分数、百分数应用题的一般解题方法
分数百分数应用题解题思想(一通百通)

分数应用题解题思想介绍金仁虎一、分配思想分配思想就是根据题中的数量关系,从已知条件入手,通过列式,先求出单位“1”,再由单位“1”的量进行分配。
其具体思路我们还是从第十一册教材第63页的思考题谈起。
1.基本题:同学们参加野营活动。
一个同学到负责后勤工作的老师那里去领碗,老师问他领多少,他说领55个。
又问:“多少人吃饭?” 他说:“一人一个饭碗,两人一个菜碗,三人一个汤碗。
”算一算这个同学给多少人领碗。
〔分析与解〕这是一道六年级的思考题,解答此题可以用多种方法。
(1)方程法。
设:共有X人X+X+X=55解得X=3O。
(2)算术法。
55÷(l++)=55÷1=3O(人)(3)此题还可以直接求最小公倍数来解。
根据“一人一个饭碗,二人一个菜碗,三人一个汤碗”的条件可得:[1、2、3]=6(6是1、2、3的最小公倍数)。
即:每6人为一桌,每桌所需的碗数为:饭碗:6÷l=6(个);菜碗:6÷2=3(个);汤碗:6÷3=2(个)。
共计:6+3+2=11(个)→每桌的总碗数。
这样野营的同学正好可以安排:55÷11=5(桌),而每桌都是6人,即共有6×5=3O人参加野营。
此题运用最小公倍数来解,不但可以拓宽六年级同学的解题思路,更重要的是为四、五年级同学开辟了一条解题途径。
2.变形题。
节日期间给某班同学发水果,每人3个桔子,每2人3个苹果,每4人3根香蕉,最后又给每人发1个梨,结果共发水果2OO个,求该班有多少个同学?每种水果各多少个?[分析与解] 每人所发水果情况:桔子3(个);苹果1(个);香蕉(个);梨1(个)。
(l)方程法。
设:共有X人X+3X+1X+X=200解得X=32(人)(2)算术法。
200÷(1+3+l+)=2OO÷6=32(人)(3)最小公倍数法(同学们自己思考列式)。
在求出单位“1”为32人以后,根据分配思想分别算出每种水果的个数,即:桔子3×32=96(个)苹果32×l=48(个)香蕉32×=24(个)梨子1×32=32(个)3.综合题:星期日某车间去郊外植树,休息时每人发2瓶汽水,每3人发2瓶果汁,每6人发2瓶雪碧,结果共发饮料180瓶,在这些人中,每人植一棵松树,每2人植5棵杨树,每3人植4棵柳树,每5人植3棵杏树,求该车间共植树多少棵?〔分析与解〕此题综合性很强,实际上是把前两个分配思想的小题合在一起。
六年级分数应用题解题方法

六年级分数应用题解题方法分数(百分数)应用题的典型解法有数形结合思想和对应思想。
数形结合是将抽象的数量关系用线段图直观表示,从而降低解题难度的基本方法。
对应思想则是通过具体数量与抽象分率之间的对应关系来分析和解决问题的思想。
例如,在求一桶油原来有多少千克的问题中,我们可以画出线段图,清楚地看出油的千克数乘以(1-1/5)等于20+22,从而得出油的千克数为70.同样地,在求一堆煤原来有多少千克的问题中,我们可以根据煤的使用情况和剩余量的关系,得出煤的千克数乘以(1-20%-50%)等于290+10,从而得出煤的千克数为1000.对应思想同样适用于解决问题。
例如,在求缝纫机厂女职工人数的问题中,我们可以通过线段图找到与具体数量144人相对应的分率,从而得出女职工占厂职工人数的7/20,男职工占的比例为13/20.再根据女职工比男职工少144人的关系,得出全厂人数为480人。
在转化思想方面,例如在求一批大白菜的千克数的问题中,我们可以通过将题目中的信息转化为对应分率的形式,再用线段图进行分析。
根据第一天卖出后余下的240千克大白菜,可以得出对应分率为1-1/3,从而得出第一天卖出后余下的大白菜千克数为400.再根据剩余240千克的对应分率为1-3/5,可以得出这批大白菜的千克数为600.化简得:甲:乙=15:28,即甲是乙的18/43.五(2)班男生人数:女生人数=4:5.男生人数×(1-75%)=女生人数×(1-80%)。
代入得男生人数:女生人数=4:5,女生人数=30人,男生人数=24人。
有软糖和硬糖两种糖,软糖占总数的4/9.加入16块硬糖后,软糖占总数的20/29.设软糖块数为单位“1”,原来硬糖块数是软糖块数的5/9,加入16块硬糖后,硬糖块数是软糖块数的2倍。
解得软糖块数为9块。
小明看一本课外读物,已读的页数和剩下页数之比为1:6.后来又读了20页,已读的页数和剩下页数之比为3:4.设总页数为单位“1”,原来已读页数占总页数的1/7,后来已读页数占总页数的4/7.解得总页数为630页。
分数和百分数应用题解题技巧

分数和百分数应用题解题技巧分数和百分数是我们在日常生活中经常遇到的数学概念,它们在实际应用中具有广泛的用途。
掌握解题技巧可以帮助我们更好地理解和运用这些概念。
首先,对于分数的应用题,我们需要注意以下几个技巧:1. 将问题转化为分数形式:有些问题可能给出了一个小数或百分数,我们需要将其转化为分数形式进行运算。
例如,如果题目给出了0.5,我们可以将其转化为1/2,这样更有利于计算。
2. 找到最小公倍数:在一些问题中,我们需要进行分数的加减运算,但分母不同。
这时,我们需要找到这些分母的最小公倍数,将分数转化为相同分母后再进行运算。
3. 分数的化简:有些问题中,我们需要将分数化简为最简形式。
这可以通过寻找分子和分母的最大公约数,将其约分得到最简形式。
其次,百分数的应用题也需要我们掌握一些技巧:1. 百分数的转化:有些问题可能给出了一个分数或小数,我们需要将其转化为百分数形式。
例如,如果题目给出了0.75,我们可以将其转化为75%。
2. 百分数的运算:在一些问题中,我们需要进行百分数的加减乘除运算。
对于加减运算,我们可以先将百分数转化为分数或小数,然后进行运算;对于乘除运算,我们可以直接将百分数转化为分数或小数后进行运算。
3. 百分数的应用:在实际应用中,百分数常常用于描述比例、增长率、减少率等。
因此,我们需要理解百分数与实际问题的关联,将其运用到解题过程中。
除了上述技巧,我们还需要注意解题过程中的细节。
例如,在进行运算时,要注意保留足够的有效数字;在解答问题时,要理解题目中的条件和要求,将其与分数和百分数的概念相结合。
总之,掌握分数和百分数应用题解题技巧,可以帮助我们更加灵活地运用这些概念解决实际问题。
通过不断练习和实践,我们可以在解题过程中更加熟练地应用这些技巧,提高数学解题的能力。
用口诀巧解分数、百分数应用题

用口诀巧解分数、百分数应用题分数、百分数应用题是六年级数学学习的要点和难点,也是小升初数学的必考部分。
学生在解答较复杂的分数、百分数应用题时常常不知从哪处下手剖析题中的数目关系。
经过多年的实践,我总结了一些巧解分数应用题的口诀,现与大家共享。
一、找准“单位一”,确定基本解题思路学生在学习简单分数应用题的基础上,已经掌握了基本的解题思路:给出部重量及部重量的对应分率,求单位“1”的量,就用除法;给出单位“ 1”的量和部重量的对应分率,求部重量,就用乘法。
为帮学生进一步理清解题思路,我编了一个口诀:第一步,找关系(即分率);第二步,单位“1”(谁的分率谁是单位1);第三步,求的谁,单位“1”用除,部分就用乘;第四步,找对应。
二、抓住要点字,解出特别题分数、百分数应用题确定单位“ 1”是解题要点,要找寻单位“ 1”,需抓住题中的要点字,我的口诀是:想找单位“ 1”,需找要点字,占、是、还有比 (字 ),后跟单位“1”。
没有不重要,快去找关系(百分数)。
谁的百分比,谁是单位“ 1”。
一些特别的典型百分数应用题,如: 5 比4 多百分之几4 比5 少百分之几 5 是4 的百分之几 4 是5 的百分之几等类问题,学生易产生混杂,于是我编了一个口诀:多多少,少多少,差价除以单位“ 1”。
求对应分数,单位“ 1”做除数。
三、画出线段图,剖析找对应分数、百分数应用题,详细量和分率之间一定是对应关系,这一点特别重要。
因为小学生的抽象思想和空间想象力较差,关于一些较复杂应用题的数目关系,难以在脑筋中理清眉目,我在讲此类应用题时,常常存心识地指引学生画线段图帮助解题。
比方:“修一条公路,先修了全程的 30%,离中点还有千米,求公路的全程是多少千米”学生一时不知如何下手,我就让学生先画线段表示图,再找数目关系。
这样各条件之间的关系就十分显然了。
如何画出正确的线段图我的口诀是 :先画单位“ 1”,详细量上边放,分率放下边,问号需点上,两圆要对圆,看看求什么,求的是单位“ 1”,数目(详细量)除分率,求的是部分,单位“ 1”去乘分率。
人教版六年级数学上册分数、百分数应用题解题公式

人教版六年级数学上册分数、百分数应用题解题公式单位“1” 已知: 单位“1” × 对应分率 = 对应数量求单位“1”或单位“1”未知:对应数量 ÷ 对应分率 = 单位“1”1、求一个数是另一个数的几分之几(或百分之几)公式:一个数 ÷ 另一个数 = 一个数是另一个数的几分之几(百分之几)2、求一个数比另一个数多几分之几(或百分之几)公式:多的数量÷单位“1” = 一个数比另一个数多几分之几(百分之几)3、求一个数比另一个数少几分之几(或百分之几)公式:少的数量÷单位“1” = 一个数比另一个数少几分之几(百分之几)二、熟练掌握:百分数和分数、小数的互化,熟练背诵: 1 2 = 0.5 = 50% 1 4 = 0.25=25% 3 4= 0.75 = 75% 1 5 = 0.2 = 20% 2 5 = 0.4 = 40% 3 5= 0.6 = 60% 4 5 = 0.8 = 80% 1 8 =0.125=12.5% 3 8=0.375=37.5% 5 8 =0.625=62.5% 7 8 =0.875=87.5% 1 10=0.1=10% 1 20 =0.05=5% 1 25 =0.04=4% 1 50=0.02=2% 1 100=0.01=1% 三、基本题型:(1)一条路全长1200米,第一天修了全长的 1 5,第二天修了全长的 1 4,还剩几分之几没有修?(2)果园里有桃树200棵,梨树比桃树少 1 5,果园里有梨树多少棵?(3)果园里有桃树200棵,比梨树少 1 5,果园里有梨树多少棵?(4)一件上衣,降价20%后是72元,这件上衣原价多少元?(5)一条路,第一天修了全长的 1 5 ,第二天修了全长的 1 4,第一天比第二天少修60米,这条路全长多少米?(6)五月份比六月份节约用水20吨,五月份用水80吨。
五月份比六月份用水节约百分之几?(7)一杯盐水,盐10克,水90克,这杯盐水的含盐率。
分数、百分数应用题

审题解题、研究试题的能力——分数、百分数应用题一、分数、百分数应用题解题步骤1、读题, 明确总量(单位“1”)是什么。
确定总量(单位“1”)的关键字“是”、“比”、“占”的后面(右面)是总量(单位“1”) “的”的前面(左面)是总量(单位“1”)(有时题中出现“的”、“是”,这样选择靠近分率的字)搞清楚题中的总量、分量、分量所对应的分率。
搞清楚要解决的问题是求总量?分量?还是分率?2、根据要解决的问题确定计算方法。
基本公式求总量用除法:总量=分量÷分率 求分量用乘法:分量=总量×分率求分率用除法:分率=分量÷总量3、根据上面的分析确定公式并列式计算、答题(就是解题过程)。
4、检查的四个角度① 方法(就是上面的第1、2步) ② 列式③ 计算 ④ 格式(单位、答等)例题:(一)实验小学去年有学生450人,今年比去年减少91,今年有学生多少人? 1、 明确总量(单位“1”):去年的人数450 [“比”的后面]清楚题中的总量:去年的人数450人是总量(单位“1”)分量:今年学生人数是分量分量所对应的分率:(1-91)是分量所对应的分率 要解决的问题:求分量2、确定计算方法:求分量用乘法(分量=总量×分率)3、解题过程:450×(1-91) =450×98 =400(人)答:今年有400人。
4、检查(略)(二)火车从甲地开往乙地,已经行了全程的85,正好是75千米,甲乙两地之间的铁路长多少千米? 1、 明确总量(单位“1”):全程的长度 [“的”的前面]清楚题中的总量:全程的长度是总量(单位“1”)分量:已经行过的75千米是分量分量所对应的分率:85是分率 要解决的问题:求总量2、确定计算方法:求总量用除法(总量=分量÷分率)3、解题过程:75÷85=120(千米) 答:甲乙两地之间的铁路长120千米。
4、检查(略)(三)光明小学有学生825人,高年级学生占全校学生总数的51,高年级有学生多少人? 1、 明确总量(单位“1”):全校学生人数825人 [“占”的后面]清楚题中的总量:全校学生人数825人是总量(单位“1”)分量:高年级学生人数是分量 分量所对应的分率:51是高年级所对应的分率 要解决的问题:求分量2、确定计算方法:求分量用乘法(分量=总量×分率)3、解题过程:825×51=165(人) 答:高年级有165人。
六年级数学上应用题归纳

六年级数学上应用题归纳一、分数应用题1.求一个数是另一个数的几分之几解法:部分量÷标准量=分率2.已知一个数,求这个数的几分之几是多少(已知整体,求部分)解法:标准量×分率=部分量3.已知一个数的几分之几是多少,求这个数是几(已知部分,求整体)解法①:部分量÷分率=标准量解法②:(列方程)设这个数是x,则x×分率=部分量二、百分数应用题1. 求一个数是另一个数的百分之几解法:部分量÷标准量=百分率2. 已知一个数,求这个数的百分之几是多少(已知整体,求部分)解法:标准量×百分率=部分量3.已知一个数的百分之几是多少,求这个数是几(已知部分,求整体)解法①:部分量÷百分率=标准量解法②:(列方程)设这个数是x,则x×百分率=部分量分百应用题要找准题中的关键词,比如:是,比,占,相当于,等于,和“谁”比,谁就是单位“1”,就是标准量三、比的问题1.已知A,B比A多几分之几,求B解法:A×(1+分率)2.已知B,B比A多几分之几,求A解法:(列方程)设A为x,则x ×(1+分率)=B“少几分之几”的问题把加号改减号四、替换法替换的策略是指将题目中的一个量用另一个量表示,这样就将两个量替换成为一个量,将题目进行了简化,从而方便解题。
替换法体现了数学中等量代换的思想,在运用过程中一定要注意找准进行替换的量,只有相等的两个量才能够进行替换替换法一定要用“箭头()”表示清楚用哪个替换哪个,它们之间的数量关系是如何,五、假设法(“鸡兔同笼”问题)解法1:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:鸡数=(每只兔脚数×兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数解法2:假设全是鸡(略)“鸡兔同笼”问题一定要先假设,假设为同一类,把问题简单化,然后再解替换法和假设法两类题解答完后一定要把答案代入题中验算,防止把两者对应答案搞错!!分数应用题在小学数学中非常重要,它不仅是考试中的重点,也是难点。
分数、百分数应用题的一般解题方法

分数、百分数应用题的一般解题方法(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--分数、百分数应用题的一般解题方法一、解决分数乘法问题1、求一个数的几分之几是多少(单位“1”已知)单位“1”×分率=分率所对应的量2、求一个数比单位“1”多几分之几是多少(单位“1”已知)单位“1”×(1+分率)=分率所对应的量3、求一个数比单位“1”少几分之几是多少(单位“1”已知)单位“1”×(1-分率)=分率所对应的量二、解决分数除法问题1、已知一个数的几分之几是多少,求这个数(单位“1”未知)数量÷数量所对应的分率=单位“1”2、已知一个数比另一个数多几分之分,求这个数(单位“1”未知)数量÷(1+分率)=单位“1”3、已知一个数比另一个数少几分之分,求这个数(单位“1”未知)数量÷(1-分率)=单位“1”三、解决百分数问题1、求百分率的问题:一个数是另一个数的百分之几。
另一个数一个数×100%=百分率2、求一个数比另一个数多(少)百分之几。
相差数÷单位“1”=多(少)百分之几 对应量÷单位“1”-13、求一个数的百分之几是多少(单位“1”已知)单位“1”×百分率=分率所对应的量已知一个数的百分之几是多少,求这个数。
(单位“1”未知)数量÷数量所对应的百分率=单位“1”4、求比一个数多(少)百分之几的数是多少单位“1”×(1+百分率)=分率所对应的数量5、已知比一个数多(少)百分之几的数是多少,求这个数。
数量÷(1+对应分率)=单位“1”6、折扣问题原价×折扣=现价7、纳税问题收入×税率=应纳税额8、利息问题本金×利率×时间=利息利息×税率=利息税利息—利息税=税后利息本息=本金+税后利息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数、百分数应用题的一般解题方法
一、解决分数乘法问题
1、求一个数的几分之几是多少?(单位“1”已知)单位“1”×分率=分率所对应的量
2、求一个数比单位“1”多几分之几是多少?(单位“1”已知)单位“1”×(1+分率)=分率所对应的量
3、求一个数比单位“1”少几分之几是多少?(单位“1”已知)单位“1”×(1-分率)=分率所对应的量
二、解决分数除法问题
1、已知一个数的几分之几是多少,求这个数?(单位“1”未知)数量÷数量所对应的分率=单位“1”
2、已知一个数比另一个数多几分之分,求这个数?(单位“1”未知)数量÷(1+分率)=单位“1”
3、已知一个数比另一个数少几分之分,求这个数?(单位“1”未知)数量÷(1-分率)=单位“1”
三、解决百分数问题
1、求百分率的问题:一个数是另一个数的百分之几。
另一个数一个数
×100%=百分率
2、求一个数比另一个数多(少)百分之几。
相差数÷单位“1”=多(少)百分之几 对应量÷单位“1”-1
3、求一个数的百分之几是多少
(单位“1”已知)单位“1”×百分率=分率所对应的量
已知一个数的百分之几是多少,求这个数。
(单位“1”未知)数量÷数量所对应的百分率=单位“1”
4、求比一个数多(少)百分之几的数是多少 单位“1”×(1+百分率)=分率所对应的数量
5、已知比一个数多(少)百分之几的数是多少,求这个数。
数量÷(1+对应分率)=单位“1”
6、折扣问题 原价×折扣=现价
7、纳税问题收入×税率=应纳税额
8、利息问题本金×利率×时间=利息利息×税率=利息税
利息—利息税=税后利息本息=本金+税后利息。