因式分解单元分析
整式的乘法及因式分解单元总结及归纳

整式的乘法及因式分解单元总结及归纳1.代数式:用运算符号把数和字母连接而成的式子叫做代数式,单独的一个数或字母是代数式。
2.整式的分类:⎩⎨⎧和叫做多项式多项式:几个单项式的式的积的代数式叫做单项单项式:只是数与字母整式 1)单项式的次数:一个单项式中所有字母的指数和叫做这个单项式的次数。
2)多项式的次数:多项式中次数最高项的次数,就是这个多项式的次数。
3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项,所有的常数项都是同类项。
4)合并同类项:把同类项的系数相加,所得的结果作为系数,字母和字母的指数都不变。
3.幂的运算法则:),0(n m n m a >≠为正整数,且、⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧≠=≠=≠===≠>=÷=⋅--+指数)负指数幂,倒底数,反负指数幂:零指数幂:乘方)(等于分子、分母分别为正整数,(商的乘方:分别乘方)等于积里的每一个因式为正整数)(积的乘方:底数不变,指数相乘)为正整数)、幂的乘方:底数不变,指数相减),为正整数且、(同底数的幂相除:底数不变,指数相加)为正整数)、同底数的幂相乘:)(0(1)0(1)0)(()((()()(0((0a a a a a a n a b a b n b a ab n m a a a n m n m a a a n m a a a n n n n n n n n mn n m n m n m n m n m4.整式的运算:1)整式的加减运算:合并同类项。
2)整式乘法法则:⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧+++=+++±=±-=-++++=++++=++ab x b a x b x a x b ab a b a b a b a b a bn bm an am n m b a mc mb ma c b a m )())((12)())(())(()3()(21222222的一次二项式相乘:两个一次项系数为;完全平方公式:方法二:平方差公式:即:积相加。
“因式分解”单元教学设计及反思

“因式分解”单元教学设计及反思
陈磊 (北京师范大学厦门海沧附属学校)
摘 要:单元教学是当下教学研究的热点,对此笔者做了积极的探索,并付诸实践 .“因式分解” 一课基于因式分解与整式乘法的紧密联系引导学生大量举例,通过观察具有共同结构特征的多项式, 归纳得到具有共同结构特征的多项式因式分解的共同方法 . 在这些数学活动中,学生感受基于知识联 系的新知建构,并运用基本方法进行有序、有向探究,为逐渐形成数学的一般观念奠定基础 .
1. 关于单元教学 本节课以单元教学的形式整合研究因式分解的必 要性、因式分解的概念,以及因式分解的两种基本方 法 (提公因式法,公式法) 等内容. 本节课的核心任 务在于抓住因式分解与整式乘法的紧密联系,建构因 式分解的概念及其两种基本方法,使学生获得研究问
一定困难. 解决此问题的关键是让学生自然而然地感 受到因式分解是数学学习的需要,这是全面地认识问 题的必经之路.
六、教学过程设计
高次方程化归为次数更低的方程. 另一方面,按照人教版教材的编排顺序,学生先
学习整式的加、减、乘、除 (仅限于单项式除以单项 式、多项式除以单项式),之后学习特殊形式的整式乘 法 (乘法公式),接下来学习因式分解,这样编排能为 特殊形式的整式除法做准备,从而为后面学习分式的化 简打基础.
关键词:单元教学;共同结构特征;共同方法
一、内容和内容解析
分解的概念和基本方法.
1. 内容 本节课选自人教版 《义务教育教科书·数学》(以 下统称“人教版教材”) 八年级上册“14.3 因式分 解”,主要内容为因式分解的概念,以及因式分解的两 种基本方法——提公因式法和公式法. 2. 内容解析 因式分解是中学数学中重要的代数变形之一,是 后续学习分式、二次根式、一元二次方程、二次函数 等知识的基础. 学好因式分解既可以复习整式的乘 法,又可以为后续相关计算打好基础,还可以培养学 生对数式结构的观察能力. 因式分解与整式乘法是方向相反的变形,两者关 系紧密. 鉴于整式乘法内容本身极具系统性、整体性 的特点,以及与因式分解的逻辑连贯性,本节课将因 式分解的学习过程系统化、整体化,从而符合学生数 学学习的需要. 它有利于学生整体地认识数学的研究 对象,体会数学研究的一般方法,从而有效实现学习 结果的迁移. 基于以上分析,确定本节课的教学重点是:因式
《因式分解》单元备课

单元备课--整体构建 系统连贯
教材地位及课标要求
教学目标及达成标志
教学重难点及突破方式
教学建议及注意事项
目 录
教材地位及课标要求
数学核心素养
数学抽象
逻辑推理
直观想象
数据分析
数学建模
数学运算
数学抽象
逻辑推理
数学建模
在整式乘除与因式分解的运算过程中形成运算能力。
通过生活中常见的数字简便运算形成数学抽象能力。
2)渗透数形结合思想——通过拼图前后面积的不变解释因式分解的合理性,以直观形象的方式促进学生理解因式分解,发展几何直观。
单元教学建议
单元教学建议--1.1因式分解
3、应用所学简便运算,解决问题
课本中呈现小明的方法,显然是要引导学生思考不一般的解决方法,变复杂运算为简单运算。
单元教学建议--1.1因式分解
单元教学建议--1.2提公因式法
(1)类比——类比公因数、得出公因式概念,明确公因式找法(2)逆向思维——逆用乘法分配律,即(3)复杂计算
①整体思想(公因式为多项式)
②添括号(相反数——相反式)教材设计了添括号的练习,以帮助学生处理提高处理符号的能力,体会添括号的方法。旨在加深学生对添括号法则的理解。
借助拼图前后面积的不变性解释整式变形的过程,体会几何直观的作用,有助于学生从几何角度认识并理解因式分解的含义。
关注学生数学核心素养的形成
数与代数
式
数
方程
函数
有理数
无理数
整式
分式
整式方程
分式方程
一次、二次函数
反比例函数
因式分解
整体建构的单元备课
二次根式
一元二次方程
整式的乘法及因式分解单元总结与归纳

《整式的乘法及因式分解》单元总结与归纳【知识网络】【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、提公因式法 把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m,另一个因式是,即,而正好是除以m 所得的商,提公因式法分解因式实际上是逆用乘法分配律.要点三、公式法1.平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:()()22a b a b a b -=+-2.完全平方公式两个数的平方和加上这两个数的积的2倍,等于这两个数的和(差)的平方.即()2222a ab b a b ++=+,()2222a ab b a b -+=-. 形如222a ab b ++,222a ab b -+的式子叫做完全平方式.要点诠释:(1)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式.要点四、十字相乘法和分组分解法十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式2x bx c ++,若存在pq c p q b =⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++ 分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点五、因式分解的一般步骤因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解.(4)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、提公因式法分解因式1、已知21x x +-=0,求3223x x ++的值.【答案与解析】解:依题意得:21x x +=,∴3223x x ++,=3223x x x +++,=22()3x x x x +++,=23x x ++,=4;类型二、公式法分解因式2、已知2x -3=0,求代数式()()2259x x x x x -+--的值. 【答案与解析】解:()()2259x x x x x -+--, =322359x x x x -+--,=249x -.当2x -3=0时,原式=()()2492323x x x -=+-=0.3、在日常生活中,如取款、上网需要密码,有一种因式分解法产生密码,例如()()()4422x y x y x y x y -=-++,当x =9,y =9时,x y -=0,x y +=18,22x y +=162,则密码018162.对于多项式324x xy -,取x =10,y =10,用上述方法产生密码是什么?【答案与解析】解:()()()32224422x xy x x y x x y x y -=-=+-, 当x =10,y =10时,x =10,2x +y =30,2x -y =10,故密码为103010或101030或301010.4、因式分解:(1)()()269a b a b ++++;(2)222xy x y --- (3)()()22224222x xy y x xy y -+-+.【答案与解析】 解:(1)()()()22693a b a b a b ++++=++(2)()()2222222xy x y xy x yx y ---=-++=-+ (3)()()22224222x xy y x xy y -+-+=()()24222x xy y x y -+=- 5、先阅读,再分解因式:()24422224444(2)2x x x x x x +=++-=+-()()222222x x x x =-+++,按照这种方法把多项式464x +分解因式.【答案与解析】解:442264166416x x x x +=++-=()222816x x +-=()()228484x x x x +++-.类型三、十字相乘法或分组分解法分解因式6、将下图一个正方形和三个长方形拼成一个大长方形,请观察这四个图形的面积与拼成的大长方形的面积之间的关系.(1)根据你发现的规律填空:2x px qx pq +++=()2x p q x pq +++=______;(2)利用(1)的结论将下列多项式分解因式:①2710x x ++;②2712y y -+.【答案与解析】解:(1)()()x p x q +⨯+(2)①()()271025x x x x ++=++ ②()()271234y y y y -+=--。
初中数学《因式分解》单元教学设计以及思维导图

因式分解学习难点:让学生识别多项式的公因式。
准确找出公因式,并能正确进行分解因式。
教学方法:独立思考与合作交流单元与主题的关系:本单元是解决主题的一种方法三、运用公式法学习重点:让学生掌握运用平方差公式分解因式使学生会用完全平方公式分解因式,让学生掌握多步骤、多方法分解因式方法。
学习难点:将某些单项式化为平方形式,再用平方差公式分解因式;培养学生多步骤分解因式的能力,让学生学会观察多项式的特点,恰当地安排步骤,恰当地选用不同方法分解因式。
教学方法:练习法,课堂讨论启发法。
单元与主题的关系:本单元是解决主题的另一种方法,并且综合运用各种方法来解决主题。
主题单元规划思维导图第1课时活动一:算一算活动内容:计算:(1)学生回答:你是用什么方法计算的?这个式子的各项有相同的因数吗?活动目的:引入这一步的目的旨在让学生通过乘法分配律的逆运算(因数分解)这一特殊算法,使学生通过类比的思想方法很自然地过渡到正确理解提公因式法的概念上,从而为提公因式法的掌握扫清障碍.活动二:想一想活动内容:多项式ab+ac中,各项有相同的因式吗?多项式x2+4x 呢?多项式mb2+nb–b呢?结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式.活动目的:在学生能顺利地寻找数的简便运算中的公因数之后,再深一步引导学生采用类比的方法由寻找相同的因数过渡到在多项式中寻找相同的因式.活动三:议一议活动内容:多项式2x2y+6x3y2中各项的公因式是什么?结论:(1)各项系数是整数,系数的最大公约数是公因式的系数;(2)各项都含有的字母的最低次幂的积是公因式的字母部分;(3)公因式的系数与公因式字母部分的积是这个多项式的公因式.通过观察,推导分解因式与整式乘法的关系,让学生感受事物间的因果联系.专题问题设计1. 平方差公式的特点。
2. 完全平方公式的特点。
3. 运用整体法,及两种公式综合运用解题。
所需教学环境和教学资源电子白板学习活动设计第1课时活动一:练一练活动内容:填空:(1)(x+3)(x–3)= ;(2)(4x+y)(4x–y)= ;(3)(1+2x)(1–2x)= ;(4)(3m+2n)(3m–2n)= .根据上面式子填空:(1)9m2–4n2= ;(2)16x2–y2= ;(3)x2–9= ;(4)1–4x2= .活动目的:学生通过观察、对比,把整式乘法中的平方差公式进行逆向运用,发展学生的观察能力与逆向思维能力.注意事项:由于学生对乘法公式中的平方差公式比较熟悉,学生通过观察与对比,能很快得出第一组式子与第二组式子之间的对应关系.活动二:想一想活动内容:观察上述第二组式子的左边有什么共同特征?把它们写成乘积形式以后又有什么共同特征?结论:a2–b2=(a+b)(a–b)活动目的:引导学生从第一环节的感性认识上升到理性认识,通过自己的归纳能找到因式分解中平方差公式的特征.注意事项:学生对平方差公式的正确使用掌握的比较快,但用语言叙述第二组式子的左右两边的共同特征有一定的困难,必须在老师的指导下才能完成.活动三:做一做活动内容:把下列各式因式分解:(1)25–16x2 (2)9a2–活动目的:培养学生对平方差公式的应用能力.注意事项:学生对含有分数的平方差公式应用起来有一定的困难,有的学生由于受解方程的影响,习惯首先去分母,再因式分解,这是很多学生经常犯的一个错误.活动四:议一议活动内容:的完全平方公式.注意事项:由于有了七年级的整式乘法的学习基础,同时对照口诀,大多数学生能顺利识别完全平方式,但少部分同学由于对完全平方公式的特征的理解模糊,不能很好地掌握完全平方公式,这需要老师更加耐心地引导和启发.活动三:试一试活动内容:把下列各式因式分解:(1)x2–4x+4 (2)9a2+6ab+b2(3)m2–(4)活动目的:(1)培养学生对平方差公式的应用能力;(2)让学生理解在完全平方公式中的a与b不仅可以表示单项式,也可以表示多项式.注意事项:学生对第(3)小题含有分数的完全平方公式应用起来有一定的困难,有的学生由于受解方程的影响,习惯首先去分母,再因式分解,这是很多学生经常犯的一个错误.活动四:想一想活动内容:将下列各式因式分解:(1)3ax2+6axy+3ay2 (2)–x2–4y2+4xy活动目的:使学生清楚地了解提公因式法(包括提取负号)是分解因式首先考虑的方法,再考虑用完全平方公式分解因式.注意事项:在综合应用提公因式法和公式法分解因式时,一般按以下两步完成:(1)有公因式,先提公因式;(2)再用公式法进行因式分解. 活动五:反馈练习活动内容:1、判断正误:(1)x2+y2=(x+y)2 ( )(2)x2–y2= (x–y)2 ( )(3)x2–2xy–y2= (x–y)2 ( )(4)–x2–2xy–y2=–(x+y)2 ( )2、下列多项式中,哪些是完全平方式?请把是完全平方式的多项式分解因式:(1)x2–x+ (2)9a2b2–3ab+1(3)(4)3、把下列各式因式分解:(1)m2–12mn+36n2 (2)16a4+24a2b2+9b4(3)–2xy–x2–y2 (4)4–12(x–y)+9(x–y)2活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的特征是否清楚,对完全平方公式分解因式的运用是否得当,因式分解的步骤是否真正了解,以便教师能及时地进行查缺补漏.注意事项:当完全平方公式中的a与b表示两个或两个以上字母时,学生运用起来有一定的困难,此时,教师应结合完全平方公式的特征给学生以有效的学法指导.活动六:学生反思。
人教版初中数学《整式的乘法与因式分解》单元教材教学分析

3、掌握整式的加、减,乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式进行简便运算。
4、理解因式分解的意义,认识因式分解与整式乘法是相反的运算,掌握提公因式法和公式法分解因式的基本方法,并能正确进行因式分解。
重点、难点与关键
1、整式的乘法(正整数幂的乘除法、单项式乘或除单项式、多项式乘或除单项式、多项式乘多项式法则、乘法公式)
2、会进行因式分解(提公因式法和公式法)
教学方法和手段的设计
数学思想转化的思想,由简到难逐一转化。课堂计算、提问。
学生思想教育和行为习惯的培养及学习方法
1、数学思想的培养转化能力的学习。
2、从具体到抽象认知能力培养。
人教版初中数学《整式的乘法与因式分解》单元教材教学分析
学段及学科
初中数学
教材版本
人教版
单元名称
《整式的乘法与因式分解》
单元教材主题内容与价值作用
幂的运算性质、整式的乘法、整式的除法、乘法公式、因式分解;
让学生充分体会从抽象到具体的认知过程,提高学生的逻辑思维
单元目标
1、掌握正整数幂的乘法、除法运算的性质,能正确的表述这些性质,并能熟练的进行计算。掌握单项式乘(或除)单项式,多项式乘(或除)单项式以及多项式乘多项式的法则,并能正确进行计算。
3、逻辑思维能力的培养
课时安排
第一课时:整式的乘法(同底数幂的乘法、幂的乘方、积的乘方)2课时
第二课时:整式的乘法(单项式乘单项式,ቤተ መጻሕፍቲ ባይዱ项式乘多项式、多项式乘除单项式)4课时
第三课时:乘法公式3课时
第四课时:因式分解3课时
说明
通过教学培养学生的抽象思维能力,计算能力
第十四章 整式的乘除与因式分解 单元教材分析 教学设计

第十四章整式的乘除与因式分解教学目标
(一)知识与技能
1.理解幂的乘方,积的乘方的运算性质。
2.理解整式运算的算理,会进行简单的整式乘法运算
3.会推导平方差公式,并且懂得运用平方差公式进行简单计算.
4.完全平方公式的学习与探讨。
(二)过程与方法
1.体会乘法结合律的作用和转化的思想,发展有条理的思考及语言表达能力.
2.经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力。
(3)情感态度与价值观
1.培养学生推理能力、计算能力,通过小组合作与交流,增强协作精神.
2.经历探索多项式与多项式相乘的运算法则的推理过程,体会其运算的算理.
重点难点
重点: 1.幂的乘方,积的乘方的运算.
2.单项式与多项式相乘的法则;多项式与多项式的乘法法则的理解及应用
难点: 1.单项式乘法与整式乘法运算法则的推导与应用.
2.多项式与多项式的乘法法则的应用.教学进度
14.1 9课时
14.2 4课时
14.3 4课时。
第十四章整式的乘法与因式分解大单元(教案)

2.教学难点
(1)多项式乘法的运算顺序和法则记忆。
-难点分析:学生容易混淆不同类型的乘法法则,忘记分配律。
-解决方法:通过直观图示和反复练习,加深记忆。
(2)完难点分析:学生难以区分两个公式,以及何时使用哪个公式。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整式的乘法与因式分解的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-练习:应用完全平方公式进行乘法和因式分解。
(3)平方差公式:a^2-b^2=(a+b)(a-b)。
-举例:解释公式中a和b的含义,展示公式的应用。
-练习:设计平方差公式的应用题目,加强理解。
(4)因式分解方法:提公因式法、公式法、十字相乘法。
-举例:详细讲解每种方法的步骤,如提取公因式时如何找到最大公因式。
第十四章整式的乘法与因式分解大单元(教案)
一、教学内容
第十四章整式的乘法与因式分解大单元(教案)
1.多项式乘以多项式
-乘法法则
-举例说明
-练习
2.单项式乘以多项式
-乘法法则
-举例说明
-练习
3.多项式乘以单项式
-乘法法则
-举例说明
-练习
4.完全平方公式
-公式推导
-应用实例
-练习
5.平方差公式
-公式推导
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)教材的地位和作用
多项式因式分解是代数式中的重要内容,它与前面的整式及后面的分式联系极为密切。
因式分解的教学是在整式四则运算的基础上进行的,因式分解的理论依据就是多项式乘法的逆变形。
这部分内容在分式的通分和约分有着直接的应用,在解方程、二次根式及将三角函数式进行恒等变形等方面有着广泛的应用,也是中考的一个重要考点,可以说因式分解是代数恒等变形的一个重要工具,所以这部分知识掌握的好坏直接影响着学生今后对代数知识的学习和应用。
(二)教学的目标和要求
从教材作用及适应中考要求我确定如下教学目标:
1、知识目标:A、理解因式分解的概念。
B、掌握因式分解的方法及一般步骤。
C、会对多项式进行因式分解。
2、能力目标:A、通过知识结构图的教学,培养学生归纳总结能力。
B、通过因式分解综合练习,提高学生观察、分析能力。
3、德育目标:A、培养学生运用数学知识解决实际问题的意识。
B、培养学生勇于探索、迎难而上的坚强品质。
(三)教学的重点和难点
重点:因式分解的基本方法的运用
难点:学生对分解因式的方法、技巧的掌握
二、教法与学法
因式分解是数学教学的难点之一,采用知识点归纳因式分解的有关知识,使因式分解教学条理化、系统化,达到分散难点,最终突破难点
的目的;因式分解的理论比较深,分解因式的方法多,变化技巧性较高,为了学生更好的掌握本节的内容,我采用“提供练习――引导观察――发现归纳”,让学生总结出分解因式的方法的对应关系,再通过适当的练习实践,及时消化巩固,让学生获取知识。
在引导观察的过程中,启发学生发现问题、解决问题,调动学生积极参与讨论,肯定成绩,使其具有成就感,提高他们学习的兴趣和学习的积极性。