高级地球化学讲义2张本仁院士
张本仁地球化学课件

接上 2. 专门从事寓于地球物质运动中的某种基础形式运动的 学科 力学类:构造地质学(固体地球力学)、 )、大陆和地幔 力学类:构造地质学(固体地球力学)、大陆和地幔 动力学(尚待建立)、大气动力学、海洋动力学等。 )、大气动力学 动力学(尚待建立)、大气动力学、海洋动力学等。 分别为地质学、大气科学和海洋科学的三级学科。 分别为地质学、大气科学和海洋科学的三级学科。 化学:地球化学(地球科学的二级学科,涉及固、 化学:地球化学(地球科学的二级学科,涉及固、液、 气地球部分)。 气地球部分)。 物理学:地球物理学(地球科学的二级学科,涉及固、 物理学:地球物理学(地球科学的二级学科,涉及固、 气地球部分)。 液、气地球部分)。 生物学:研究地球系统生物作用的的学科, 生物学:研究地球系统生物作用的的学科,尚未形成 独立学科,但其内容有些已含于其他学科中: 独立学科,但其内容有些已含于其他学科中:如地 球化学中的生物地球化学, 球化学中的生物地球化学,矿床学中的生物和有机 质成矿作用,地质和海洋中的微生物作用等。 质成矿作用,地质和海洋中的微生物作用等。 这一类学科均为前一类学的的基础或支撑学科。 这一类学科均为前一类学的的基础或支撑学科。
接上 • 研究任务和范围:根据Goldschmidt(1954)《地球化 研究任务和范围:根据Goldschmidt(1954)《 Goldschmidt(1954) 地球化学是根据原子和离子的性质, 学》:“地球化学是根据原子和离子的性质,研究化 学元素在矿物、矿石、岩石、土壤、 学元素在矿物、矿石、岩石、土壤、水及气圈中的分 配和含量以及这些元素在自然界的迁移。 配和含量以及这些元素在自然界的迁移。这门科学不 仅限于研究用来区别物质的最根本单元的化学元素, 仅限于研究用来区别物质的最根本单元的化学元素, 还包括研究各种同位素(或原子的种类; 还包括研究各种同位素(或原子的种类;注;现称核 的分布和丰度, 素)的分布和丰度,并包括核子在宇宙中的出现率及 稳定性等问题” 稳定性等问题”。表明地球化学早期的设想就是建立 全球系统的学科,只是受取样的限制, 全球系统的学科,只是受取样的限制,研究采集中于 外部层圈。任务着重于研究岩石、 外部层圈。任务着重于研究岩石、矿物等地质体的化 学成分及其形成的化学作用,即地学小系统的化学。 学成分及其形成的化学作用,即地学小系统的化学。 总之,这一阶段的地球化学就以“ 总之,这一阶段的地球化学就以“元素原子自然历 的基本思想为特征, 史”的基本思想为特征,地球化学的研究内容和范围 也主要就是元素在地壳中的分布、分配、集中、 也主要就是元素在地壳中的分布、分配、集中、分散 及迁移历史,对象基本是地壳中的元素原子。 及迁移历史,对象基本是地壳中的元素原子。
岩石形成构造环境地球化学判别如何有效应用张本仁PPT学习教案

(2)N-型、T-型和E-型MORB的地球化学 区别。三种MORB均产于洋脊,在大陆上均 与蛇绿岩有关。N–MORB来源于亏损地幔 (DM), E-MORB岩浆源自地幔深部地幔 柱源区,而T-MORB为上述两种地幔源岩浆 的混合产物。相对于DM,地幔柱源岩浆明 显富集不相容元素(含REE), (La/Yb)N >> (6.6 — 13.6), Ti≈Ta; Th/Yb、 Ta/Yb、Ba/Nb、Ba/Th、Ba/La等偏高, Zr/Nb偏低。
第4页/共76页
3.不同构造环境显示出不同的热动力学和物理化 学条件,影响着各类成岩过程的机制和特征
例如,洋脊环境受制于地幔高热流,使热通过玄武岩 浆向外逸散,只发生岩浆快速结晶或固结,一般不引 起较大的成分分异。板内裂谷构造同样是地幔软流圈 上隆或地幔热柱作用引起岩石圈裂解的结果,幔源岩 浆可以通过结晶分异突变、岩浆不混熔分层等方式形 成双模式岩套(机制未完全搞清),也可由于幔源岩 浆热的烘烤使下地壳部分熔融形成不同源的双模式岩 套,但不引起岩浆中高场强元素(HFSE)相对于大离 子亲石元素(LILE)的分异或亏损。
第24页/共76页
(三)各类板块构造环境中岩浆岩的化学 特征及其应用的实例
下面将以不同构造环境中产 出的玄武岩类(含长英质火 山岩)花岗岩类的地球化学 特征、鉴别标志及其用于判 别的情况,以图表方式说明 之,以期能够加深对上述原 理和原则的理解,改善在研 究学判别如何有 效应用张本仁
会计学
1
一、引言
1 研究简况
上世纪60年代中板块构造学说兴起,使地质学家视野 首次扩大到全球,大大促进了地学及其下属各们学科, 包括地球化学的迅猛发展。
上世纪60—70年代,集中研究近代各类板块构造环境 中岩石的地球化学特征及形成机制,进而探索构造环 境地球化学判别的标志、方法和图解,工作集中于洋 域及其周边。
赵志丹岩石地球化学1-绪论

2. 地球化学区别于地球科学的其他学科
——着重于研究地质作用中的化学运动形式及其规律, 以区 别于构造地质学和古生物学; ——地球化学以观察原子为出发点,研究原子活动的整个历 史,包括元素富集与分散、固结形式及流体状态迁移等, 重视研究微量元素及同位素,以此区别于矿物学、岩石学 及矿床学的研究内容。地球化学基本原理具有更为普遍、 更为深刻的意义。 ——地球化学是地球物质科学(material science of the earth) 中研究物质成分的主干学科,又兼具分支学科和基础理论 学科的双重特点。
其他早期教材:
戚长谋等, 地球化学通论.1994, 地质出版社. 涂光炽等, 地球化学.1984, 上海科技出版社. 布朗洛,A.H., 地球化学(中译本), 1982,地质出版社. 戈尔德斯密特, V.M.,地球化学(中译本), 1954,科学出版社.
地球化学英文主要参考书
Fancis Albarede, Geochemistry: An introducion. 2003, Cambridge University Press. Faure, G. Principles and Applications of Geochemistry. (2nd.). 1998, Prentice Hall. Ottonello, G. Principles of Geochemistry. 1997, Columbia University Press.
例如:元素Ni在橄榄岩/玄 武岩之间如何分配?在辉 石/斜长石之间如何分配?
二、地球化学研究的基本问题
2. 研究元素的共生组合和赋存形式
共生组合——前者指无成因含义,后者有成因含义。具有共 同或相似迁移历史和分配规律的元素常在特定的地质体中形 成有规律的组合,称为元素共生组合,如Cu、Pb、Zn 在热 液矿床中形成共生组合,Cr、Ni、Co和铂族元素在基性超 基性岩中形成共生组合。 赋存形式(存在形式,赋存状态):指元素在地质体中以什么形 式存在,常见形式例如:化合物(氧化物,硫化物,硅酸盐,碳 酸盐等等)、类质同像混入物、机械混入物、包裹体及吸附 物等等。
中国地质大学 2012春 地球化学课件绪论B

→KAl3Si3O10(OH)2+2SiO2+Na++Ca2+ 生成含水铝硅酸盐矿物和石英。
NaAlSi3O8-CaAlSi2O8+H++K+
中酸性岩和碳酸盐岩接触带的矽卡岩化:
3CaCO3+Al2O3+3SiO2=Ca3Al2Si3O12(钙铝榴石 钙铝榴石)+CO2↑ 钙铝榴石 CaCO3+MgCO3+2SiO2=CaMgSi2O6(透辉石 透辉石)+2CO2↑ 透辉石
探讨体系成因和演化。直角坐标,三角形,立体图解以及 标准化图解-球粒陨石标准化。 同位素比值等。Rb/Sr比值等
示踪剂法-由地球化学性质相近或相反元素对组成,或 地球化学计算和模拟-计算地球化学 Rollinson, Using geochemical data: evalution, presentation, interpretation.1993
0.4.3 地球化学数据分析
利用周期表元素位置确定元素在地质过程中的相互联系。 据已知分布预测可能存在的特征组合。 性,晶体场效应等,阐述微迹元素活动历史和运动规律,
元素周期表法-元素活动性取决于原子的构造性质,
晶体化学分析法-原子大小,配位数,极化性质,键
地球化学讲稿

地球化学讲稿绪论地球科学以自然物质的组成及其各类运动形式为研究内容。
地球化学是地球科学中研究物质成分的主干学科,以元素及其化学运动为研究对象,是地球科学的基础学科之一是地球化学专业的专业基础课利用化学的方法研究地球中元素的含量、分布及化学变化的地质科学现代地球科学有三门基本学科:地质学、地球物理学和地球化学。
此外,还包括地理学、气象学、水文学、海洋学、土壤学、环境地学等学科。
2.地球化学1838年瑞士化学家Sch?nbein(申拜因)首次提出了“地球化学”这个名词;1842年预言:“一定要有了地球化学,才能有真正的地质科学。
”地球化学的定义:地球化学是研究地球及其子系统(含部分宇宙体)的化学组成、化学机制和化学演化的科学。
1)从研究对象来看:是地球及其子系统(地壳、地壳及其自然作用体系(岩浆作用、沉积作用、变质作用、成矿作用、表生作用、生态环境)),目前正在向宇宙天体拓展;2)从研究形式来看:主要是元素和同位素在自然界的化学运动形式;3)从研究时间来看:包涵了整个地球、地壳演化和全部地质作用时期;对单个元素和同位素来讲,是研究它们的发生、不断发展及螺旋式演化的全部历史。
为此,地球化学是地质学与化学相结合的一门边缘学科,但本质上是隶属地球科学同位素是具有相同原子序数的同一化学元素的两种或多种原子之一,在元素周期表上占有同一位置,化学行为几乎相同,但原子质量或质量数不同,从而其质谱行为、放射性转变和物理性质(例如在气态下的扩散本领)有所差异。
同位素的表示是在该元素符号的左上角注明质量数,例如碳14,一般用14C而不用C14.在自然界中的丰度:指的是该同位素在这种元素的所有天然同位素中所占的比例。
丰度的大小一般以百分数表示。
人造同位素没有丰度。
周期表上所列的原子量实际上是各种同位素按丰度加权的平均值,这是因为各种同位素在自然界中往往分布的比较均匀,取平均值计算比较准确。
以原子百分数表示的地壳中某种元素各同位素的相对含量。
地球化学资料1

地球化学资料1地球化学资料(1120101)第⼀章地球化学定义DefinitionB.И.韦尔纳茨基(1922):地球化学科学地研究地壳中的化学元素(chemical elements),即地壳的原⼦,在可能的范围内也研究整个地球的原⼦。
地球化学研究原⼦的历史、它们在时间和空间上的运动(movement)和分配(partitioning),以及它们在整个地球上的成因(origin)关系。
V.M.费尔斯曼(1922):地球化学研究地壳中化学元素---原⼦的历史及其在⾃然界各种不同的热⼒学(thermodynamical)与物理化学条件(physical-chemical conditions)下的⾏为。
V.M.哥尔德施密特(1933):地球化学是根据原⼦和离⼦的性质,研究化学元素在矿物、矿⽯、岩⽯、⼟壤、⽔及⼤⽓圈中的分布和含量以及这些元素在⾃然界中的迁移。
地球化学的主要⽬的,⼀⽅⾯是要定量地确定地球及其各部分的成分,另⼀⽅⾯是要发现控制各种元素分配的规律(laws governing element distribution and partitioning)。
V.V.谢尔宾娜(1972):研究地球的化学作⽤的科学---化学元素的迁移、它们的集中和分散,地球及其层圈的化学成分、分布、分配和化学元素在地壳中的结合。
(地球化学基础)涂光炽(1985):地球化学是研究地球(包括部分天体celestial bodies)的化学组成(chemical composition)、化学作⽤(chemical process)和化学演化(chemical evolution)的科学。
刘英俊等(1987):地球化学研究地壳(尽可能整个地球)中的化学成分和化学元素及其同位素在地壳中的分布、分配、共⽣组合associations、集中分散enrichment-dispersion及迁移循徊migration cycles规律、运动形式forms of movement和全部运动历史的科学。
大别山地壳结构的Pb同位素地球化学示踪

继承 锆石 年龄 Xue et n . 也 报道 了在正 片麻岩 的 锆石 下交 点年 龄 为 134 Ma,同时他 们 在北大 别杂 岩 中获得 一 个 糜 棱岩 化 花 岗岩 的 u—Ph锆 石 谐和 年 龄 为 756 Ma。由于北 大别 正片麻 岩及其 他 岩石 被大量 的未 变形 的 中生代 花 岗岩侵 入 ,因此 ,129—138 Ma 的锆 石 边 部 年 龄 可 能 代 表 锆 石 的增 生 年 龄 ,而 700~800 Ma的锆 石 核部 年龄 应 为正 片麻 岩 的原 岩 形成 年龄 ,否 则难 以解 释未 变形 的 中生代 花岗岩 和 面理化 的正 片麻 岩岩石 在 如此短期 的时 间内形成 。 近期 ,徐 树桐 等 报道 了在北 大别 杂岩 的分 布范 围 内发 现有 榴辉 岩产 出 作者 观察 表 明 ,这些 榴辉 岩 的 围岩 片麻岩不 同于北 大别 的正 片麻 岩 ,而 与南 大 别榴 辉岩 的 围岩相 类似 。 因此 ,北 大 别这些 含榴 辉 岩 的岩块 不 同于传 统 意义上 的北 大别 变质杂 岩
第 4期
张 宏 飞等 :大 别 山 地 壳 结构 的 Pb同位 素 地 球 化 学 示 踪
397
岩类 岩体 的侵人 (图 1),在大 别 山东部 从北 向南 出 露有 河棚 岩体 、山七 岩体 、主簿 岩体 、白马尖 岩体 、司 空 山岩体 、绿扬 岩体 和蕲 春岩体 等 ,其 中河棚 岩体 和 山七 岩体 分布 于北淮 阳块 体 ;主簿 和 白马尖 岩体 分 布 于北大 别变质 单元 内;司空 山岩体 分 布于南 大 别 变质 单元 内单元 ; 蕲春 岩体 分布 于宿松 变质 单元 。这些 岩 体 的同位 素 年 龄 变化 于 95~130Ma之 问 I” ,属 白垩纪 构造 . 岩 浆作 用 的产 物 ,其 详细 的岩 体地 质 特 征和 岩石 学 特 征见文 献 [17~19]
地球化学讲义第五章同位素地球化学中国地质大学

——多媒体课件
2021年8月22日
第2页/共78页
第五章 同位素地球化学
地
同位素地球化学是研究地壳和地球中核素的形成、丰
球 度及其在地质作用中分馏和衰变规律的科学。
化
学
同位素地球化学
2021年8月22日
第3页/共78页
第五章 同位素地球化学
地
本章内容
球 自然界引起同位素成分变化的原因 化 学 同位素年代学
稳定同位素地球化学
2021年8月22日
第4页/共78页
地 球 化 学
同位素地球化学在解决地学领域问题的独到之处:
1)计时作用:每一对放射性同位素都是一只时钟,自地 球形成以来它们时时刻刻地,不受干扰地走动着,这样可以 测定各种地质体的年龄,尤其是对隐生宙的前寒武纪地层及 复杂地质体。
2)示踪作用:同位素成分的变化受到作用环境和作用本 身的影响,为此,可利用同位素成分的变异来指示地质体形 成的环境条件、机制,并能示踪物质来源。
O的质子数P=8,但中子数分别为8、9、10,因此, 氧有质量数分别为16O、17O、18O三个同位素。
2021年8月22日
地 球 化 学
(一) 核素的性质
第7页/共78页
(1)核素具有电荷:一个质子带有一个单位的正电荷,原子的核电荷数等于质子 数,并由此决定原子的核外电子数。核电荷数一旦改变就变成了另外一种元素, 同时核电荷数也影响着核的组成及结构,即决定核的稳定性。
112,114,115,116,117,118,119,120,122,124Sn 自然界也存在只有一种同位素单独组成的元素: Be、F、Na、Al、P等27种。其余大多数由2-5种同位素组 成。
2021年8月22日
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.随研究的深入,某些构造环境鉴别已不 能满足于大类确定,还需区分细的类型。 例如,岛弧环境需进一步鉴别出洋内岛弧、 大陆岛弧和陆缘弧;在洋脊玄武岩中需区 分正常型洋脊玄武岩(N-MORB)、过渡型 洋脊玄武岩(T-MORB)和异常型洋脊玄武 岩(E-MORB);板内构造环境需要区分大 洋裂谷与大陆裂谷,等等。详细区分的原 理与标志说明如下。
图1 勉略蛇绿混杂岩带玄武岩球粒陨石和N-MORB标准化微量元素组成模 式
图2 各类玄武岩N-MORB标准化微量元素组成模式 N-MORB-正常洋脊玄武岩; IAB-岛弧拉斑玄武岩; CABI-岛弧钙碱性玄 武岩; CABM-陆缘弧钙碱性玄武岩;WPB-板内玄武岩。据BVTP(1981)数 据。
பைடு நூலகம்
图3 大洋中脊玄武岩 N-MORB 标准化不相容元素组成模式
(2)N型、T-型和E型MORB的地球化学 区别。三种MORB均产于洋脊,在大陆上 均与蛇绿岩有关。N–MORB来源于亏损地 幔(DM), E-MORB岩浆源自地幔深部 地幔柱源区,而T-MORB为上述两种地幔 源岩浆的混合产物。相对于DM,地幔柱源 岩 浆 明 显 富 集 不 相 容 元 素 ( 含 REE ) , (La/Yb)N>>1(6.6~13.6), Ti≈Ta; Th/Yb 、 Ta/Yb、Ba/Nb、Ba/Th、Ba/La等偏高, Zr/Nb偏低。
例如,洋脊环境受制于地幔高热流,使热通过玄武岩 浆向外逸散,只发生岩浆快速结晶或固结,一般不引起 较大的成分分异。板内裂谷构造同样是地幔软流圈上隆 或地幔热柱作用引起岩石圈裂解的结果,幔源岩浆可以 通过结晶分异突变、岩浆不混熔分层等方式形成双模式 岩套(机制未完全搞清),也可由于幔源岩浆热的烘烤 使下地壳部分熔融形成不同源的双模式岩套,但不引起 岩 浆 中 高 场 强 元 素 ( HFSE ) 相 对 于 大 离 子 亲 石 元 素 (LILE)的分异或亏损。
(1)洋内岛弧(如阿留申)、大陆岛弧 (如巽他)和陆缘弧(安第斯型)的地球 化学区别。根据:按上列顺序,岛弧玄武 岩的地幔源区中陆源沉积物的影响依次增 强(洋壳俯冲带入)。标志为:虽共同具 有亏损HFSE的特征,但洋内岛弧基本无大 陆物质影响,大陆岛弧至陆缘弧大陆物质 影响逐渐增大。具体表现:相对洋内岛弧, 不相容元素(含REE)增富,(La/Yb)N增大, La/Nb、Ba/Nb、Th/Nb等增高。
9.同位素和微量元素联合判别能提高效果。 例如,N-MORB来源自亏损地幔(DM), 其 现 今 ε Nd(0) 介 于 +8 ~ +12 ; OIB 和 EMORB来自地幔柱源,其现今ε Nd(0)介于 +10 ~ - 2; 而岛弧玄武岩的ε Nd(0)介于+8 ~ - 2。如将Nd同位素标志与微量元素标志 联合应用,则可明显提高岩石构造环境的 分辨率。在此应注意有些情况下同位素和 微量元素是解耦的,如地幔柱源岩浆在不 相容微量元素上是富集的,但在Nd同位素 方面则多数显示亏损特征。
又如,B型俯冲带中为地幔对流下降处,随俯冲 洋壳下插温度升高和脱水变质,形成富水条件下 的部分熔融,必然造成富含于难熔(溶)矿物 (钛酸盐类、金红石、锆石等)中的高场强元素 (Nb、Ta、Zr、Hf、Ti、P)更多地留在源区的 残余固相中,而大离子亲石元素(K、Rb、Ba、 Th、U、REE)(多含于一般造岩矿物中,且具有 不相容性)则倾向富集于形成的岩浆和溶液中, 因此俯冲消减带中的火山岩和侵入岩均显示HFSE 相对于LILE亏损的特征。这种特征被称之为消减 带组分——SZC。
(一)正确理解构造环境与岩石地球化学
特征的内在联系是,除数据精度基础外,
克服盲目性、提高岩石构造环境地球化学
判别效果的首要因素。按地质运动中各种基础
运动形式的相互依存、相互制约和相互转化的地
学哲学观,对各类岩石形成过程来说,构造(环 境)起着沟通物源、约束过程发生场所和运移途 径,以及制约热动力学条件的作用。具体说明如 下:
(三)各类板块构造环境中岩浆岩的化学 特 征 及 其 应 用 的 实 例 下面将对不同构造环境中产出的玄武岩类 (含长英质火山岩)和花岗岩类的地球化 学特征、鉴别标志及其用于判别的情况, 以图表方式说明之,以期能够加深对上述 原理和原则的理解,改善在研究中的应用。
I、玄武岩类构造环境地球化学判别
总之,上述有关构造性质和构造环境对岩 石地球化学特征约束实质的阐明,虽然只 是结合岩浆作用讨论的,但也适用于沉积 作用。只是对沉积作用而言,物源应是受 构造环境制约的剥蚀区的物质成分,构造 限定的成岩条件则更多是风化剥蚀速率及 水动力学条件。变质作用物源则是卷入构 造运动的岩浆岩或沉积岩,而构造运动则 限定着热动力学条件。
(3)大洋裂谷OIB和大陆裂谷CRB的区分。 两种裂谷环境中产出的玄武岩均多为地幔 柱源岩浆形成,一致显示上述地幔柱源岩 浆的地球化学特征,并且常与长英质岩石 组成碱性双峰岩套,一般不易区别,只是 OIB有时更富集Nb-Ta(在蛛网图中显示正异 常),CRB常显示陆壳污染特征。区分时, 应注意反映洋和陆的其他标志,如共生沉 积岩海相和陆相的特征、有无蛇绿岩相伴 等。
图5 松树沟变拉斑玄武岩Th/Yb-Ta/Yb(a)和Ta-Th-Hf(b)图解 (引自周鼎武等, 1995a) a: MORB(注N-MORB)、IOB、SHO、CAB、IAT和DM分别为正常 洋脊玄武岩、洋岛玄武岩、钾玄岩、钙碱性玄武岩、岛弧拉斑玄武岩 和亏损地幔(数据根据Pearce, 1983); b:N-MORB-正常型洋脊玄武岩, E-MORB-异常型洋脊玄武岩, WPB-板内玄武岩(数据根据Wood, 1980). 图例同图3.
1.不同构造切割壳幔的深度和部位不同, 洋脊可沟通地幔的软流圈,B型俯冲可导 致俯冲洋壳与岩石圈地幔的相互作用,A 型俯冲可引起俯冲陆壳与另一侧地壳深 部和地幔的相互作用,等等。由于地球 各层圈及层圈内不同部分均为化学成分 差异的物质库,所以特定构造和构造环 境就沟通着不同物质库(源区)及其组 合,使岩石一定程度上继承源区的化学 特征。
2.存在问题:
• 虽然这种构造地球化学研究已作出许多重要成 果与贡献,但由于大陆发展的长期和复杂性, 这种研究途径的本身和应用上尚有待改进和完 善; • 在大陆构造研究方面地球化学的理论和方法的 潜力还远未得到发挥,需不断开发和挖掘; • 要解决地球化学如何通过区域和造山带构造研 究揭示大陆动力学的问题。
3.课程安排
(1)本章论述如何改进提高通过岩石 形成构造环境的地球化学判别,进而 探索区域和造山带构造发展问题; (2)第三章讨论如何开发地球化学理 论与方法,尤其将研究壳幔组成和演 化的理论和方法用于大地构造研究的 问题(由区域壳幔系统约束区域构 造); (3)第四章论述化学地球动力学与大 陆动力学研究的问题。
(二)选择有效判别 标志和方法的原则
1.由物源看,地壳和地幔的各个结构层均 可视为物质库,在它们之间元素组成差别 最 明 显的 应 是强 和 较 强 不 相 容 元 素 , 即 LILE(Rb 、 Th 、 K 、 Ba 、 LREE 等 ) 与 HFSE(Ti、Ta、Nb、Zr、Hf、Y等),以 及强相容元素(Cr、Ni、Co), 它们在岩浆 与固相源岩之间有最强和较强分异能力, 应具有更好的判别意义。
6.这里所讨论的构造环境是自大约1.8 Ga 以来板块构造体制下的,不应直接搬用于 地球出现板块构造体制之前,尤其太古宙 构造。例如,一些太古宙的岩石也显示 SZC的化学特征,但不应说它们就与洋壳 俯冲消减有关,就是产于岛弧环境,因为 那时如果发生下地壳拆沉也可能造成类似 SZC的特征。
7.各类岩石形成机制、条件等的复杂程度 不同,用于板块构造环境判别的研究深度 也有差异。一般火山岩,尤其玄武岩研究 最多,应用最广;其次为花岗岩类,研究 较多,应用也较广;而沉积岩则相对研究 得弱些,但也有一定的应用。应分别了解 它们在各种构造环境中的地球化学特征和 鉴别标志,以便较好地应用。
2.由物理化学条件能引起的差异强度看, 必须重视 LILE与HFSE的相对关系。因 LILE一般为造岩矿物的组成,这些矿物的 稳定性较小(易熔和易溶),而HFSE则主 要受稳定性较大的副矿物(Ti、Nb、Ta复 杂氧化物, 锆石等)的控制,所以这两类元 素的相对关系能较灵敏地反映物理化学条 件不同的构造环境。
第二章 区域和造山带 构造地球化学研究
——高级地球化学讲义
一、本领域研究发展概况
• 上世纪60年代中板块构造学说兴起,使 地质学家视野首次扩大到全球,甚至整 个太阳系。这带动了地学各学科思维体 系的革命,并使地球化学研究全面地向 地球、太阳系、宇宙的扩展。大地构造 的地球化研究是一个方面得体现,其发 展概况如下:
1.简史:
上世纪60—70年代,集中研究近代各类板块 构造环境中岩石的地球化学特征及形成机制, 探索构造环境地球化学判别的标志、方法和图 解,工作集中于洋域及其周边。70年代中以来, 研究逐步向大陆区域和造山带发展。通过蛇绿 岩、火山岩、花岗岩、沉积岩和变质岩等形成 构造环境的地球化学判别,进而探索构造性质、 格局和演化。这已经成为现今地球化学研究区 域和造山带构造的常规内容
图6 板内玄武岩N-MORB标准化不相容元素组成模式 CRB-大陆裂谷玄武岩;OIB-洋岛玄武岩。 据BVTP(1981)数据。
2. 与俯冲消减带有关的火山岩
(1)岛弧构造环境
• 产出部位:板块会聚带, 随部位不同分洋内岛
弧、大陆岛弧和陆缘弧。 • 物质来源:洋内岛弧包括俯冲洋壳、远洋沉积 物和大洋岩石圈地幔;大陆岛弧包括俯冲洋壳、 陆源沉积物与洋或陆岩石圈地幔;陆缘弧包括俯 冲洋壳、陆源沉积物与大陆岩石圈地幔。 • 共同特征:亏损(相对于LILE) Nb、Ta、Zr、 Hf、Ti、P等高场强元素。
5.多元素综合判别比少数元素构成的判别 图解更有效,例如,近年发展起来的各种 蛛网图(spidergram), 即以LILE、HFSE等 不相容元素为基础,按不相容性减弱趋势 排序,以球粒陨石、N-MORB、ORG、原始地 幔等标准化,编制元素组成模式图,其判 别效果就优于少数元素的二元和三元图解。 将世界已知构造环境中岩石数据与待判岩 石数据放在一起进行多元判别分析与多元 对应分析,也是值得推荐的方法。