=A′B=1,∴BD=,∴A′D=﹣1,∴在Rt△DA′E中,DE==2﹣.故答案为:2﹣.点评:此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出A′D的长是解题关键.17.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A 顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=1342+672.考点:旋转的性质.专题:规律型.分析:由已知得AP1=,AP2=1+,AP3=2+;再根据图形可得到AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;每三个一组,由于2013=3×671,则AP2013=(2013﹣671)+671,然后把AP2013加上即可.解答:解:AP1=,AP2=1+,AP3=2+;AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;∵2013=3×671,∴AP2013=(2013﹣671)+671=1342+671,∴AP2014=1342+671+=1342+672.故答案为:1342+672.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.三.解答题(共7小题)18.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.考点:旋转的性质;含30度角的直角三角形;直角三角形斜边上的中线;菱形的判定.专题:几何图形问题.分析:(1)利用旋转的性质得出AC=CD,进而得出△ADC是等边三角形,即可得出∠ACD的度数;(2)利用直角三角形的性质得出FC=DF,进而得出AD=AC=FC=DF,即可得出答案.解答:解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,∴AC=DC,∠A=60°,∴△ADC是等边三角形,∴∠ACD=60°,∴n的值是60;(2)四边形ACFD是菱形;理由:∵∠DCE=∠ACB=90°,F是DE的中点,∴FC=DF=FE,∵∠CDF=∠A=60°,∴△DFC是等边三角形,∴DF=DC=FC,∵△ADC是等边三角形,∴AD=AC=DC,∴AD=AC=FC=DF,∴四边形ACFD是菱形.点评:此题主要考查了菱形的判定以及旋转的性质和直角三角形斜边上的中线等于斜边的一半等知识,得出△DFC是等边三角形是解题关键.19如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.考点:旋转的性质;正方形的判定;平移的性质.专题:几何图形问题.分析:(1)根据旋转和平移可得∠DEB=∠AC B,∠GFE=∠A,再根据∠ABC=90°可得∠A+∠ACB=90°,进而得到∠DEB+∠GFE=90°,从而得到DE、FG的位置关系是垂直;(2)根据旋转和平移找出对应线段和角,然后再证明是矩形,后根据邻边相等可得四边形CBEG是正方形.解答:(1)解:FG⊥ED.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°,∴∠BCG=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.点评:此题主要考查了图形的旋转和平移,关键是掌握新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.20在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C关于y轴对称的点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C关于原点对称的点A2、B2、C2的位置,然后顺次连接即可.解答:解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.点评:本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.(1)AE的长为4cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.考点:几何变换综合题.专题:几何综合题.分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案;(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,此时DP+EP值为最小,进而得出答案;(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.解答:解:(1)∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm,∵∠ACD=30°,∠DAC=90°,AC=12cm,∴CD=AC÷cos30°=12÷=12×=8(cm),∵点E为CD边上的中点,∴AE=DC=4cm.故答案为:4;(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,∵E为CD边上的中点,∴DE=AE,∴△ADE为等边三角形,∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°,∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′,∴点E,D′关于直线AC对称,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′,∵△ADE是等边三角形,AD=AE=4,∴DD′=2×AD×=2×6=12,即DP+EP最小值为12cm;(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,∵AE=EC,∴AD′=CD′=4,在△ABD′和△CBD′中,,∴△ABD′≌△CBD′(SSS),∴∠D′BG=45°,∴D′G=GB,设D′G长为xcm,则CG长为(6﹣x)cm,在Rt△GD′C中x2+(6﹣x)2=(4)2,解得:x1=3﹣,x2=3+(不合题意舍去),∴点D′到BC边的距离为(3﹣)cm.点评:此题主要考查了全等三角形的判定与性质和锐角三角函数关系以及等边三角形的判定与性质等知识,利用垂直平分线的性质得出点E,D′关于直线AC对称是解题关键.22.正方形ABCD中,E是CD边上一点,(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是BF ,∠AFB=∠AED(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.考点:旋转的性质;全等三角形的判定与性质;勾股定理;正方形的性质.分析:(1)直接根据旋转的性质得到DE=BF,∠AFB=∠AED;(2)将△ADQ绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABE,根据旋转的性质得∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,而∠PAQ=45°,则∠PAE=45°,再根据全等三角形的判定方法得到△APE≌△APQ,则PE=PQ,于是PE=PB+BE=PB+DQ,即可得到DQ+BP=PQ;(3)根据正方形的性质有∠ABD=∠ADB=45°,将△ADN绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABK,根据旋转的性质得∠ABK=∠ADN=45°,BK=DN,AK=AN,与(2)一样可证明△AMN≌△AMK得到MN=MK,由于∠MBA+∠KBA=45°+45°=90°,得到△BMK为直角三角形,根据勾股定理得BK2+BM2=MK2,然后利用等相等代换即可得到BM2+DN2=MN2.解答:解:(1)∵△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,∵DE=BF,∠AFB=∠AED.故答案为BF,AED;(2)将△ADQ绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABE,如图2,则∠D=∠ABE=90°,即点E、B、P共线,∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,∵∠PAQ=45°,∴∠PAE=45°,∴∠PAQ=∠PAE,在△APE和△APQ中∵,∴△APE≌△APQ,∴PE=PQ,而PE=PB+BE=PB+DQ,∴DQ+BP=PQ;(3)∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°,如图,将△ADN绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABK,则∠ABK=∠ADN=45°,BK=DN,AK=AN,与(2)一样可证明△AMN≌△AMK得到MN=MK,∵∠MBA+∠KBA=45°+45°=90°,∴△BMK为直角三角形,∴BK2+BM2=MK2,∴BM2+DN2=MN2.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了三角形全等的判定与性质、正方形的性质以及勾股定理.23.(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A 与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.考点:旋转的性质;等边三角形的性质;勾股定理的逆定理;正方形的性质.分析:(1)根据题意得出△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,进而得出∠PBQ=90°,再利用勾股定理得出∠PQC的度数,进而求出∠BQC的度数;(2)由题意可得出:△ABP绕点B顺时针方向旋转60°,才使点A与C重合,进而得出∠PP'C=90°,即可得出∠BPA的度数.解答:解:(1)连接PQ.由旋转可知:,QC=PA=3.又∵ABCD是正方形,∴△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,即∠PBQ=90°,∴∠PQB=45°,PQ=4.则在△P QC中,PQ=4,QC=3,PC=5,∴PC2=PQ2+QC2.即∠PQC=90°.故∠BQC=90°+45°=135°.(2)将此时点P的对应点是点P′.由旋转知,△APB≌△CP′B,即∠BPA=∠BP′C,P′B=PB=5,P′C=PA=12.又∵△ABC是正三角形,∴△ABP绕点B顺时针方向旋转60°,才使点A与C重合,得∠PBP′=60°,又∵P′B=PB=5,∴△PBP′也是正三角形,即∠PP′B=60°,PP′=5.因此,在△PP′C中,PC=13,PP′=5,P′C=12,∴PC2=PP′2+P′C2.即∠PP′C=90°.故∠BPA=∠BP′C=60°+90°=150°.点评:此题主要考查了旋转的性质以及勾股定理逆定理和正方形的性质等知识,熟练利用勾股定理逆定理得出是解题关键.24.如图,在等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)证明:△ABE≌△C1BF;(2)证明:EA1=FC;(3)试判断四边形ABC1D的形状,并说明理由.考点:旋转的性质;全等三角形的判定与性质;等腰三角形的性质;菱形的判定.分析:(1)利用全等三角形的判定结合ASA得出答案;(2)利用全等三角形的性质对边相等得出答案;(3)首先得出四边形ABC1D是平行四边形,进而利用菱形的判定得出即可.解答:(1)证明:∵等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,∴AB=BC1=A1B=BC,∠ABE=∠C1BF,∠A=∠C1=∠A1=∠C,在△ABE和△C1BF中,,∴△ABE≌△C1BF(ASA);(2)证明:∵△ABE≌△C1BF,∴EB=BF.又∵A1B=CB,∴A1B﹣EB=CB﹣BF,∴EA1=FC;(3)答:四边形ABC1D是菱形.证明:∵∠A1=∠C=30°,∠ABA1=∠CBC1=30°,∠A1=∠C=∠ABA1=∠CBC1.∴AB∥C1D,AD∥BC1,∴四边形ABC1D是平行四边形∵AB=BC1,∴四边形ABC1D是菱形.点评:此题主要考查了旋转的性质、全等三角形的判定与性质以及菱形的判定等知识,利用旋转的性质得出对应边关系是解题关键.。
九年级数学旋转综合期末复习

学习目标
1、重点复习: (1)旋转的性质 (2)旋转的作图 (3)中心对称的性质 (4)关于原点对称坐标规律
2、解决经典例题,总结如何利用“旋转”; 体会“构造思想”、“转化思想”等
一.旋转:
基础过关
1.旋转的定义:
把一个图形绕着某一定点沿某个方向转动一个角度的
图形变换叫做旋转。 A'
第23章复习
方法技巧 中心对称图形的识别关键是看是否存在一点,把图形绕这一 点旋转 180°后能和原图形互相重合;轴对称图形的识别关键是看 是否能找到一条直线,把图形绕这条直线翻转 180°后能和原图形 互相重合.
数学·新课标(RJ)
5.对称中心的确定: 将其中的两个关键点和它们的对
称点的连线作出来,两条连线的交 点就是对称中心.
第23章复习 ┃ 考点攻略 解:解法不唯一,如图23-5:
图23-5
数学·新课标(RJ)
► 考点四 旋转中的计算问题
例9 如图23-6所示,将△OAB绕点O按逆时针方向旋转
至△OA′B′,使点B恰好落在边A′B′上.已知AB=4 cm,BB′=1
cm,则A′B的长是________cm.
3
图23-6
解:∵△A′B′C是由△ABC旋转所得, ∴∠B′=∠ABC=60°,B′C=BC, ∴△B′BC是等边三角形.
∴∠BCB′=60°. ∵∠BCD=90°-60°=30°, ∴∠BDC=180°- (60°+30°) =180°-90°=90°.
4.简单图形的旋转作图:
(1)确定旋转中心; (2)确定图形中的关键点;
6.关于中心对称的作图:
(1)确定对称中心; (2)确定关键点; (3)作关键点的关于对称中心的 对称点; (4)连结各点,得到所需图形.
专题09 图形的旋转(解析版)-2020-2021学年九年级数学上册期末综合复习

2020-2021学年九年级数学上册期末综合复习专题提优训练(人教版)专题09图形的旋转【典型例题】1.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°.若固定△ABC,将△DEC 绕点C旋转.(1)当△DEC统点C旋转到点D恰好落在AB边上时,如图2.①当∠B=∠E=30°时,此时旋转角的大小为;①当∠B=∠E=α时,此时旋转角的大小为(用含a的式子表示).(2)当△DEC绕点C旋转到如图3所示的位置时,小杨同学猜想:△BDC的面积与△AEC的面积相等,试判断小杨同学的猜想是否正确,若正确,请你证明小杨同学的猜想.若不正确,请说明理由.【答案】解:(1)①∵∠B=30°,∠ACB=90°,∴∠CAD=90°﹣30°=60°.∵CA=CD,∴△ACD是等边三角形,∴∠ACD=60°,∴旋转角为60°.故答案为:60°.①如图2中,作CH⊥AD于H.∵CA=CD,CH⊥AD,∴∠ACH=∠DCH.∵∠ACH+∠CAB=90°,∠CAB+∠B=90°,∴∠ACH=∠B,∴∠ACD=2∠ACH=2∠B=2α,∴旋转角为2α.故答案为:2α.(2)小杨同学猜想是正确的.证明如下:过B作BN⊥CD于N,过E作EM⊥AC于M,如图3,∵∠ACB=∠DCE=90°,∴∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3.∵BN⊥CD于N,EM⊥AC于M,∴∠BNC=∠EMC=90°.∵△ACB≌△DCE,∴BC=EC,在△CBN和△CEM中,∠BNC=∠EMC,∠1=∠3,BC=EC,∴△CBN≌△CEM(AAS),∴BN=EM.∵S△BDC12=•CD•BN,S△ACE12=•AC•EM.∵CD=AC,∴S△BDC=S△ACE.【专题训练】一、选择题1.在平面直角坐标系中,若点P①m①m①n)与点Q①①2①3)关于原点对称,则点M①m①n)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A2.下列标志既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】A3.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有()A.3种B.4种C.5种D.6种【答案】C4.如图,点E是正方形ABCD的边DC上一点,把①ADE绕点A顺时针旋转90°到①ABF的位置,若四边形AECF的面积为25①DE=3,则AE的长为()A B.5C.8D.4【答案】A5.(2020·河南初三三模)如图,将△ABC绕点C①0①-1①旋转180°得到△A′B′C,设点A的坐标为(a①b),则点A′的坐标为① ①A .①-a ①-b ①B .①-a ①-b -1①C .①-a ①-b +1①D .①-a ①-b -2①【答案】D6.如图,Rt △ABC 中,∠ACB =90°,线段BC 绕点B 逆时针旋转α°(0<α<180)得到线段BD ,过点A 作AE ⊥射线CD 于点E ,则∠CAE 的度数是( )A .90﹣αB .αC .902α-D .2α 【答案】C7.如图,在等腰直角三角形ABC 中,90BAC ∠︒=,一个三角尺的直角顶点与BC 边的中点O 重合,且两条直角边分别经过点A 和点B ,将三角尺绕点O 按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB ,AC 分别交于点E ,F 时,下列结论中错误的是( )A .AE AF AC =+B .180BEO OFC ∠∠=︒+C .2OE OF BC +=D .12ABC AEOF S S ∆=四边形【答案】C二、填空题8.点A(﹣3,m)和点B(n,2)关于原点对称,则m+n=_____.【答案】19.在平面直角坐标系中,O为坐标原点,点A1),将OA绕原点逆时针方向旋转90°得OB,则点B的坐标为_____①【答案】10.如图,在△ABC中,∠CAB①65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′①AB,则∠B′AB等于_____①【答案】50°11.如图,已知△ABC,D是AB上一点,E是BC延长线上一点,将△ABC绕点C顺时针方向旋转,恰好能与△EDC重合.若∠A=33°,则旋转角为_____°.【答案】82°12.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD 上,且DE =EF ,则AB 的长为_____.【答案】13.(2020·河北其他)如图,将Rt ABC ∆的斜边AB 绕点A 顺时针旋转()090αα︒︒<<得到AE ,直角边AC绕点A 逆时针旋转()090ββ︒︒<<得到AF ,连结EF .若=3AB ,=2AC ,且B αβ+=∠,则=EF _____.【答案】14.四边形ABCD 、四边形AEFG 都是正方形,当正方形AEFG 绕点A 逆时针旋转45°(45BAE ∠=︒)时,如图,连接DG ,BE ,并延长BE 交DG 于点H ,且BH DG ⊥.若4AB =,AE =则线段BH的长是________.三、解答题15.如图,AC是正方形ABCD的对角线,△ABC经过旋转后到达△AEF的位置.(1)指出它的旋转中心;(2)说出它的旋转方向和旋转角是多少度;(3)分别写出点A,B,C的对应点.【答案】解:(1)它的旋转中心为点A①①2)它的旋转方向为逆时针方向,旋转角是45度;①3)点A①B①C的对应点分别为点A①E①F.16.(2020·浙江台州·初三月考)将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图①的方式放置,固定三角板A1B1C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A1C交于点E,AC与A1B1交于点F,AB与A1B1交于点O.(1)求证:∠BCE∠∠B1CF.(2)当旋转角等于30°时,AB 与A 1B 1垂直吗?请说明理由. 【答案】解:(1)证明:两块大小相同的含30°角的直角三角板,所以①BCA =①B ′CA ′ ①①BCA -①A ′CA =①B ′CA ′-①A ′CA 即①BCE =①B ′CF①{B B BC B CBCE B CF∠=∠'='∠=∠',①①BCE ①①B ′CF (ASA );(2)解:AB 与A ′B ′垂直,理由如下: 旋转角等于30°,即①ECF =30°, 所以①FCB ′=60°, 又①B =①B ′=60°,根据四边形的内角和可知①BOB ′的度数为360°-60°-60°-150°=90°, 所以AB 与A ′B ′垂直.17.如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A ①1①1①①B ①4①1①①C ①3①3①① ①1)将△ABC 向下平移5个单位后得到△A 1B 1C 1,请画出△A 1B 1C 1① ①2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,请画出△A 2B 2C 2① ①3)判断以O ①A 1①B 为顶点的三角形的形状.(无须说明理由)【答案】(1)如图所示,△A1B1C1即为所求;①2)如图所示,△A2B2C2即为所求;①3)三角形的形状为等腰直角三角形,OB=OA11B即OB2+OA12=A1B2①所以三角形的形状为等腰直角三角形.18.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE、GC.(1)试猜想AE与GC的数量关系与位置关系;(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.【答案】(1)答:AE=GC,AE⊥GC;证明:如图1中,延长GC交AE于点H.在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG,∴∠1=∠2,AE=GC,∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°-(∠1+∠3)=180°-90°=90°,∴AE⊥GC.故答案为:AE=GC,AE⊥GC;(2)答:成立;证明:如图2中,延长AE和GC相交于点H.在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°-∠3;∴△ADE≌△CDG,∴∠5=∠4,AE=CG,又∵∠5+∠6=90°,∠4+∠7=180°-∠DCE=180°-90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.19.将两块三角板按图1摆放,固定三角板ABC,将三角板CDE绕点C按顺时针方向旋转,其中∠A=45°,∠D=30°,设旋转角为α,(0°<a<80°)(1)当DE∥AC时(如图2),求α的值;(2)当DE∥AB时(如图3).AB与CE相交于点F,求α的值;(3)当0°<α<90°时,连结AE(如图4),直线AB与DE相交于点F,试探究∠1+∠2+∠3的大小是否改变?若不改变,请求出此定值,若改变,请说明理由.【答案】①1①∵DE∥AC①∴∠D①∠ACD①30°①①∵∠BCA①90°①∴∠BCD①∠BCA①∠ACD①60°①①α①60°①①2①∵DE∥AB①∴∠E①∠CF A①60°①①∵∠CF A①∠B+∠BCE①∴∠BCE①15°①∴∠BCD①∠ECD+∠BCE①105°①①α①105°①①3①①①①①①①①①105°①∵∠ACD+∠CAB①∠D+∠AFD①∠CAB①45°①∠D①30°①∴∠AFD①∠ACD①15°①①∵∠1+∠2①∠AFD①∠3①90°①∠ACD①∴∠1+∠2+∠3①∠AFD+90°①∠ACD①90°+15°①105°.。
图形旋转中求坐标的规律题

图形旋转中求坐标的规律题1.如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2008次,点P依次落在点P1,P2,P3…P2008的位置,则点P2008的横坐标为2.如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2009次,点P依次落在点P1,P2,P3,…,P2009的位置,则点P2009的横坐标为3.如图,将边长为1的正三角形OAP沿x轴正方向连续翻转48次,点A依次落在点A1,A2,A3,A4,…,A48的位置上,则点A48的横坐标x48=4.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2008次,点P依次落在点P1,P2,P3,P4,…,P2008的位置,则P2008的坐标为5.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2014次,点P依次落在点P1,P2,P3,P4,…,则点P2014的坐标是图形旋转中求坐标的规律题答案1.分析本题可根据图形的翻转,分别得出P1、P2、P3…的横坐标,再根据规律即可得出各个点的横坐标.解:观察图形结合翻转的方法可以得出P1、P2的横坐标是1,P3的横坐标是2.5,P4、P5的横坐标是4,P6的横坐标是5.5…依此类推下去,P2005、P2006的横坐标是2005,P2007的横坐标是2006.5,P2008、P2009的横坐标就是2008.故答案为:2008.2.分析:本题可根据图形的翻转,分别得出P1、P2、P3…的横坐标,再根据规律即可得出各个点的横坐标.解:观察图形结合翻转的方法可以得出P1、P2的横坐标是1,P3的横坐标是2.5,P4、P5的横坐标是4,P6的横坐标是5.5…依此类推下去,P2005、P2006的横坐标是2005,P2007的横坐标是2006.5,P2008、P2009的横坐标就是2008.故答案为2008.3.分析由题意结合图形可知,A2的横坐标为2,A4的横坐标为3+2=5,那么A6的横坐标为3+3+2=8,A2n的横坐标为3n﹣1,所以点A48的横坐标71.解:∵△OAP是边长为1的正三角形,∴A2的横坐标为2,A4的横坐标为3+2=5,∴A2n的横坐标为3n﹣1,∴点A48的横坐标x48为3×24﹣1=71.故答案为71.4.分析:根据图形得出点的坐标变化规律,再根据规律对2008 变形,得出结论.解:根据规律P1(1,1),P2(2,0)=P3 ,P4(3,1),P5(5,1),P6(6,0)=P7,P8(7,1)…每4个一循环,可以判断P2008坐标在502次循环后与P4坐标纵坐标一致,坐标应该是(2007,1)故答案为:(2007,1)5.分析:观察规律可知每4个一循环,可以判断P2014在503次循环后与P2一致,以此可以求出P2014的坐标.解:根据规律可得:P1(1,1),P2(2,0)=P3 ,P4(3,1),P5(5,1),P6(6,0)=P7 ,P8(7,1)…,每4个一循环,可以判断P2014在503次循环后与P2一致,坐标应该是(2014,0)故答案为:(2014,0).。
中考数学专题复习《旋转与位似》知识点梳理及典例讲解课件

边长为1;②所拼的图形不得与原图形相同;③四边形的各顶
点都在格点上).
第6题图
解:如图:
第6题图
7.(2023·福建)如图1,在△ABC中,∠BAC=90°,AB=AC,
D是AB边上不与A,B重合的一个定点.AO⊥BC于点O,交CD
于点E.DF是由线段DC绕点D顺时针旋转90°得到的,FD,CA
正方形
对角线交点
圆
圆心
正2n边形(n为正整数)
中心
注意点
①常见的既是轴对称又是中心对称的图形:菱形、矩形、正方
形、正六边形、圆等;
②旋转是一种全等变换,旋转改变的是图形的位置,图形的大
小关系不发生改变,所以在解答有关旋转的问题时,要注意挖
掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数
建立的边角关系起着关键的作用.
旋转角为∠AOA'或∠BOB';
②直线AB和直线A'B'所在直线相交所成的锐角为∠C,则∠C=
∠AOA'=∠BOB';
③△AOA'∽△BOB'且△AOA',△BOB'为等腰三角形;
④其中点A,C,O,A'四点共圆,点B,C,O,B'四点共圆.
图形的中心对称
1.中心对称与中心对称图形
中心对称图形
把一个图形绕某一点旋转
区别
中心对称
中心对称图形是指具有特 中心对称是指两个全等图
殊形状的一个图形
形之间的位置关系
中心对称图形可分割为关于某点成中心对称的两部
联系
分;若把成中心对称的两个图形看作一个整体,则它
初中数学知识点复习专题讲练:用坐标表示旋转(含答案)

用坐标表示旋转考点分析在坐标平面内,某一点绕原点旋转前后坐标的变化规律如下:1. 点A(a,b)绕原点旋转180°得点A'(-a,-b),即点A(a,b)关于原点对称的点的坐标是A'(-a,-b).2. 点A(a,b)绕原点旋转90°所得点A'的坐标是(-b,a).方法归纳:坐标系中的旋转问题通常构造全等三角形加以解决,而且一般是直角三角形.因为图形的旋转问题都可以归结为点的旋转问题,而点的坐标可以表示某点到坐标的距离.所以解决坐标系的旋转问题时经常过图形的顶点向坐标轴作垂线段,构造直角三角形来解决问题.总结:1. 通过具体实例认识直角坐标系中图形的旋转变换,加深理解旋转变换的概念和基本性质,并能按要求作出简单平面图形绕坐标原点旋转90度、180度后的图形.2. 通过多角度地认识旋转图形的形成过程,培养学生的发散思维能力.解题技巧例题1在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC 上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A. (1.4,-1)B. (1.5,2)C. (1.6,1)D. (2.4,1)解析:根据平移的性质得出,△ABC的平移方向以及平移距离,即可得出P1的坐标,进而利用中心对称图形的性质得出P2点的坐标.答案:∵A 点坐标为:(2,4),A 1(-2,1),∴点P (2.4,2)平移后的对应点P 1为(-1.6,-1),∵点P 1绕点O 逆时针旋转180°,得到对应点P 2,∴P 2点的坐标为(1.6,1).故选C .点拨:此题主要考查了旋转的性质以及平移的性质,根据已知得出平移距离是解题关键.例题2 在如图所示的直角坐标系中,将△OAB 绕点O 顺时针旋转90°得△OA 1B 1,则线段A 1B 1所在直线l 的函数解析式为( )A. y =32x -2B. y =-32x +2C. y =-32x -2D. y =32x +2解析:根据旋转方向及角度画出旋转后的三角形,求出对应点坐标,设直线的解析式为y =kx +b ,将点的坐标代入,用待定系数法确定其解析式.答案:如图,根据旋转可得A 1(0,-2),B 1(-2,1),设直线的解析式为y =kx +b ,由题意得:⎩⎨⎧-2=b1=-2k +b ,解之得:⎩⎪⎨⎪⎧k =-32b =-2,所以直线的解析式为:y =-32x -2.故选C .点拨:本题考查图形的旋转及一次函数的解析式,关键是能够根据图形的旋转找出点的坐标,然后根据点的坐标来确定直线的解析式,求函数解析式,常用方法是待定系数法,把点的坐标代入解析式,然后组成关于k 与b 的方程组求解.总结提升平面直角坐标系中的旋转问题,若旋转角是180°,则可按中心对称图形问题来解决.有些题目的旋转角为90°,和少量的旋转角为30°,45°,60°,120°,150°等的问题,解答这类问题时除了要构造旋转本身形成的全等三角形外,一般还要通过向坐标轴作垂线来构造含有特殊角的直角三角形,利用特殊角的边角关系和勾股定理求解.例题如图,△ABO中,AB⊥OB,OB=3,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()A. (-1,-3)B. (-1,-3)或(-2,0)C. (-3,-1)或(0,-2)D. (-3,-1)解:∵△ABO中,AB⊥OB,OB=3,AB=1,∴OA=2,∴∠AOB=30°.如图1,当△ABO 绕点O顺时针旋转150°后得到△A1B1O,则∠A1OC=150°-∠AOB-∠BOC=150°-30°-90°=30°,则易求A1(-1,-3);如图2,当△ABO绕点O逆时针旋转150°后得到△A1B1O,则易求A1(0,-2).综上所述,点A1的坐标为(-1,-3)或(-2,0),故选B.解析:本题考查了坐标与图形的变化——旋转,解题时注意两点,一是未指明旋转方向的问题需分类讨论,以防错解;二是图形中一些特殊角往往和旋转角交织在一起,解题时需正确区分它们.巩固训练一、选择题1. 在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A’B’O,则点A的对应点A’的坐标及AA’的长分别为()A. (2,3),26B. (2,3),6C. (-3,2),26D. (-3,2),6*2. 如图,直线y =-43x +4与x 轴、y 轴分别交于A ,B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO 'B ',则点B '的坐标是( )A. (3,4)B. (7,3)C. (7,4)D. (4,5)*3. 将等腰直角三角形AOB 按如图所示放置,然后绕点O 逆时针旋转90至△A 'OB '的位置,点B 的横坐标为2,则点A '的坐标为( )xyOAB A'B'A. (1,1)B. (2, 2)C. (-1,1)D. (-2,2)**4. 如图所示,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,点P 1绕点B 旋转180°得点P 2,点P 2绕点C 旋转180°得点P 3,点P 3绕点D 旋转180°得点P 4,…,重复操作依次得到点P 1,P 2,…,则点P 2012的坐标是( )xy ABCDPA. (2010,2)B. (2010,-2) C . (2012,2) D. (2012,-2)二、填空题5. 如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为__________.6. 如图,在直角坐标系中,△ABC各顶点的坐标分别为A(0,3)、B(-1,0)、C(1,0),若△DEF各顶点的坐标分别为D(3,0),E(0,1),F(0,-1),则△DEF由△ABC 绕O点顺时针旋转__________度得到.7. 如图,在方格纸上建立的平面直角坐标系中,A,B是格点,若△A′B′O与△ABO关于点O成中心对称,则AA′的距离为__________.**8. 如图,矩形ABCD的四个顶点的坐标分别为A(1,0),B(5,0),C(5,3),D(1,3),边CD上有一点E(4,3),过点E的直线与AB交于点F,若直线EF平分矩形的面积,则点F的坐标为__________.三、解答题9. 如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1的坐标.(2)画出△A 1B 1C 1绕原点O 旋转180°后得到的△A 2B 2C 2,并写出点A 2的坐标. *10. 如图,已知A (—3,—3),B (—2,—1),C (—1,—2)是直角坐标平面上的三点.y x-1-2-3-4-55432112345-1-2-3-4-5OAB C(1)请画出ΔABC 关于原点O 对称的ΔA 1B 1C 1,(2)请写出点B 关于y 轴对称的点B 2的坐标,若将点B 2向上平移h 个单位,使其落在ΔA 1B 1C 1内部,指出h 的取值范围.11. 在平面直角坐标系中,四边形ABCD 的位置如图所示,解答下列问题:(1)将四边形ABCD 先向左平移4个单位,再向下平移6个单位,得到四边形A 1B 1C 1D 1,画出平移后的四边形A 1B 1C 1D 1;(2)将四边形A 1B 1C 1D 1绕点A 1逆时针旋转90°,得到四边形A 1B 2C 2D 2,画出旋转后的四边形A 1B 2C 2D 2,并写出点C 2的坐标.*12. △ABC 在平面直角坐标系xOy 中的位置如图所示.y x-1-2-35432112345-1-2O67ABC(1)作△ABC 关于点C 成中心对称的△A 1B 1C 1.(2)将△A 1B 1C 1向右平移5个单位,作出平移后的△A 2B 2C 2.(3)在x 轴上求作一点P ,使P A 1+PC 2的值最小,并写出点P 的坐标(不写解答过程,直接写出结果).参考答案一、选择题1. A 解析:将△ABO 绕点O 按顺时针方向旋转90°得△A ’B ’O ,如下图:所以A ’(2,3),AA ’=52+12=26.*2. B 解析:令y =0,则y =-43x +4=0,解得x =3,即点A 的坐标为(3,0).令x =0,则y =4,即点B 的坐标为(0,4),∴OB =4=O 'B ',OA =3=O 'A ,点B '的横坐标为:3+4=7,纵坐标为3,∴点B '的坐标是(7,3).*3. C 解析:在Rt △AOB 中,OB =2,由勾股定理可得OA =2,所以OA '=2,过A '作A 'C ⊥y 轴于点C ,在Rt △A 'OC 中,∠A 'OC =45°,由勾股定理可得A 'C =1,OC =1,且点A '在第二象限,所以点A '的坐标为(-1,1).**4. C 解析:由题意可知,点P 1(2,0),P 2(2,-2),P 3(-6,0),P 4(4,2),P 5(-2,0),P 6(6,-2),P 7(-10,0),P 8(8,2);….规律如下:像点P 1,P 5,…这样的点横坐标逐个减4,纵坐标都是0;像点P 2、P 6,…这样的点横坐标逐个加4,纵坐标都是-2;像P 3,P 7,…这样的点横坐标逐个减4,纵坐标都是0;像P 4,P 8,…这样的点横坐标逐个加4,纵坐标都是2.因为2012÷4=503,观察P 4(4,2),P 8(8,2),…,得P 2012的坐标是(2012,2),故选C.PP 1P 2P 3P 4xy P 5P 6P 7P 8二、填空题5. (4,2) 解析:可利用旋转的性质,结合全等三角形求解.6. 90 解析:∵△ABC 各个顶点的坐标分别为A (0,3)、B (-1,0)、C (1,0);△DEF 各顶点的坐标分别为D (3,0),E (0,1),F (0,-1),∴旋转对应点为A 和D , B 和E ,C 和F ,∴△DEF 由△ABC 绕O 点顺时针旋转90°得到.7. 210 解析:因为△A ′B ′O 与△ABO 关于点O 成中心对称,所以A ′的坐标为(3,-1),AO =32+12=10,由中心对称图形的特征可知AA ′=210.**8. (2,0) 解析:∵EF 平分矩形ABCD 的面积,∴EF 过矩形ABCD 的对称中心,点E 、F 是对应点,∴CE =AF .∵A (1,0),B (5,0),C (5,3),D (1,3),E (4,3),∴点F 的坐标为(2,0).三、解答题9. 解:(1)如图所示:点A 1的坐标为(2,-4);(2)如图所示,点A 2的坐标为(-2,4).*10. 解:(1)作图如下:(2)点B 2的坐标为(2,-1),h 的取值范围是2<h <3.5.y x-1-2-3-4-55432112345-1-2-3-4-5OAB CA 1B 1C 111. 解:(1)四边形A 1B 1C 1D 1如图所示;(2)四边形A 1B 2C 2D 2如图所示,C 2(1,-2).*12. 解:(1)如图所示:(2)如图所示:(3)如图所示:作出A 1关于x 轴的对称点A ′,连接A ′C 2,交x 轴于点P ,可得P 点坐标为:(3,0).y x-1-2-35432112345-1-2O67ABCA 1B 1C 1A 2B 2C 2A'P。
专题20图形的旋转(共38题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】

备战2023年中考数学必刷真题考点分类专练(全国通用)专题20图形的旋转(共38题)一.选择题(共21小题)1.(2022•遵义)在平面直角坐标系中,点A(a,1)与点B(﹣2,b)关于原点成中心对称,则a+b的值为()A.﹣3B.﹣1C.1D.32.(2022•内江)2022年2月第24届冬季奥林匹克运动会在我国北京成功举办,以下是参选的冬奥会会徽设计的部分图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(2022•哈尔滨)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(2022•临沂)剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题.以下关于鱼的剪纸中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(2022•长沙)在平面直角坐标系中,点(5,1)关于原点对称的点的坐标是()A.(﹣5,1)B.(5,﹣1)C.(1,5)D.(﹣5,﹣1)6.(2022•包头)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针旋转得到△A'B'C,其中点A'与点A是对应点,点B'与点B是对应点.若点B'恰好落在AB边上,则点A到直线A'C的距离等于()A.3B.2C.3D.27.(2022•雅安)在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为()A.﹣4B.4C.12D.﹣128.(2022•永州)剪纸是我国具有独特艺术风格的民间艺术,反映了劳动人民对现实生活的深刻感悟.下列剪纸图形中,是中心对称图形的有()A.①②③B.①②④C.①③④D.②③④9.(2022•宜昌)将四个数字看作一个图形,则下列四个图形中,是中心对称图形的是()A.B.C.D.10.(2022•天津)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是()A.AB=AN B.AB∥NC C.∠AMN=∠ACN D.MN⊥AC11.(2022•常德)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A,B的对应点分别是D,E,点F是边AC的中点,连接BF,BE,FD.则下列结论错误的是()A.BE=BC B.BF∥DE,BF=DEC.∠DFC=90°D.DG=3GF12.(2022•内江)如图,在平面直角坐标系中,点B、C、E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE是Rt△ABC经过某些变换得到的,则正确的变换是()A.△ABC绕点C逆时针旋转90°,再向下平移1个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移3个单位D.△ABC绕点C顺时针旋转90°,再向下平移3个单位13.(2022•杭州)如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在M1(﹣,0),M2(﹣,﹣1),M3(1,4),M4(2,)四个点中,直线PB经过的点是()A.M1B.M2C.M3D.M414.(2022•南充)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为()A.90°B.60°C.45°D.30°15.(2022•绥化)如图,线段OA在平面直角坐标系内,A点坐标为(2,5),线段OA绕原点O逆时针旋转90°,得到线段OA',则点A'的坐标为()A.(﹣5,2)B.(5,2)C.(2,﹣5)D.(5,﹣2)16.(2022•黑龙江)下列图形是汽车的标识,其中是中心对称图形但不是轴对称图形的是()A.B.C.D.17.(2022•大庆)观察下列图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.18.(2022•齐齐哈尔)下面四个交通标志中,是中心对称图形的是()A.B.C.D.19.(2022•桂林)下列图形中,是中心对称图形的是()A.等边三角形B.圆C.正五边形D.扇形20.(2022•遂宁)下面图形中既是轴对称图形又是中心对称图形的是()A.科克曲线B.笛卡尔心形线C.阿基米德螺旋线D.赵爽弦图21.(2022•毕节市)下列垃圾分类标识的图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.二.填空题(共8小题)22.(2022•吉林)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角α(0°<α<360°)后能够与它本身重合,则角α可以为度.(写出一个即可)23.(2022•贺州)如图,在平面直角坐标系中,△OAB为等腰三角形,OA=AB=5,点B到x轴的距离为4,若将△OAB绕点O逆时针旋转90°,得到△OA′B′,则点B′的坐标为.24.(2022•怀化)已知点A(﹣2,b)与点B(a,3)关于原点对称,则a﹣b=.25.(2022•云南)点A(1,﹣5)关于原点的对称点为点B,则点B的坐标为.26.(2022•泸州)点(﹣2,3)关于原点的对称点的坐标为.27.(2022•无锡)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE 交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF=°;现将△DCE绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是.28.(2022•永州)如图,图中网格由边长为1的小正方形组成,点A为网格线的交点.若线段OA绕原点O 顺时针旋转90°后,端点A的坐标变为.29.(2022•丽水)一副三角板按图1放置,O是边BC(DF)的中点,BC=12cm.如图2,将△ABC绕点O顺时针旋转60°,AC与EF相交于点G,则FG的长是cm.三.解答题(共9小题)30.(2022•武汉)如图是由小正方形组成的9×6网格,每个小正方形的顶点叫做格点.△ABC的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D,E分别是边AB,AC与网格线的交点.先将点B绕点E旋转180°得到点F,画出点F,再在AC上画点G,使DG∥BC;(2)在图(2)中,P是边AB上一点,∠BAC=α.先将AB绕点A逆时针旋转2α,得到线段AH,画出线段AH,再画点Q,使P,Q两点关于直线AC对称.31.(2022•温州)如图,在2×6的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上).(1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位后的图形.(2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转180°后的图形.32.(2022•安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.33.(2022•黑龙江)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O成中心对称,△ABC与△DEF的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O的位置.(2)将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1;(3)在网格中画出格点M,使A1M平分∠B1A1C1.34.(2022•广元)在Rt△ABC中,AC=BC,将线段CA绕点C旋转α(0°<α<90°),得到线段CD,连接AD、BD.(1)如图1,将线段CA绕点C逆时针旋转α,则∠ADB的度数为;(2)将线段CA绕点C顺时针旋转α时①在图2中依题意补全图形,并求∠ADB的度数;②若∠BCD的平分线CE交BD于点F,交DA的延长线于点E,连结BE.用等式表示线段AD、CE、BE之间的数量关系,并证明.35.(2022•连云港)【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中∠ACB =∠DEB=90°,∠B=30°,BE=AC=3.【问题探究】小昕同学将三角板DEB绕点B按顺时针方向旋转.(1)如图2,当点E落在边AB上时,延长DE交BC于点F,求BF的长.(2)若点C、E、D在同一条直线上,求点D到直线BC的距离.(3)连接DC,取DC的中点G,三角板DEB由初始位置(图1),旋转到点C、B、D首次在同一条直线上(如图3),求点G所经过的路径长.(4)如图4,G为DC的中点,则在旋转过程中,点G到直线AB的距离的最大值是.36.(2022•重庆)在△ABC中,∠BAC=90°,AB=AC=2,D为BC的中点,E,F分别为AC,AD 上任意一点,连接EF,将线段EF绕点E顺时针旋转90°得到线段EG,连接FG,AG.(1)如图1,点E与点C重合,且GF的延长线过点B,若点P为FG的中点,连接PD,求PD的长;(2)如图2,EF的延长线交AB于点M,点N在AC上,∠AGN=∠AEG且GN=MF,求证:AM+AF =AE;(3)如图3,F为线段AD上一动点,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH沿EH翻折至△ABC所在平面内,得到△B′EH,连接B′G,直接写出线段B′G的长度的最小值.37.(2022•成都)如图,在矩形ABCD中,AD=nAB(n>1),点E是AD边上一动点(点E不与A,D重合),连接BE,以BE为边在直线BE的右侧作矩形EBFG,使得矩形EBFG∽矩形ABCD,EG交直线CD于点H.【尝试初探】(1)在点E的运动过程中,△ABE与△DEH始终保持相似关系,请说明理由.【深入探究】(2)若n=2,随着E点位置的变化,H点的位置随之发生变化,当H是线段CD中点时,求tan∠ABE 的值.【拓展延伸】(3)连接BH,FH,当△BFH是以FH为腰的等腰三角形时,求tan∠ABE的值(用含n的代数式表示).38.(2022•重庆)如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想;(3)若AB=AC,且BD=AE,将△ABC沿直线AB翻折至△ABC所在平面内得到△ABP,点H是AP 的中点,点K是线段PF上一点,将△PHK沿直线HK翻折至△PHK所在平面内得到△QHK,连接PQ.在点D,E运动过程中,当线段PF取得最小值,且QK⊥PF时,请直接写出的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学设计
图形旋转与点的坐标问题——专题复习
(一)学情分析
对于九年级的学生,虽然有了一定的知识储备,但是学生基础高低参差不齐,两极分化已经比较明显了,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对图形的变换有畏难情绪,相关知识学得不很透彻。
这样要因材施教,使他们在各自原有的基础上不断发展进步。
(二)教法学法
我将结合学案,采用探究发现、合作交流等学习方法。
教学中加强对旋转性质的认识,通过变式训练进行深入研究,在学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握知识,培养思维能力。
(三)教学目标
图形的变换包括平移、轴对称、旋转、位似、投影等,本节课还是主要探究“图形旋转与坐标”。
1、掌握图形旋转的性质,能利用含30度角的直角三角形的三边关系、一次函数、相似三角形的判定与性质等解决问题。
2、在直角坐标系中,把握好图形变换后点的坐标的变化。
3、灵活运用不同的方式求值,体会数形结合思想.
(四)教学重点、教学难点:重点是在直角坐标系中,把握好图形变换后点的坐标的变化。
难点是灵活运用不同的方式求值。
(五)教学过程
一、温故辅新
1.如图1:在平面直角坐标系中若点A′的坐标为(3,7),点A的坐标为(0,4),则A、A′两点间的距离为()。
图3
(小结:要求A 、A ′两点间的距离,需构造以AA ′为斜边的直角三角形,利用勾股定理即可求解)
2.已知直线m : 33
35-=x y ,若m 与x 轴交于点P, 则点P 的坐标为( )。
(小结:令y=0,即可求出点P 的坐标)。
如图2:已知Rt △AB O中∠O=90°OA=4,OB=3,把△AB O绕点B 逆时针旋转,得△A ′B O′,点A ,
O旋转后的对应点为A,O′,记旋转角为α.若α=90°,则AA ′的长=( )。
( 小结:要求 AA ′的长,需根据旋转性质得到∠ABA ′=90°,利用勾股定理即可求解 )
4.如图3: 已知△CH O′中,OP ∥H O′,且H O′=233 ,OH=2
9, OC = 3 , 求 OP 长?
( 小结:要求 op 的长,需根据相似三角形的性质得到)
5.如图4:在直线l 同侧有A、B两点,在l 上找一点C使AC+BC最短?请在图中画出C点的位置?
图4
( 小结:最短路径问题,需根据轴对称性质将同侧问题转化为异侧问题利用两点之间线段最短求解。
)
5.如图5: 在平面直角坐标系中,O为原点,点A (4,0),点B (0,3),把△AB O绕点B 逆时针旋转,
得△A ′B O′,点A ,O旋转后的对应点为A ,O′,记旋转角为α.若α=120°,
(1)则∠O′B O的度数为( );
(2)点O′到y 轴的距离等于( );
(3)点O′到x 轴的距离等于( );
( 小结:要求 点O′的坐标,需求出点O′到y 轴的距离及点O′到x 轴的距离)
(4)(Ⅲ)在(Ⅱ)的条件下,边OA 上 的一点P 旋转后的对应点为P ′,
①存在点P 使得O′P+BP ′取得最小值,简要说明点P 的位置(不用求出点P 的坐标);
② 当O′P+BP ′取得最小值时,求出点P 的坐标 ; ③ 当O′P+BP ′取得最小值时,求出点P ′的坐标。
( 小结:要求 点P ′的坐标,①需先判断出O′P+BP ′取得最小值时点P ′的位置,根据BP ′=BP ,将其
转化为判断O′P+BP 的最小值,想到最短路径问题得到点P 的位置,即可确定点P ′的位置② 要求出点P
的坐标 需要求直线O′P 的解析式令y=0,即可求出点P 的坐标同时可得OP 的长度。
)③ 要求出点P ′的坐
标,利用O′P ′=OP ,通过构造直角三角形,即可求解。
)
图5
设计意图:采用多层次设疑、释疑等方法,突破思维的“最近发展区”,最后创设新的“思维发展区”促进学生思维向更高层次发展。
不同层次的学生思维发展水平存在着差异,他们的思维有着不同的现有发展水平、潜在发展水平和“最近发展区”,从学生的思维潜在发展水平开始,通过教学把学生潜在发展水平转化为新的现有发展水平,在新的现有发展水平的基础上,又出现新的思维潜在发展水平,并形成新的思维最近发展区。
二、直击中考:2016年天津市中考数学第24题
在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′B O′,点A,O旋转后的对应点为AO′,记旋转角为α.
(Ⅰ)如图①,若α=90°,求AA′的长;
(Ⅱ)如图②,若α=120°,求点O′的坐标;
(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P',当O'P+BP'取得最
小值时,求点P'的坐标(直接写出结果即可)
与图形旋转有关的计算:
1.求点坐标:(1)给出旋转角,(一般为特殊角)求点的坐标,在图中找到对应的旋转角和所求的点,作出相应的辅助线,构造直角三角形,利用三角函数求出所求点到x轴、y轴的距离;(2)图形旋转满足某个条件时求点的坐标,先观察图形的旋转过程,找到满足条件时的位置和对应点,作出适当的辅助线,利用勾股定理、三角函数或全等相似等知识进行求解。
2.求线段长:(1)求出两端点坐标,利用勾股定理即可求解(2)不能求出两端点坐标的,先考虑旋转性质,将其转化到特殊三角形(直角三角形、等边三角形)进行求解;(3)利用全等三角形相似三角形求线段长。
三、课堂小结
通过本课学习,你有哪些收获(知识、方法、思想等)?或者还有哪些疑问?
四、布置作业
在平面直角坐标系中, O 为原点,点 A(4 ,0),点 B(0 ,3),把△ABO 绕点 B 逆时针旋
转,得,点 A , O 旋转后的对应点为 A,。
记旋转角为α。
(1)如图,若α=120°,求点点的坐标;
(2)在(1)的条件下,边O B上的一点M 旋转后的对应点为M',当O'M+A'M'取得最
小值时,求点M '的坐标(直接写出结果即可).
五、合作交流,探究发现
基本问题:在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋
转,得△A'BO',点A,O旋转后的对应点为A',O'.记旋转角为α.
(1)【变式】如图①,若α =90︒,求A'点的坐标、∠OBO′、∠A′B A、∠BA′A、的度数;
(2)【变式】如图②,若α =120︒,求点∠OBO′的度数、A'点的坐标;
(3)【变式】将上题中“(Ⅱ)α =120︒改为α =150︒,求点∠OBO′的度数、A'点的坐标;边O B上的一点M 旋转后的对应点为M',当O'M+AM取得最小值时,求点M '的坐标(直接写出结果即可)
3、拓展延伸
将图1在放入平面直角坐标系中,如图3已知O为原点,点A(﹣2,0),点D(1,0),
分别做等边△AOB、△COD,连接AC、BD.
(1)求AC、BD的长;(2)求∠APB的度数;。