北师大版八年级数学下期末试卷及答案
北师大版八年级下册数学期末考试试题及答案

北师大版八年级下册数学期末考试试卷一、单选题1.下列图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .2.已知m n >,则下列不等式中不正确的是()A .77m n +>+B .55m n >C .44m n -<-D .66m n -<-3.如图,在ABC 中,AB AC =,点D 是边AC 上一点,BC BD AD ==,则A ∠的大小是()A .72°B .54°C .38°D .36°4.一次函数y =ax+b 的图象如图所示,则不等式ax+b≥0的解集是()A .2x ≥B .2x ≤C .4x ≥D .4x ≤5.若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是()A .-2B .2C .-50D .506.若代数式4xx -有意义,则实数x 的取值范围是()A .x =0B .x =4C .x ≠0D .x ≠47.在下列条件中,能判定四边形ABCD 是平行四边形的是()A .,AB BC AD DC==B .//,AB CD AD BC =C .//,AB CD AB CD =D .,A B C D∠=∠∠=∠8.如图,Rt △ABC 中,∠C=90°,AB 的垂直平分线DE 交AC 于点E ,连接BE ,若∠A=40°,则∠CBE 的度数为()A .10°B .15°C .20°D .25°9.若24x mx ++是完全平方式,则m 的值为()A .4m =B .2m =C .4m =-或4m =D .4m =-10.如图,四边形ABCD 是平行四边形,点E 是边CD 上一点,且BC =EC ,CF ⊥BE 交AB 于点F ,P 是EB 延长线上一点,下列结论:①BE 平分∠CBF ;②CF 平分∠DCB ;③BC =FB ;④PF =PC .其中正确结论的个数为()A .1B .2C .3D .4二、填空题11.若分式241x x -+的值为0,则x 的值为_______.12.多项式34a a -分解因式的结果是______.13.如图,将 ABC 绕点B 顺时针旋转60°得 DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .若AB =5,则AD =_______________________.14.如图,已知ABC 中,,AB AC AD =平分,BAC E ∠是AB 的中点,若6,AB =则DE 的长为_______________________.15.若一个多边形的每一个外角都等于30°,则这个多边形的边数为_________.16.若不等式组841x x x m +<-⎧⎨>⎩的解集为x >3,则m 的取值范围___.17.已知1213435241110,S ,1,,1,a S S S S S S a S S >==--==-=,·……,(即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--),按此规律,2020S =_______________________.三、解答题18.解不等式组()12214x x -<-⎧⎨+>⎩,并求出它的最小整数解.19.先化简,21111x x x ⎛⎫-÷ ⎪+-⎝⎭,再从1,0,1-,2中选择一个合适的数代入求值.20.如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:(1)ABC ∆的顶点都在方格纸的格点上,先将ABC ∆向右平移2个单位,再向上平移3个单位,得到111A B C ∆,其中点1A 、1B 、1C 分别是A 、B 、C 的对应点,试画出111A B C ∆;(2)连接11AA BB 、,则线段11AA BB 、的位置关系为____,线段11AA BB 、的数量关系为___;(3)平移过程中,线段AB 扫过部分的面积_____.(平方单位)21.如图,在 ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE=12BC ,连结DE ,CF .(1)求证:四边形CEDF 是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE 的长.22.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?23.如图,在Rt ABC 中,90,ACB D ∠= 是BC 延长线上的一点,线段BD 的垂直平分线EG 交AB 于点,E 交BD 于点G .()130B ∠= 时,AE 和EF 有什么关系?请说明理由.()2当点D 在BC 的延长线上()CD BC <运动时,点E 是否在线段AF 的垂直平分线上?24.已知下面一列等式:111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…(1)请你按这些等式左边的结构特征写出它的一般性等式:(2)验证一下你写出的等式是否成立;(3)利用等式计算:11(1)(1)(2)x x x x++++11(2)(3)(3)(4)x x x x++++++.25.如图,在平面直角坐标系中,点A,B的坐标分别是(-3,0),(0,6),动点P从点O 出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造PCOD.在线段OP延长线上一动点E,且满足PE=AO.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为32秒时,求此时四边形ADEC的周长是多少.参考答案1.A【详解】轴对称图形一个图形沿某一直线对折后图形与自身重合的图形;中心对称图形是指一个图形沿某一点旋转180°后图形能与自身重合,只有A图符合题中条件.故应选A.2.D【分析】根据不等式的性质逐项分析即可.【详解】A.∵m n>,∴77m n+>+,故正确;B.∵m n>,∴55>,故正确;m nC.∵m n>,∴44m n-<-,故正确;D.∵m n>,∴66->-,故不正确;m n故选D.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.3.D【解析】【分析】由BD=BC=AD,设∠A=∠ABD=x,则∠C=∠CDB=2x,又由AB=AC,则∠ABC=∠C=2x,在△ABC中,根据三角形的内角和定理列方程求解.【详解】解:∵BD=BC=AD,∴设∠A=∠ABD=x,则∠C=∠CDB=2x,又∵AB=AC,∴∠ABC=∠C=2x,在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得x=36°,即∠A=36°.故选:D.【点睛】本题考查了等腰三角形的性质.关键是利用等腰三角形的等边对等角的性质,三角形外角的性质,三角形内角和定理列方程求解.4.B【解析】【分析】利用函数图象,写出函数图象不在x轴下方所对应的自变量的范围即可.【详解】解:不等式ax+b≥0的解集为x≤2.故选:B.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x轴上(或下)方部分所有的点的横坐标所构成的集合.5.A【解析】【详解】试题分析:先提取公因式ab,整理后再把a+b的值代入计算即可.当a+b=5时,a2b+ab2=ab(a+b)=5ab=-10,解得:ab=-2.考点:因式分解的应用.6.D【解析】【详解】由分式有意义的条件:分母不为0,即x-4≠0,解得x≠4,故选D.7.C【解析】【分析】根据平行四边形的判定定理:对角线互相平分的四边形是平行四边形可得答案.【详解】解:A、AB=BC,AD=DC,不能判定四边形ABCD是平行四边形,故此选项错误;B、AB∥CD,AD=BC不能判定四边形ABCD是平行四边形,故此选项错误;C、AB∥CD,AB=CD能判定四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形),故此选项正确;D、∠A=∠B,∠C=∠D不能判定四边形ABCD是平行四边形,故此选项错误;故选:C.【点睛】此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.8.A【解析】【分析】根据垂直平分线的性质和等边对等角即可计算.【详解】∵∠C=90°,∠A=40°,∴∠ABC=90°-40°=50°.∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=50°-40°=10°.故选A.9.C【解析】【分析】利用完全平方公式的结构特征判断即可确定出m的值.【详解】解:∵x2+mx+4=x2+mx+22是完全平方式,∴m=±4,故选:C.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.a2+2ab+b2和a2-2ab+b2都是完全平方式,注意不要漏解.10.D【解析】【分析】分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.【详解】解;∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故选:D.【点睛】此题主要考查了平行四边形的性质、线段垂直平分线的性质、以及等腰三角形的判定与性质等知识,正确应用等腰三角形的判定与性质是解题关键.11.2.【解析】【详解】试题分析:由分式的值为0时,分母不能为0,分子为0,可得2x-4=0,x+1≠0,解得x=2.考点:分式的值为0的条件.12.(2)(2)a a a +-【解析】【分析】先提出公因式a ,再利用平方差公式因式分解.【详解】解:a 3-4a=a (a 2-4)=a (a+2)(a-2).故答案为a (a+2)(a-2).【点睛】本题考查提公因式法和公式法进行因式分解,解题的关键是熟记提公因式法和公式法.13.5【解析】【分析】由旋转可得AB =BD ,∠ABD =60°,可得 ABD 为等边三角形,则可得出答案.【详解】解:∵将 ABC 绕点B 顺时针旋转60°得 DBE ,∴AB =BD ,∠ABD =60°,∴ ADB 是等边三角形,∴AB =AD =5.故答案为:5.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,关键是灵活运用旋转性质解决问题.14.3【解析】【分析】根据等腰三角形的性质可得AD ⊥BC ,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.【详解】解:∵AB =AC ,AD 平分∠BAC ,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=12AC=3.故答案为:3.【点睛】此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.15.12【解析】【分析】多边形的外角和为360°,而多边形的每一个外角都等于30°,由此做除法得出多边形的边数.【详解】解:∵360°÷30°=12,∴这个多边形为十二边形,故答案为:12.【点睛】本题考查了多边形的外角,关键是明确多边形的外角和为360°.16.m≤3【解析】【分析】先将每一个不等式解出,然后根据不等式的解集是x>3求出m的范围.【详解】解:解不等式x+8<4x−1,得:x>3,∵不等式组的解集为x>3,∴m≤3,故答案为:m≤3.【点睛】本题考查的是解一元一次不等式组,解题的关键是正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则.17.11a -+【解析】【分析】根据Sn 数的变化找出Sn 的值每6个一循环,结合2020=336×6+4,即可得出S 2020=S 4,此题得解.【详解】解:S 1=1a ,S 2=﹣S 1﹣1=﹣1a ﹣1=﹣1a a+,S 3=21S =﹣1a a +,S 4=﹣S 3﹣1=1a a +﹣1=﹣11a +,S 5=41S =﹣(a+1),S 6=﹣S 5﹣1=(a+1)﹣1=a ,S 7=61S =1a,…,∴Sn 的值每6个一循环.∵2020=336×6+4,∴S 2020=S 4=﹣11a +故答案为:﹣11a +【点睛】本题考查了规律型中数字的变化类,根据数值的变化找出Sn 的值,每6个一循环是解题的关键.18.不等式组的解集为3,x >最小整数解是4x =.【解析】【分析】先分别求出两个不等式的解集,然后求出公共解集,进而可得最小整数解.【详解】()12214x x -<-⎧⎪⎨+>⎪⎩①②,解不等式①,得3x >,解不等式②,得1x >,∴不等式组的解集为3,x >则它的最小整数解是4x =.【点睛】本题主要考查了解一元一次不等式组,根据“同大取大”求出公共解集是关键.19.x -1,1【解析】【分析】先通分计算括号里的,再计算括号外的,最后根据分式性质,找一个合适的数代入求值.【详解】解:原式21111x x x x+--=⨯+()()111x x x x x+-=⨯+1x =-;x 取1,0和1-时分式无意义,x \取2,当2x =时,原式211=-=.【点睛】本题考查了分式的化简求值,解题的关键是分子、分母的因式分解,以及通分、约分.20.(1)见解析;(2)平行,相等;(3)15.【解析】【分析】(1)直接利用平移的性质分别得出对应点位置进而得出答案;(2)利用平移的性质得出线段AA 1、BB 1的位置与数量关系;(3)利用三角形面积求法进而得出答案.【详解】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)线段AA1、BB1的位置关系为平行,线段AA1、BB1的数量关系为:相等.故答案为:平行,相等;(3)平移过程中,线段AB扫过部分的面积为:2×12×3×5=15.故答案为:15.【点睛】此题考查平移变换以及三角形面积求法,正确得出对应点位置是解题关键.21.(1)见解析(213【解析】【分析】(1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),即四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.【详解】(1)证明:在▱ABCD中,AD BC,且AD=BC∵F是AD的中点∴DF=12 AD又∵CE=12 BC∴DF=CE,且DF CE∴四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H.在▱ABCD 中,∵∠B=60°,∴∠DCE=60°.∵AB=4,∴CD=AB=4,∴CH=12CD=2,3在▱CEDF 中,CE=DF=12AD=3,则EH=1.∴在Rt △DHE 中,根据勾股定理知2(23)113+=.22.(1)2元;(2)至少购进玫瑰200枝.【解析】【详解】试题分析:(1)设降价后每枝玫瑰的售价是x 元,然后根据降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍,列分式方程求解即可,注意检验结果;(2)根据店主用不多于900元的资金再次购进两种鲜花共500枝,列不等式求解即可.试题解析:(1)设降价后每枝玫瑰的售价是x 元,依题意有=×1.5.解得x =2.经检验,x =2是原方程的解,且符合题意.答:降价后每枝玫瑰的售价是2元.(2)设购进玫瑰y 枝,依题意有2(500-y)+1.5y≤900.解得y≥200.答:至少购进玫瑰200枝.23.(1)AE=EF ,理由详见解析;(2)点E 是在线段AF 的垂直平分线上,理由详见解析【解析】(1)根据线段垂直平分线性质得出DE=BE,求出∠D=∠B=30°,根据三角形内角和定理和三角形外角性质求出∠A=∠DEA=60°,即可得出答案;(2)求出∠A=∠AFE,根据线段垂直平分线性质得出即可.【详解】解:(1)AE=EF,理由是:∵线段BD的垂直平分线EG交AB于点E,交BD于点G,∴DE=BE,∵∠B=30°,∴∠D=∠B=30°,∴∠DEA=∠D+∠B=60°,∵在Rt△ABC中,∠ACB=90°,∠B=30°,∴∠A=60°,∴∠A=∠DEA=60°,∴△AEF是等边三角形,∴AE=EF;(2)点E是在线段AF的垂直平分线,理由是:∵∠B=∠D,∠ACB=90°=∠FCD,∴∠A=∠DFC,∵∠DFC=∠AFE,∴∠A=∠AFE,∴EF=AE,∴点E是在线段AF的垂直平分线.【点睛】本题考查了线段垂直平分线性质,等腰三角形的性质,等边三角形的性质和判定的应用,能熟记线段垂直平分线内容是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.24.(1)一般性等式为111=(+11n n n n-+);(2)原式成立;详见解析;(3)244x x+.【解析】(1)先要根据已知条件找出规律;(2)根据规律进行逆向运算;(3)根据前两部结论进行计算.【详解】解:(1)由111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…,知它的一般性等式为111=(+11n n n n -+);(2)1111(1)(1)n n n n n n n n +-=-+++ 111(1)1n n n n ==++,∴原式成立;(3)11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++1111112x x x x =-+-+++11112334x x x x +-+-++++114x x =-+244x x=+.【点睛】解答此题关键是找出规律,再根据规律进行逆向运算.25.(1)证明见解析;(2)四边形ADEC 的周长为+.【解析】【分析】(1)连接CD 交AE 于F ,根据平行四边形的性质得到CF=DP ,OF=PF ,根据题意得到AF=EF ,又CF=DP ,根据平行四边形的判定定理证明即可;(2)根据题意计算出OC 、OP 的长,根据勾股定理求出AC 、CE ,根据平行四边形的周长公式计算即可.【详解】(1)证明:如答图,连接CD 交AE 于F.∵四边形PCOD 是平行四边形,∴CF =DF ,OF =PF.∵PE =AO ,∴AF =EF.又∵CF =DF ,∴四边形ADEC 为平行四边形.(2)解:当点P 运动的时间为32秒时,OP =32,OC =3,则OE =92.由勾股定理,得AC 22OA OC +3,CE 22OC OE +3132.∵四边形ADEC 为平行四边形,∴四边形ADEC 的周长为(33132)×2=6+13【点睛】本题考查的知识点是平行四边形的性质和判定、勾股定理的应用,解题关键是掌握对角线互相平分的四边形是平行四边形.。
北师大版八年级下期末数学试题6套(含答案)

CBEDA CB E ACF B北师大版八下学期期末考试题1一、选择题(5³3=15分)1、不等到式032≥-x 的解集是( ) A 、23≥x B 、x >23 C 、32<x D 、32<x 2、如图,线段AB:BC=1:2,那么AC:BC 等于( )A 、1:3B 、2:3C 、3:1D 、3:2 3、如图,ΔABC 中,DE ∥BC,如果AD=1,DB=2,那么BCDE的值为( ) A 、32 B 、41 C 、31 D 、214、若229y mxy x ++是一个完全平方式,则=m ( )A、6 B、12 C、6± D、12±5、调查某班级的 的对数学老师的喜欢程度,下列最具有代表性的样本是( ) A 、调查单数学号的学生 B 、调查所有的班级干部 C 、调查全体女生 D 、调查数学兴趣小组的学生 二、填空题(8³3=24分)6、对于分式392+-x x ,当x ________时,分式有意义, 当x ________ 时,分式的值为0.7、不等式722≤-x 的正整数解分别是_________.8、已知53=y x ,则yyx -2=______.9、如图,在ΔABC 中,EF ∥BC,AE =2BE,则ΔAEF 与梯形BCFE 的面积比_______. 10、分解因式:=-+-)(4)(22x y n y x m ___________________________.11、下列调查中,____适宜使用抽样调查方式, _____ 适宜使用普查方式.(只填相应的序号) ①张伯想了解他承包的鱼塘中的鱼生长情况;②了解全国患非典性肺炎的人数;③评价八年级十班本次期末数学考试的成绩;④张红想了解妈妈煲的一锅汤的味道. 12、把命题“对顶角相等”改写成:如果_________________________________________,那么_____________________________________________。
北师大版八年级下册数学期末试题附答案

北师大版八年级下册数学期末试卷一、单选题1.下列图形中,是中心对称图形但不是轴对称图形的是A .B .C .D . 2.若a >b ,则下列各式中一定成立的是A .a +2<b +2B .a -2<b -2C .2a >2b D .-2a >-2b 3.如图,Rt ABC 中,90,ACB CD AB ∠=︒⊥于点D ,若60,1A AD ∠=︒=,则BC 的长为A. B . C . D4.下列各式:①22k π;①1m n +;①224m n -;①23b a ;①()211x x +-;①1x .其中分式有 A .3个 B .4个 C .5个 D .6个5.在平行四边形ABCD 中,①A=2①B ,则①C 的度数是A .60°B .90°C .120°D .135°6.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值 A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍 7.下列四个命题中,假命题是A .“等边对等角”与“等角对等边”是互逆定理B .等边三角形是锐角三角形C .角平分线上的点到角两边的距离相等D .真命题的逆命题是真命题 8.某次列车平均提速20km/h ,用相同的时间,列车提速前行驶400km ,提速后比提速前多行驶100km ,设提速前列车的平均速度为km/h x ,下列方程正确是 A .40040010020x x +=+ B .40040010020x x -=-C .40040010020x x +=-D .40040010020x x -=+ 9.分式22x x -+有意义的条件是 A .2x ≠ B .2x ≠- C .2x ≠± D .2x >-10.若一个正多边形的一个外角是45︒,则这个正多边形的边数是A .10B .9C .8D .611.顺次连接平行四边形各边的中点得到的四边形是A .平行四边形B .菱形C .矩形D .正方形12.点(-4,1)关于原点的对称点是A .(-4,1)B .(-4,-1)C .(4,1)D .(4,-1)二、填空题13.如图,在①ABC 中,EF 是①ABC 的中位线,且EF=5,则AC 等于____.14.把多项式 x 2 + ax + b 分解因式得(x+1)(x ﹣3),则 a -b 的值是_____. 15.关于x 的分式方程21122m x x x +-=--有增根,则m =______. 16.如图,平行四边形ABCD 中,DE 平分①ADC 交边BC 于点E ,AD =8,AB =5,则BE =___.17.当x =______时,分式2136x x +-无意义. 三、解答题18.计算:(1)22-+11()2-02021 (2)解分式方程:11322x x x-+=--19.先化简,再求代数式的值:()2111x x ⎛⎫-÷-⎪+⎝⎭,其中x =2. 20.解不等式组:102332x x x ->⎧⎨-<-⎩21.因式分解:(1)2222416a x a y -;(2)()2(21)6219x x ---+. 22.如图,ABC 和BDE 是等边三角形,连接AD 、CE .求证:ABD △①CBE △.23.如图,已知平行四边形ABCD 的对角线AC 和BD 交于点O ,且28AC BD +=,12BC =,求AOD ∆的周长.24.如图,在ABC 中,4AB =,7BC =,60B ∠=︒,将ABC 绕点A 顺时针旋转一定角度得到ADE ,当点B 的对应点D 恰好落在BC 边上时,求CD 的长.25.如图,等腰ABC 中,AB AC =,120BAC ∠=︒,AD AB ⊥交BC 于点D ,2AD =,求BC 的长.26.①ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)画出①ABC 关于原点O 的中心对称图形①A 1B 1C 1;(2)写出中心对称图形①A 1B 1C 1的顶点坐标.27.已知:如图A 、C 是①DEBF 的对角线EF 所在直线上的两点,且AE =CF .求证:四边形ABCD 是平行四边形.28.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球? 29.如图,ABCD 的对角线,AC BD 相交于点,,6,10O AB AC AB cm BC cm ⊥==,点P 从点A 出发,沿AD 方向以每秒1cm 的速度向终点D 运动,连接PO ,并延长交BC 于点Q .设点P 的运动时间为t 秒.(1)求BQ的长(用含t的代数式表示);(2)当四边形ABQP是平行四边形时,求t的值;(3)当325t 时,点O是否在线段AP的垂直平分线上?请说明理由.参考答案1.A2.C3.B4.B5.C6.A7.D8.A9.B10.C11.A12.D13.10【详解】解:在①ABC中,①EF是①ABC的中位线,①EF=12AC,①AC=2EF ,①EF=5,①AC=2×5=10,故答案为:10.14.1【详解】①()()21323x x x x +-=--又()()213x x x ax b +-=++①23a b ,=-=-①1a b -=故答案为1.15.5【详解】解:分式方程有增根20x ∴-=得:x=221122m x x x +-=-- 通分得:()2112m x x -+=-去分母得:212m x x --=-化简得:31m x =-将x=2代入得m=5故答案为5.【点睛】这道题考察的是分式方程增根的概念和分式方程未知参数的解法.解决这类题的关键在于:确定增根,化分为整,增根代入.16.3【解析】【分析】由平行四边形对边平行及根据两直线平行,内错角相等可得EDA DEC ∠=∠,而DE 平分ADC ∠,进一步推出EDC DEC ∠=∠,在同一三角形中,根据等角对等边得CE CD =,则BE 可求解.【详解】解:根据平行四边形的性质得//AD BC ,EDA DEC ∴∠=∠,又DE 平分ADC ∠,EDC ADE ∴∠=∠,EDC DEC ∴∠=∠,5CD CE AB ∴===,即853BE BC EC =-=-=.故答案为:3.【点睛】本题考查了平行四边形性质的应用,及等腰三角形的判定,解题的关键是值掌握平行四边形的性质.17.2【解析】【分析】分式无意义的条件是分母等于零.据此解答即可.【详解】 解:分式2136x x +-无意义, 360x ∴-=,解得2x =.故答案为:2.【点睛】本题考查了分式无意义的条件,熟知分式无意义的条件是分母等于零是解答本题的关键.18.(1)-2;(2)x=2是增根,原分式方程无解.【解析】【分析】(1)先乘方,再乘除,最后加减,注意负号的作用;(2)方程两边同时乘以2x -,将分式方程化为整式方程,再解方程、验根即可.【详解】解:(1)22-+11()2-02021 = -4+2-1+1= -2;(2)11322x x x-+=-- 方程两边同乘以2x -,得1+3(x -2)= x -11361x x +-=-解得x=2经检验:x=2是增根,原分式方程无解.【点睛】本题考查实数的混合运算、解分式方程,涉及零指数幂与负正整指数幂、分式有意义的条件等知识,是重要考点,掌握相关知识是解题关键.19.-x -1,-3【解析】【分析】根据题意将原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,进而将x 的值代入计算即可求出值.【详解】解:原式= ()21111x x x x +⎛⎫-÷- ⎪++⎝⎭ =()2111x x x --⎛⎫-÷ ⎪+⎝⎭()111x x x -⎛⎫=-÷ ⎪+⎝⎭=(1)x -+=1x --①当x=2时,①原式=213--=-【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则是解答本题的关键. 20.1x >【解析】【分析】分别把两个不等式的解集求出来,再借助数轴求出两个解集的公共部分,即得不等式组的解集.【详解】解不等式(1)得:1x >解不等式(2)得:1x >-两个解集在数轴上表示如下:①不等式组的解集为:1x >【点睛】 本题考查了解不等式组及利用数轴求不等式组的解集.21.(1)()()2422a x y x y -+;(2)()242x - 【解析】【分析】(1)先提取公因式,再用 平方差公式分解即可;(2)先用完全平方公式分解,再提取公因式即可.【详解】解:(1)2222416a x a y -=()22246a x y -=()()2422a x y x y -+;(2)()2(21)6219x x ---+=2(213)x --=()242x -.【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式和公式法进行因式分解,注意:因式分解要彻底.22.见解析.【解析】【分析】由等边三角形性质得到AB=BC ,BD=BE ,①ABC=①DBE=60°,从而有①ABD=①CBE ,即可得到结论【详解】证明:①ABC 和BDE 是等边三角形①60ABC DBE ∠=∠=︒①ABC DBC DBE DBC ∠-∠=∠-∠①ABD CBE ∠=∠又①AB BC =,BD BE =,∴在ABD △和CBE △中AB BC ABD CBE BD BE =⎧⎪∠=∠⎨⎪=⎩ ①ABD △①CBE △()SAS【点睛】本题考查了全等三角形的判定,以及等边三角形的性质,熟练掌握全等三角形的判定定理是解题关键.23.26【解析】【分析】根据平行四边形对角线互相平分的性质,由28AC BD +=,得到14AO OD +=,再根据平行四边形对边相等得到12AD BC ==,最后算出AOD ∆的周长.【详解】解:①四边形ABCD 是平行四边形, ①AO CO =,BO DO =,①28AC BD +=,①14AO OD +=,①12AD BC ==,①AOD ∆的周长141226AO OD AD =++=+=.【点睛】本题考查平行四边形的性质,解题的关键是熟练掌握平行四边形的性质. 24.3【解析】【分析】由旋转的性质可证得ABD △是等边三角形,则可求得BD 的长,再利用线段的和差即可求得答案.【详解】解:①将ABC 绕点A 顺时针旋转一定角度得到ADE ,①4AD AB ==.①60B ∠=︒,①ABD △是等边三角形,①4BD AD AB ===,①743CD BC AD =-=-=.【点睛】本题考查了旋转的性质、等边三角形的判定和性质、线段的和差等,证得ABD △是等边三角形是解题的关键.25.6BC =【解析】【分析】由题意易得①B=①C=30°,进而可得①CAD=①C=30°,则有2CD AD ==,由含30°的直角三角形的性质可得BD=4,进而问题可求解.【详解】解:①AB AC =,120BAC ∠=︒, ①()1180302B C BAC ∠=∠=︒-∠=︒,①AD AB ⊥,①90BAD ∠=︒,①1209030CAD BAC BAD C ∠=∠-∠=︒-︒=︒=∠,①2CD AD ==,在Rt BAD 中,30B ∠=︒,①24BD AD ==,①426BC BD CD =+=+=.【点睛】本题主要考查等腰三角形的性质与判定及含30°的直角三角形的性质,熟练掌握等腰三角形的性质与判定及含30°的直角三角形的性质是解题的关键. 26.(1)画图见解析;(2)A 1(1,-2),B 1(3,-3),C 1(4,0)【解析】【分析】(1)依据中心对称的性质,即可得到①ABC 关于原点O 的中心对称图形①A 1B 1C 1;(2)根据图象可得各点坐标.【详解】解:(1)如图所示:(2)由图可知:A 1(1,-2),B 1(3,-3),C 1(4,0).【点睛】本题主要考查了作图—中心对称,掌握中心对称的性质是解决问题的关键. 27.证明见解析【解析】【分析】根据平行四边形和平行线的性质,推导得DEA BFC ∠=∠,DFC BEA ∠=∠;根据全等三角形的判定和性质,证明DEA BFC △≌△、DFC BEA △≌△,得AD BC =、CD AB =,即可完成证明.【详解】证明:①平行四边形DEBF ,①//DE BF ,//DF BE ,①DEF BFE ∠=∠,DFE BEF ∠=∠,①180DEF DEA ∠+∠=︒,180BFE BFC ∠+∠=︒,180DFE DFC ∠+∠=︒,180BEF BEA ∠+∠=︒,①DEA BFC ∠=∠,DFC BEA ∠=∠,①平行四边形DEBF ,①DE BF =,DF BE =,在DEA △和BFC △中,DE BF DEA BFC AE CF =⎧⎪∠=∠⎨⎪=⎩①DEA BFC △≌△,①AD BC =,在DFC △和BEA △中,DF BE DFC BEA AE CF =⎧⎪∠=∠⎨⎪=⎩①DFC BEA △≌△,①CD AB =,①四边形ABCD 是平行四边形.【点睛】本题考查了平行四边形、平行线、全等三角形的知识;解题的关键是熟练掌握平行四边形、全等三角形的判定和性质,从而完成求解.28.(1)篮球、足球各买了20个,40个;(2)最多可购买篮球32个.【解析】【分析】(1)设篮球、足球各买了x ,y 个,根据等量关系:篮球、足球共60个,篮球、足球共用4600元,列出方程组,解方程组即可得;(2)设购买了a 个篮球,根据购买篮球的总金额不超过购买足球的总金额,列出不等式进行求解即可.【详解】(1)设篮球、足球各买了x ,y 个,根据题意,得6070804600x y x y +=⎧⎨+=⎩,解得2040xy=⎧⎨=⎩,答:篮球、足球各买了20个,40个;(2)设购买了a个篮球,根据题意,得()708060a a≤-,解得32a≤,①最多可购买篮球32个.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系或不等关系列出方程或不等式是解题的关键.29.(1)10-t;(2)5秒;(3)见解析【解析】【分析】(1)先证明①APO①①CQO,可得出AP=CQ=t,则BQ即可用t表示;(2)由题意知AP①BQ,根据AP=BQ,列出方程即可得解;(3)过点O作直线EF①AP,垂足为E,与BC交于F,利用三角形面积公式求出EF,得到OE,利用勾股定理求出AE,再说明AP=2AE即可.【详解】解:(1)①四边形ABCD是平行四边形,①OA=OC,AD①BC,①①PAO=①QCO,①①AOP=①COQ,①①APO①①CQO(ASA),①AP=CQ=t,①BC=10,①BQ=10-t;(2)①AP①BQ,当AP=BQ时,四边形ABQP是平行四边形,即t=10-t,解得:t=5,①当t为5秒时,四边形ABQP是平行四边形;(3)过点O作直线EF①AP,垂足为E,与BC交于F,在Rt①ABC中,①AB=6,BC=10,,①AO=CO=12AC=4,①S①ABC=12AB AC⋅=12BC EF⋅,①AB•AC=BC•EF,①6×8=10×EF,①EF=245,①OE=125,165,当325t=时,AP=325,①2AE=AP,即点E是AP中点,①点O在线段AP的垂直平分线上.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、勾股定理,垂直平分线的判定等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.。
北师大版八年级下学期数学期末试卷含答案(共5套)

北师大版八年级下学期期末调研测试题一、选择题(本大题共12小题,每小题4分,共48分)1.“抛一枚均匀的硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件2.下列条件中不能判断四边形是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC3.方程x(x+3)=0的根是()A.x=0B.x=-3C.x1=0,x2=3D.x1=0,x2=-34.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方形C.球D.圆锥5.如图,在口ABCD中,过点C的直线CE⊥AB,垂足为E,∠EAD=53°,则∠BCE的度数为()A.37°B.47°C.53°D.127°EDAB C6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是()A.k>-1B.k≥-1C.k≠0D.k>-1且k≠07.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A.3.2米B.4.8米C.5.2米D.5.6米8.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为()A.3∶1B.4∶1C.5∶1D.6∶19.下列各组图形可能不相似的是( )A .各有一个角是45°的两个等腰三角形B .各有一个角是60°的两个等腰三角形C .各有一个角是105°的两个等腰三角形D .两个等腰直角三角形10.如图,P 为口ABCD 的边AD 上的一点,E 、F 分别是PB 、PC 的中点,△PEF 、△PDC 、△P AB 的面积分别为S 、S 1、S 2,若S =3,则S 1+S 2的值是( ) A .3 B .6 C .12 D .2411.如图,正方形ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别沿AE 、AF 折叠,点B 、D 恰好都落在点G 处,已知BE =1,则EF 的长为( )A .32B .52C .94D .312.如图,已知在Rt △ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ,再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形……依次进行下去,则第n 个内接正方形的边长为( )A .23×(12)n -1B .223×(12)n -1C .23×(12)nD .223×(12)n二、填空题(本大题共6小题,每小题4分,共24分)13.一个多边形图案在一个有放大功能的复印机上复印出来,它的一条边由原来的1cm 变成了2cm ,那么它的面积会由原来的6cm 2变为___________.14.有一个正多边形的每一个外角都是60°,则这个多边形的边数是_______________.15.如图所示,直线a经过正方形ABCD的顶点A,分别过此正方形的顶点B、D作BF⊥a于点F、DE⊥a于点E,若DE=4,BF=3,则EF的长为____________.16.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长为____________.17.设a,b是方程x2+x-2017=0的两个不相等的实数根,则a2+2a+b的值为_________________.18.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是___________________.三、解答题(本大题共9小题,共78分)19.解方程:(1)x2-2x-3=0; (2)x2-4x+1=020.如图,在口ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.求证:BF=DE.21.小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平面上放一面平面镜,镜子与教学楼的距离EA=12米,当她与镜子的距离CE=2米时,她刚好能从镜子中看到教学楼的顶端B.已知她的眼睛距地面的高度DC=1.5米.请你帮助小玲计算出教学楼的高度AB是多少米(根据光的反射定律:反射角等于入射角.)22.某市为改善生态环境,积极开展向雾霾宣战,还碧水蓝天专项整治活动.已知2014年共投资1000万元,2016年共投资1210万元.(1)求2014年到2016年的平均增长率;(2)该市预计2017年的投资增长率与前两年相同,则2017年的投资预算是多少万元?23.小明和小丽用形状大小相同,面值不同的5张邮票设计了一个游戏,将面值1元、2元、3元的邮票各一张装入一个信封,面值4元、5元的邮票各一张装入另一个信封,游戏规定:分别从两个信封中各抽取1张邮票,若它们的面值和是偶数,则小明赢;若它们的面值之和是奇数,则小丽赢.请你判断这个游戏是否公平,并说明理由.24.如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图2.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.25. 如图,在萎形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.26. 如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t(0<t≤15).过点D作DE⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.27. 如图1,四边形ABHC与四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由;(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G,交AC于点M,求证:BD⊥CF;(3)在(2)的条件下,当AB=4,AD=2时,求线段CM的长.参考答案八年级第二学期期末考试数学试卷(北师大版)考试时间90分钟 满分100分一、选择题(每小题3分,共24分) 1.下列关于的方程:①;②;③;④();⑤1x =-1,其中一元二次方程的个数是( ) A .1 B .2 C .3 D .42.已知α为锐角,且sin(α-10°)=22,则α等于( )A .45°B .55°C .60°D .65°3.如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A 向右平移2个单位,向后平移1个单位后,所得几何体的视图( ) A.主视图改变,俯视图改变 B.主视图不变,俯视图不变 C.主视图不变,俯视图改变 D.主视图改变,俯视图不变4.二次函数y=ax 2+bx 的图象如图所示,若一元二次方程ax 2+bx+m=0有两个不相等的实数根,则整数m 的最小值为( )A .﹣3B .﹣2C .﹣1D .2(第4题图) (第5题图) (第6题图)5.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( )A .(6,0)B .(6,3)C .(6,5)D .(4,2) 6.如图,将一个长为,宽为 的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为( ) A. B. C. D.DCBA7.如图,平面直角坐标系中,直线y=﹣x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=﹣的图象交于点C,若BA:AC=2:1,则a的值为( )A.2 B.﹣2 C.3 D.﹣38.观察二次函数y=ax2+bx+c(a≠0)的图象,下列四个结论:①4ac﹣b2>0;②4a+c<2b;③b+c<0;④n(an+b)﹣b<a(n≠1).正确结论的个数是()A. 4个 B. 3个 C. 2个 D. 1个(第7题图) (第8题图) (第12题图) (第13题图)二、填空题(每小题3分,共21分)9.计算:﹣14+﹣4cos30°= .10.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是(只写出符合条件的一个即可).11.若关于x的一元二次方程..(m-2)x²+2x-1=0有实数根,求m的取值范围。
北师大版八年级下册数学期末考试卷含答案

八 年 级 数 学 下 册 期 末 测 试(北师大版)全卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间共120分钟。
A 卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其它类型的题。
A 卷(共100分)第Ⅰ卷(选择题,共30分)注意事项:1.第Ⅰ卷共2页,答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答一、选择题:(每小题3分,共30分)1、-3x <-1的解集是( ) A 、x <31 B 、x <-31 C 、x >31 D 、x >-31 2、下列从左到右的变形是分解因式的是( )A 、(x -4)(x +4)=x 2-16B 、x 2-y 2+2=(x +y )(x -y )+2C 、2ab +2ac =2a (b +c )D 、(x -1)(x -2)=(x -2)(x -1). 3、下列命题是真命题的是( )A 、相等的角是对顶角B 、两直线被第三条直线所截,内错角相等C 、若n m n m ==则,22D 、有一角对应相等的两个菱形相似4、分式222b ab a a +-,22ba b-,2222b ab a b ++的最简公分母是( ) A 、(a2-2ab+b2)(a2-b2)(a2+2ab+b2) B 、(a+b )2(a -b )2C 、(a+b )2(a-b )2(a2-b2)D 、44b a -5、人数相等的八(1)和八(2)两个班学生进行了一次数学测试,班级平均分和方差如下:2212128686259186.x x s s ====,,, 则成绩较为稳定的班级是( )A 、八(1)班B 、八(2)班C 、两个班成绩一样稳定D 、无法确定 6、如图1,能使BF ∥DG 的条件是( ) A 、∠1=∠3 B 、∠2=∠4 C 、∠2=∠3? D 、∠1=∠47、如图2,四边形木框ABCD 在灯泡发出的光照射下形成的影子是四边形A B C D '''',若:1:2AB A B ''=,则四边形ABCD 的面积∶四边形A B C D ''''的面积为( )图1 图2A 、4:1 BC.1:D .1:48、如图3,A ,B ,C ,D ,E ,G ,H ,M ,N 都是方格纸中的格点(即小正方形的顶点),要使DEF △与ABC △相似,则点F 应是G ,H ,M ,N 四点中的( )A 、H 或MB 、G 或HC 、M 或ND 、G 或M图39、如图4,DE ∥BC ,则下列不成立的等式是( )A 、EC AEBD AD= B 、AE ACAD AB =C 、DB ECABAC =D 、BCDEBD AD =图410、直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如图5所示,则关于x 的不等式12k x b k x +>的解为( )A 、x >-1B 、x <-1C 、x <-2D 、无法确定 图5二、填空题:(共6小题,每题4分,共24分)11、计算:(1)(-x )2÷y·y1=____________。
北师大版八年级下册数学期末考试试卷及答案

北师大版八年级下册数学期末考试试题一、单选题1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.a、b 都是实数,且a<b,则下列不等式正确的是()A.a+x >b+x B.1-a<1-b C.5a <5b D.2a >2b 3.在平面直角坐标系内,将点M(3,1)先向上平移2个单位长度,再向右平移3个单位长度,则移动后的点的坐标是()A.(6,3)B.(6,﹣1)C.(0,3)D.(0,﹣1)有意义的x 的取值范围是()A.3x >B.3x <C.3x ≥D.3x ≤5.若()234a m a +-+能用完全平方公式进行因式分解,则常数m 的值是()A.1或5B.1C.-1D.7或1-6.如图,l∥m,等边三角形ABC 的顶点B 在直线m 上,∠1=20°,则∠2的度数为()A.60°B.45°C.40°D.30°7.函数y kx b =+的图象如图所示,则关于x 的不等式0kx b +≥的解集是()A.2x ≤B.2x ≥C.0x ≤D.0x ≥8.化简22a b a b a b ---的结果为()A.-a b B.a b +C.a ba b +-D.a ba b-+9.如图,点P 在∠AOB 的平分线上,PC⊥OA 于点C,∠AOB=30°,点D 在边OB 上,且OD=DP=2.则线段PC 的长度为()A.3B.2C.1D.1210.如图,边长为a ,b 的长方形,它的周长为14,面积为10,则22a b ab ab +-的值为()A.70B.60C.130D.14011.若正多边形的一个外角是72 ,则该正多边形的内角和为()A.360 B.540 C.720 D.90012.如图,E 是▱ABCD 的边DC 的延长线上一点,连接AE ,且AE DE =,若46E ∠=︒,则B Ð的度数为()A.65︒B.66︒C.67︒D.68︒二、填空题13.如图,在△ABC 中,EF 是△ABC 的中位线,且EF=5,则AC 等于________.14.把多项式x 2+ax +b 分解因式得(x+1)(x﹣3),则a-b 的值是_____.15.在ABCD 中,:3:5AB BC =,它的周长是32,则BC =______.16.关于x 的分式方程21122mx x x +-=--有增根,则m =______.三、解答题17.解不等式组:102332x x x ->⎧⎨-<-⎩18.先化简,再求值:22131369x xx x x -⎛⎫-÷ ⎪--+⎝⎭,其中2x =19.因式分解:(1)2222416a x a y -;(2)()2(21)6219x x ---+.20.如图,ABC 和BDE 是等边三角形,连接AD 、CE .求证:ABD △≌CBE △.21.如图,已知平行四边形ABCD 的对角线AC 和BD 交于点O ,且28AC BD +=,12BC =,求AOD ∆的周长.22.如图,在ABC 中,4AB =,7BC =,60B ∠=︒,将ABC 绕点A 顺时针旋转一定角度得到ADE ,当点B 的对应点D 恰好落在BC 边上时,求CD 的长.23.如图,等腰ABC 中,AB AC =,120BAC ∠=︒,AD AB ⊥交BC 于点D ,2AD =,求BC 的长.24.△ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)画出△ABC关于原点O的中心对称图形△A1B1C1;(2)写出中心对称图形△A1B1C1的顶点坐标.25.已知:如图A、C是▱DEBF的对角线EF所在直线上的两点,且AE=CF.求证:四边形ABCD是平行四边形.26.为满足防护新冠疫情需要,现有甲乙两种机器同时开工制造口罩.甲加工90个口罩所用的时间与乙加工120个口罩所用的时间相等,已知甲乙两种机器每秒钟共加工35个口罩,求甲乙两种机器每秒各加工多少个口罩?27.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?28.如图,ABCD 的对角线,AC BD 相交于点,,6,10O AB AC AB cm BC cm ⊥==,点P 从点A 出发,沿AD 方向以每秒1cm 的速度向终点D 运动,连接PO ,并延长交BC 于点Q .设点P 的运动时间为t 秒.(1)求BQ 的长(用含t 的代数式表示);(2)当四边形ABQP 是平行四边形时,求t 的值;(3)当325t =时,点O 是否在线段AP 的垂直平分线上?请说明理由.参考答案1.C【详解】解:A、不是轴对称图形,是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、既是轴对称图形,又是中心对称图形,故本选项符合题意;D、不是轴对称图形,是中心对称图形(不考虑颜色),故本选项不符合题意;故选:C.2.C【详解】解:A.∵a<b,∴a+x<b+x,计算错误;B.∵a<b,∴-a>-b,∴1-a>1-b,计算错误;C.∵a<b,∴5a<5b,计算正确;D.∵a<b,∴22a b <,计算错误.故答案为:C.【点睛】本题主要考查不等式的基本性质,熟练掌握不等式得基本性质是解题的关键.3.A【解析】【分析】横坐标右移加,左移减;纵坐标上移加,下移减;依此即可求解.【详解】解:3+3=6,1+2=3.故点M 平移后的坐标为(6,3).故选:A.【点睛】本题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.A【解析】【分析】根据二次根式有意义的条件和分式有意义的条件,由被开方数大于等于0,分母不等于0即可求解.【详解】解:根据二次根式的性质,被开方数x-3≥0,解得x≥3,≠,即x-3≠0,解得x≠3有意义的x的取值范围是3x>.故选A.【点睛】本题主要考查了二次根式有意义的条件和分式有意义的条件.二次根式中被开方数必须是非负数,否则二次根式无意义,当二次根式在分母上时,还要考虑分母不等于零.5.D【解析】【分析】直接利用完全平方公式进而分解因式得出答案.【详解】解:∵a2+(m-3)a+4能用完全平方公式进行因式分解,∴m-3=±4,解得:m=-1或7.故选:D.【点睛】本题考查了公式法分解因式,熟练掌握完全平方公式的结构特点是解题的关键.6.C【详解】解:过C作CM∥直线l,∵△ABC是等边三角形,∴∠ACB=60°,过C作CM∥直线l,∵直线l∥直线m,∴直线l∥直线m∥CM,∵∠ACB=60°,∠1=20°,∴∠1=∠MCB=20°,∴∠2=∠ACM=∠ACB-∠MCB=60°-20°=40°.故选:C.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.7.A【详解】解:由图可知,当x≤2时,kx+b≥0.故选:A.8.B【详解】解:22a b a b a b---22a b a b-=-()()a b a b a b+-=-a b =+,故选:B .9.C【详解】解:如图,过点P 作PE⊥OB 于E,∵∠AOB=30°,点P 在∠AOB 的平分线上,∴∠AOP=∠POB=15°,∵OD=DP=2,∴∠OPD=∠POB=15°,∴∠PDE=30°,∴PE=12PD=1,∵OP 平分∠AOB,PC⊥OA,PE⊥OB,∴PC=PE=1,故选:C.【点睛】此题考查的是角平分线的性质和直角三角形30°所对的边等于斜边的一半的应用、等腰三角形的性质,掌握角平分线上的点到角的两边距离相等和直角三角形30°所对的边是斜边的一半是解题关键.10.B【解析】【分析】先根据长方形的周长和面积得出a+b 和ab 的值,再将22a b ab ab +-的前两项提出ab,然后代入求出即可.【详解】解:∵边长为a ,b 的长方形,它的周长为14,面积为10,∴a+b=7,ab=10,∴()22=+a b ab ab ab a b ab+--=10710⨯-=60故选:B【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了数学整体思想和正确运算的能力.11.B【解析】【分析】先根据正多边形的外角和为360°求出边数,然后再运用多边形的内角和公式解答即可.【详解】解:多边形的边数为360°÷72°=5则多边形的内角和为:(5-2)×180°=540°.故答案为B.【点睛】本题考查了正多边形的每一个外角都相等、多边形的外角和为360°以及多边形的内角和公式,求得正多边形的边数和掌握多边形内角和公式是解答本题的关键.12.C【解析】【分析】根据平行四边形的性质得到∠B=∠D,再由等腰三角形的性质与三角形的内角和定理求出∠D 即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴∠B=∠D,∵AE=DE,∴∠D=∠DAE,∵∠E=46°,∠E+∠D+∠DAE=180°,∴()1=180=672D E ∠-∠ ∴∠B=67°.故选C.【点睛】本题主要考查了平行四边形的性质,等腰三角形的性质,三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.13.10【解析】【分析】根据三角形中位线定理即可求出AC.【详解】解:在△ABC中,∵EF是△ABC的中位线,∴EF=12 AC,∴AC=2EF,∵EF=5,∴AC=2×5=10,故答案为:10.【点睛】本题主要考查了三角形中位线定理,熟记三角形的中位线等于第三边的一半是解决问题的关键.14.1【解析】【分析】把因式分解后的式子展开即可得出答案.【详解】∵()()21323x x x x +-=--又()()213x x x ax b+-=++∴23a b ,=-=-∴1a b -=故答案为1.【点睛】本题考查的是因式分解,属于基础题型,解题关键是因式分解后的式子展开后与原式对应项系数相等.15.10【解析】【分析】设3,5AB x BC x ==,然后根据周长等于32列方程.【详解】解:设3,5AB x BC x==由题意得,()23532x x +=解得2x =所以BC=10.故答案为10.【点睛】本题主要考查了运用方程解决实际问题,利用平行四边形的周长,求边长.16.5【解析】【分析】根据已知有增根,即使分式方程分母为0的根,即满足x-2=0;解题中分式方程,先通分,再去分母,化成整式方程后,用x 表示出未知参数m,最后将x 的值代入即可求得m 的值.【详解】解:分式方程有增根20x ∴-=得:x=221122m x x x +-=--通分得:()2112m x x -+=-去分母得:212m x x --=-化简得:31m x =-将x=2代入得m=5故答案为5.【点睛】这道题考察的是分式方程增根的概念和分式方程未知参数的解法.解决这类题的关键在于:确定增根,化分为整,增根代入.17.1x >【解析】【分析】分别把两个不等式的解集求出来,再借助数轴求出两个解集的公共部分,即得不等式组的解集.【详解】解不等式(1)得:1x >解不等式(2)得:1x >-两个解集在数轴上表示如下:∴不等式组的解集为:1x >【点睛】本题考查了解不等式组及利用数轴求不等式组的解集.18.4xx -,1【解析】【分析】先根据分式的混合运算法则进行化简,再把x【详解】解:原式()213(3)33x x x x x -+-=⋅--4xx-=当x =时,原式1=.【点睛】本题考查了分式的化简求值以及分母有理化,熟练掌握运算法则是解题的关键19.(1)()()2422ax y x y -+;(2)()242x -【解析】【分析】(1)先提取公因式,再用平方差公式分解即可;(2)先用完全平方公式分解,再提取公因式即可.【详解】解:(1)2222416a x a y-=()22246ax y -=()()2422a x y x y -+;(2)()2(21)6219x x ---+=2(213)x --=()242x -.【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式和公式法进行因式分解,注意:因式分解要彻底.20.见解析.【解析】【分析】由等边三角形性质得到AB=BC,BD=BE,∠ABC=∠DBE=60°,从而有∠ABD=∠CBE ,即可得到结论【详解】证明:∵ABC 和BDE 是等边三角形∴60ABC DBE ∠=∠=︒∴ABC DBC DBE DBC∠-∠=∠-∠∴ABD CBE∠=∠又∵AB BC =,BD BE =,∴在ABD △和CBE △中AB BC ABD CBE BD BE =⎧⎪∠=∠⎨⎪=⎩∴ABD △≌CBE △()SAS 【点睛】本题考查了全等三角形的判定,以及等边三角形的性质,熟练掌握全等三角形的判定定理是解题关键.21.26【解析】【分析】根据平行四边形对角线互相平分的性质,由28AC BD +=,得到14AO OD +=,再根据平行四边形对边相等得到12AD BC ==,最后算出AOD ∆的周长.【详解】解:∵四边形ABCD是平行四边形,∴AO CO =,BO DO =,∵28AC BD +=,∴14AO OD +=,∵12AD BC ==,∴AOD ∆的周长141226AO OD AD =++=+=.本题考查平行四边形的性质,解题的关键是熟练掌握平行四边形的性质.22.3【解析】【分析】由旋转的性质可证得ABD △是等边三角形,则可求得BD 的长,再利用线段的和差即可求得答案.【详解】解:∵将ABC 绕点A 顺时针旋转一定角度得到ADE ,∴4AD AB ==.∵60B ∠=︒,∴ABD △是等边三角形,∴4BD AD AB ===,∴743CD BC AD =-=-=.【点睛】本题考查了旋转的性质、等边三角形的判定和性质、线段的和差等,证得ABD △是等边三角形是解题的关键.23.6BC =【解析】【分析】由题意易得∠B=∠C=30°,进而可得∠CAD=∠C=30°,则有2CD AD ==,由含30°的直角三角形的性质可得BD=4,进而问题可求解.解:∵AB AC =,120BAC ∠=︒,∴()1180302B C BAC ∠=∠=︒-∠=︒,∵AD AB ⊥,∴90BAD ∠=︒,∴1209030CAD BAC BAD C ∠=∠-∠=︒-︒=︒=∠,∴2CD AD ==,在Rt BAD 中,30B ∠=︒,∴24BD AD ==,∴426BC BD CD =+=+=.【点睛】本题主要考查等腰三角形的性质与判定及含30°的直角三角形的性质,熟练掌握等腰三角形的性质与判定及含30°的直角三角形的性质是解题的关键.24.(1)画图见解析;(2)A 1(1,-2),B 1(3,-3),C 1(4,0)【解析】【分析】(1)依据中心对称的性质,即可得到△ABC 关于原点O 的中心对称图形△A 1B 1C 1;(2)根据图象可得各点坐标.【详解】解:(1)如图所示:(2)由图可知:A 1(1,-2),B 1(3,-3),C 1(4,0).【点睛】本题主要考查了作图—中心对称,掌握中心对称的性质是解决问题的关键.25.证明见解析【解析】【分析】根据平行四边形和平行线的性质,推导得DEA BFC ∠=∠,DFC BEA ∠=∠;根据全等三角形的判定和性质,证明DEA BFC △≌△、DFC BEA △≌△,得AD BC =、CD AB =,即可完成证明.【详解】证明:∵平行四边形DEBF,∴//DE BF ,//DF BE ,∴DEF BFE ∠=∠,DFE BEF ∠=∠,∵180DEF DEA ∠+∠=︒,180BFE BFC ∠+∠=︒,180DFE DFC ∠+∠=︒,180BEF BEA ∠+∠=︒,∴DEA BFC ∠=∠,DFC BEA ∠=∠,∵平行四边形DEBF,∴DE BF =,DF BE =,在DEA △和BFC △中,DE BF DEA BFC AE CF =⎧⎪∠=∠⎨⎪=⎩∴DEA BFC △≌△,∴AD BC =,在DFC △和BEA △中,DF BE DFC BEA AE CF =⎧⎪∠=∠⎨⎪=⎩∴DFC BEA △≌△,∴CD AB =,∴四边形ABCD 是平行四边形.【点睛】本题考查了平行四边形、平行线、全等三角形的知识;解题的关键是熟练掌握平行四边形、全等三角形的判定和性质,从而完成求解.26.甲每秒加工口罩15个,乙每秒加工口罩20个.【解析】【分析】设甲每秒加工口罩x 个,则乙每秒加工口罩35-x 个.再根据题意可列出关于x 的分式方程,求解即可.【详解】设甲每秒加工口罩x 个,则乙每秒加工口罩35-x 个.根据题意可列方程9012035x x=-.解得:15x =,经检验15x =是原方程的解.故甲每秒加工口罩15个,乙每秒加工口罩35-15=20个.【点睛】本题考查分式方程的实际应用.根据题意列出等量关系式是解答本题的关键.27.(1)篮球、足球各买了20个,40个;(2)最多可购买篮球32个.【解析】【分析】(1)设篮球、足球各买了x ,y 个,根据等量关系:篮球、足球共60个,篮球、足球共用4600元,列出方程组,解方程组即可得;(2)设购买了a 个篮球,根据购买篮球的总金额不超过购买足球的总金额,列出不等式进行求解即可.【详解】(1)设篮球、足球各买了x ,y 个,根据题意,得6070804600x y x y +=⎧⎨+=⎩,解得2040 xy=⎧⎨=⎩,答:篮球、足球各买了20个,40个;(2)设购买了a个篮球,根据题意,得()708060a a≤-,解得32a≤,∴最多可购买篮球32个.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系或不等关系列出方程或不等式是解题的关键.28.(1)10-t;(2)5秒;(3)见解析【解析】【分析】(1)先证明△APO≌△CQO,可得出AP=CQ=t,则BQ即可用t表示;(2)由题意知AP∥BQ,根据AP=BQ,列出方程即可得解;(3)过点O作直线EF⊥AP,垂足为E,与BC交于F,利用三角形面积公式求出EF,得到OE,利用勾股定理求出AE,再说明AP=2AE即可.【详解】解:(1)∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠PAO=∠QCO,∵∠AOP=∠COQ,∴△APO≌△CQO(ASA),∴AP=CQ=t,∵BC=10,∴BQ=10-t;(2)∵AP∥BQ,当AP=BQ时,四边形ABQP是平行四边形,即t=10-t,解得:t=5,∴当t为5秒时,四边形ABQP是平行四边形;(3)过点O作直线EF⊥AP,垂足为E,与BC交于F,在Rt△ABC中,∵AB=6,BC=10,,∴AO=CO=12AC=4,∵S△ABC=12AB AC⋅=12BC EF⋅,∴AB•AC=BC•EF,∴6×8=10×EF,∴EF=24 5,∴OE=125,165,当325t=时,AP=325,∴2AE=AP,即点E是AP中点,∴点O在线段AP的垂直平分线上.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、勾股定理,垂直平分线的判定等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.。
八年级数学下册期末考试卷附答案(北师大版)
八年级数学下册期末考试卷附答案(北师大版)(满分:120分;考试时间:120分钟)一.单选题。
(每小题4分,共40分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )2.若x >y ,则下列不等式一定成立的是( )A.x+4>y+6B.x -8<y -8C.x9>y9 D.﹣a >﹣b 3.下列各式:①3x ;②a+b 4;③y 3y ;④xyπ+2,其中是分式的是( )A.①③B.③④C.①②D.①②③④ 4.关于x 的方程5x x -2=ax -2+1有增根,则a 的值是( )A.0B.2或3C.2D.3 5.如果把5a a+b中的a ,b 同时扩大10倍,那么这个代数式的值( )A.不变B.扩大50倍C.扩大10倍D.缩小大原来的1106.如图,在四边形ABCD 中,AB ∥CD ,要使四边形ABCD 是平行四边形,下列添加的条件不正确的是( )A.AB=CDB.BC=ADC.∠A=∠CD.BC ∥AD(第6题图) (第7题图) (第8题图) 7.如图,正五边形ABCDE 中,连接BE ,则∠ABE 的度数为( ) A.30° B.36° C.54° D.72°8.如图,一个长为2,宽为1的长方形以所示姿态从直线l的左侧水平平移至右侧(图中的虚线是水平线),其中,平移的距离是()A.1B.2C.3D.2√29.若不等式组{x<1x<a的解集是x<a,则a的取值范围是()A.a≤1B.a=1C.a≥1D.a<1二.填空题。
(每小题4分,共24分)11.因式分解:a2-6a= .12.若分式x+1x-1的值为0,则x的值是 .13.如图,正方形AMNP的边AM在正五边形ABCDE的边AB上,则∠PAE等于 .(第13题图)(第15题图)(第16题图)14.若不等式(a-4)x>1的解集是x<1a-4,则m的取值范围是 .15.如图,在平行四边形ABCD中,CE平分∠BCD,若CD=5,BC=3,则AE的长是 .16.如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为15,则点C的坐标为 .三.解答题。
【精品】北师大版八年级下册数学《期末考试试卷》(附答案)
北师大版八年级下学期期末测试数学试卷学校 班级 姓名 成绩、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有 一项是符合题目要求的.)1 .下列方程中是一元二次方程的是 ()A. 2x+1=0B.x 2+y=1212d C. x 2+2=0D. — x 1 x说法正确的是()A.与y 轴交于(0,-5) C. y 随x 的增大而减小6.关于x 的方程x 2-mx+2m=0的一个实数根是 3,并且它的两个实数根恰好是等腰AABC 的两边长,则 那BC的腰长为()2.不等式x-1<0的解集在数轴上表示正确的是(5.将直线y=2x-3向右平移2个单位。
2个单位后,得到直线 y=kx+b.则下列关于直线 y=kx+b 的A. 3B. 6C. 6 或 9D. 3 或 6B.与x 轴交于(2, 0) D.经过第一、二、四象限7.如图,四边形ABCD为矩形,依据尺规作图的痕迹,/ “与/ 3的度数之间的关系为()B2能是8.如图,在^ ABC 中,AB=3, BC=4, AC=5,点D 在边BC 上,以AC 为对角线的所有平行四边形 ADCE中,DE 的最小值是()9.如图,在平面直角坐标系中,已知点 A (1,3), B(n, 3),若直线y=2x 与线段AB 有公共点,则n 的值不可10.如图,在AABC 中,/C=90°, AC=8, BC=6,点P 为斜边AB 上一动点,过点P 作PE^AC 于E, PFXBCA. 24A. 3 = 180 A. 2 A 1.4B. 1.5C. 1.6D. 1.7C. 3 =90a1 D. 3 =90-a 2B. 3C. 4D. 5 于点F,连结EF ,则线段EF 的最小值为(、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上)13.2x-3>- 5的解集是14 .定义运算a+b a ab ,若a x 1,b x, a☆b 3 ,则x 的值为15 .如图,已知EF 是△ ABC 的中位线,DE^BC 交AB 于点D,CD 与EF 交于点 G 若CD±AC,EF=8 , EG=3 ,16 .为方便市民出行,2019年北京地铁推出了电子定期票,电子定期票在使用有效期限内,支持单人不限次 数乘坐北京轨道交通全路网(不含机场线)所有线路,电子定期票包括一日票、二日票、三日票、五日票 及七日票共五个种类,价格如下表:B. 3.6C. 4.8D. 511.如图,在平面直角坐标系 xOy 中,点A 、C 、F 在坐标轴上,E 是OA 中点,四边形 AOCB 是矩形,四边形BDEF 是正方形,若点 C 的坐标为(3, 0),则点D 的坐标为()A . (1,3)B. (1, 1 J3)C. (1, J 3)12.如图,正方形ABCD 的边长为6,点E, F 分别在边 AB, BC 上,若F 是BC 的B. 2.10C. 3-5D. A BE 0则DE 的长为(AA.丽D.,且/ EDF,53则AC 的长为.种类 一日票 二日票 三日票 五日票 七日票单价(元/张)20 30 40 70 90某人需要连续6天不限次数乘坐地铁,若决定购买电子定期票,则总费用最低为 元.17 .如图1,边长为a 正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为 h,a我们把一的值叫做这个菱形的 形变度.例如,当形变后的菱形是如图2形状(被对角线BD 分成2个等边h三角形),则这个菱形的 形变度”为2: J3.如图3,正方形由16个边长为1的小正方形组成,形变后成三、解答题(本大题共9个小题,共78分,解答应写出文字说明,证明过程或演算步骤 )5x 2 3(x 1)19.解不等式组 13一x 1 7 x20.用配方法解方程:x 2-6x+5=021.如图,在四边形 ABCD 中,DEL AC, BFXAC,垂足分别为 E 、F, DE = BF, Z ADB =Z CBD .求证:四边形 ABCD 是平行四边形.18.如图,线段AB=10,点P必侧给别以AP 、 B E=F和 BPEF,32AB 上,在 边长作正方形 APCD 点M 、N 分别是EF 、CD 的中是a为菱形,AAEF (A 、E 、F 是格点)同时形变为 祥’E' ,F 若这个菱形的 形变度”上竺,则S*15D C22.受益于国家支持新能源汽车发展和—带一路”倡议,某市汽车零部件生产企业的利润逐年提高,据统计,2017年的利润为2亿元,2019年的利润为2.88亿元.(1)求该企业从2017年到2019年年利润的平均增长率?(2)若年利润的平均增长率不变,则该企业2020年的利润能后超过3.5亿元?23.我们都知道在中国象棋中,马走日,象走田,如图所示,假设一匹马经过A、B两点走到点C,请问点A、B在不在马的起始位置所在的点与点C所确定的直线上?- 1 * C" ■ ,尻此7 m晨]24.如图,在平行四边形ABCD中,E、F分别为边AB、CB的延长线于点G.(1)求证:△ ADE CBF;(2)若/ G=90°,求证:四边形DEBF 菱形.____ 壬___ -c25.某节,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏] 之间的函数关系如图所示.⑴求y与x函数关系式,并写出x的取值范围:请说明你的理由.CD的中点,BD是对角线过点有作AG // DB交■亥蜜柚的成本价为.8元/千克。
北师大版八年级下册数学期末考试试题及答案
北师大版八年级下册数学期末考试试卷一、单选题1.下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D . 2.若a b >,则下列四个不等式中正确的是( )A .33a b >B .55a b +<+C .55a b ->-D .22a b -<-3.下列式子:①2x ;①5x y +;①12a -;①x π,其中是分式的有( ) A .①① B .①①① C .①① D .①①①4.不等式5x 1>2x 5-+的解集在数轴上表示正确的是( )A .B .C .D .5.已知实数x ,y 满足()2670x y -+-=,则以x ,y 的值为两边的等腰三角形的周长为( )A .19B .20C .19或20D .以上答案都不对 6.平面直角坐标系中,点P (2,0)平移后对应的点为Q (5,4),则平移的距离为( ) A .3 B .4 C .5 D .77.下列分式的运算正确的是( )A .111x y xy -=B .2211(1)1x x x x -+=-- C .22142x x x -=-+ D .313x x ÷= 8.在四边形ABCD 中,下列说法正确的是( )A .当AD=BC ,AB①DC 时,四边形ABCD 是平行四边形B .当AD=BC ,AB=DC 时,四边形ABCD 是平行四边形C .当AC=BD ,AC 平分BD 时,四边形ABCD 是平行四边形D .当AC=BD ,AC①BD 时,四边形ABCD 是平行四边形9.如图,直线11y k x b =+与x 轴交于点(-4,0),直线22y k x b =+与x 轴交于点(3,0),则不等式组112200k x b k x b +>⎧⎨+>⎩的解集是( )A .4x >-B .3x <C .-43x <<D .43x x <->或10.如图,在ABC 中,AB AC 10==,BAC 120∠=,AD 是ABC 的中线,AE 是BAD ∠的角平分线,DF//AB 交AE 的延长线于点F ,则DF 的长是( )A .2B .4C .5D .5211.如图,平行四边形ABCD 中,对角线AC 、BD 相交于点O ,E 、F 是AC 上的两点,当E 、F 满足下列哪个条件时,四边形DEBF 不一定是平行四边形( )A .①ADE=①CBFB .①ABE=①CDFC .DE=BFD .OE=OF 12.在平面直角坐标系中,将点(1,2)A -向左平移2个单位长度,再向下平移3个单位长度得到的点坐标为( )A .(1,1)-B .(1,5)-C .(3,1)--D .(3,5)-二、填空题13.一个n 边形的内角和是540°,那么n =_____.14.如图,在①ABC 中,AB=BC ,①ABC=100,BD 是①ABC 的平分线,E 是AB 的中点,则①EDB 的度数为__________.15.若24()3x m x +-+是完全平方式,则数m 的值是________.16.若不等式组321x x m <⎧⎨>-⎩无解,则m 的取值范围是________. 17.如图,AN OB ⊥,BM OA ⊥,垂足分别为N 、M ,OM ON =,BM 与AN 交于点P .写出由上述条件得到的两个不同类的结论__________.三、解答题18.因式分解:(1)2288x y xy y -+(2)()()2222a b a b +--19.(1)解不等式()()3227x x ->-,并把它的解集表示在数轴上. (2) 6234211132x x x x +≥-⎧⎪+-⎨-≤⎪⎩20.解分式方程:2181393x x x x x-=+---21.先化简,再求值:21211222m m m m ++⎛⎫-÷ ⎪++⎝⎭,其中2m = 22.在数学课上,老师出了这样一道题:甲、乙两地相距1200 千米,乘高铁列车从甲地到乙地比乘特快列车少用8小时,已知高铁列车的平均行驶速度是特快列车的3倍,求特快列车从甲地到乙地的时间.23.如图,①ABCD 的对角线AC 、BD 相交于点O ,且E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点.(1)求证:四边形EFGH 是平行四边形;(2)若AC+BD=36,AB=10,求①OEF 的周长.24.如图,四边形ABCD 为平行四边形,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:①ABE ①①FCE ;(2)过点D 作DG AE ⊥于点G ,H 为DG 的中点.判断CH 与DG 的位置关系,并说明理由.25.在Rt①ABC 中,①ACB =90°,①B =30°,将①ABC 绕点C 顺时针旋转一定角度得到①DEC ,点D 恰好在AB 上.(1)若AC =4,求DE 的值;(2)确定①ACD 的形状,并说明理由.26.如图,在①ABC中,①ACB=90°,BC=AC=6,D是AB边上任意一点,连接CD,以CD为直角边向右作等腰直角①CDE,其中①DCE=90°,CD=CE,连接BE.(1)求证:AD=BE;(2)当①CDE的周长最小时,求CD的值;(3)求证:222AD DB CE+=.2参考答案1.A【分析】根据中心对称图形和轴对称图形的定义,分别进行判断,即可得到答案.【详解】解:A、既是轴对称图形又是中心对称图形,故A正确;B、是轴对称图形,不是中心对称图形,故B错误;C、是中心对称图形,不是轴对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误;故选:A.【点睛】本题考查了中心对称图形和轴对称图形的定义,解题的关键是熟练掌握定义进行解题. 2.A【解析】【分析】本题可通过不等式两边同时乘或除一个数不等号方向是否变化,判断A 、C 选项;不等式两边同时加或减一个数,不等式大小不变与题意矛盾以判断B 、D 选项.【详解】A 选项:不等式两边同时乘一个正数,不等号方向不变,故A 选项正确;B 选项:由55a b +<+可推出a <b ,与题干a b >矛盾,故排除B 选项;C 选项:不等式两边同时乘一个负数,不等号方向改变,故正确表达应为5a -<5b -,故排除C 选项;D 选项:由22a b -<-可推出a <b ,与题干a b >矛盾,故排除D 选项;故选:A .【点睛】本题考查不等式相关性质,易错点在于不等式两边若乘或除一个负数,不等号方向必须改变.3.C【解析】【分析】根据分式的概念,逐一判断即可.【详解】解:①①分母中都含有未知数,故①①都是分式;①①分母中都不含有未知数,故①①不是分式;故答案选C【点睛】本题主要考查了分式的感念,熟记理解分式的基本概念是解题的关键.4.A【解析】【详解】试题分析:不等式的解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此,-+,得x>2,在数轴上表示正确的是A.故选A.解不等式5x1>2x55.C【解析】【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【详解】解:根据题意得,x-6=0,y-7=0,解得x=6,y=7,①6是腰长时,三角形的三边分别为6、6、7,①6是底边时,三角形的三边分别为6、7、7,6,6,7和6,7,7都能组成三角形,6+6+7=19,6+7+7=20所以,三角形的周长为19或20.故选:C【点睛】本题考查了等腰三角形的性质,绝对值非负数,平方非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.6.C【解析】【分析】平移的距离为对应点所连线段的长度,由于点P(2,0)平移后对应的点为Q(5,4),根据两点间的距离公式求出PQ即可.【详解】解:①平面直角坐标系中,点P(2,0)平移后对应的点为Q(5,4),①平移的距离为5,故选:C.【点睛】本题考查了坐标与图形变化-平移,知道平移的距离计算方法是解题的关键.7.B【解析】【分析】根据分式的基本性质以及分式的运算法则进行运算即可.【详解】 A. 11,yx y xy x-=-错误.B. ()()()()2221111,111x x x x x x x +--+==---正确. C. ()()22214222x x x x x x +---=-=--+,错误. D. 3x ÷x 3=3x 3x =29x ,错误.故选:B.【点睛】考查分式的基本性质以及分式的运算,掌握运算法则是解题的关键.8.B【解析】【分析】由平行四边形的判定定理判断即可.【详解】解:①一组对边平行且相等的四边形是平行四边形,①A 不正确;①两组对边分别相等的四边形是平行四边形,①B 正确;①对角线互相平分等的四边形是平行四边形,①C 、D 不正确;故选:B .【点睛】本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解决问题的关键.9.C【解析】【分析】先根据图象求出每个不等式的解集,再根据大小小大中间找求出它们的公共部分即可.【详解】解:①直线y 1=k 1x+b 1与x 轴交于点(-4,0),且y 随x 的增大而增大,①不等式k 1x+b 1>0的解集为x >-4;①直线y 2=k 2x+b 2与x 轴交于点(3,0),且y 随x 的增大而减小,①不等式k 2x+b 2>0的解集为x <3,①不等式组112200k x b k x b +>⎧⎨+>⎩的解集是-4<x <3. 故选:C .【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了一元一次不等式组的解集.10.C【解析】【分析】由等腰三角形的性质可求出①ABD=30°、AD①BC ,根据平行线的性质及角平分线的定义可证明①DAF=①DFA ,即可证明DF=AD ,利用含30°角的直角三角形的性质即可得答案.【详解】①AB=AC=10,①BAC=120°,AD 是中线, ①①ABD=①ACD=12(180°-120°)=30°,AD①BC , ①AD=12AB=5,①DF//AB ,①①DFA=①BAF ,①AF 是①BAD 的角平分线,①①BAF=①DAF ,①①DAF=①DFA ,①DF=AD=5.故选C.【点睛】本题考查了等腰三角形的性质与判定、平行线的性质及含30°角的直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.11.C【解析】【分析】根据平行四边形的性质,以及平行四边形的判定定理即可作出判断.【详解】A 、在平行四边形ABCD 中,①AO=CO ,DO=BO ,AD①BC ,AD=BC ,①①DAE=①BCF ,若①ADE=①CBF ,在①ADE 与①CBF 中,DAE BCFAD BC ADE CBF∠∠⎧⎪⎨⎪∠∠⎩===,①①ADE①①CBF ,①AE=CF ,①OE=OF ,①四边形DEBF 是平行四边形;B 、若①ABE=①CDF ,在①ABE 与①CDF 中,BAE DCFAB CD ABE CDF∠∠⎧⎪⎨⎪∠∠⎩===,①①ABE①①CDF ,①AE=CF ,①OE=OF,①OD=OB,①四边形DEBF是平行四边形;C、若DE与AC不垂直,则满足AC上一定有一点M使DM=DE,同理有一点N使BF=BN,则四边形DEBF不一定是平行四边形,则选项错误;D、若OE=OF,①OD=OB,①四边形DEBF是平行四边形;故选C.【点睛】本题考查了平行四边形的性质以及判定定理,熟练掌握定理是关键.12.C【解析】【分析】直角利用平移中点的变化规律进行解答即可.【详解】解:①将点(-1.2)先向左平移2个单位长度再向下平移3个单位长度,①平移后得到的点是(-1-2,2-3),即(-3,-1).故答案为C.【点睛】本题考查了点的平移规律,掌握横坐标右移加,左移减;纵坐标上移加,下移减是解答本题的关键.13.5【解析】【分析】根据多边形的内角和公式列出方程,解方程即可【详解】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,故答案为:5.【点睛】本题考查了多边形的内角和,熟练掌握n边形的内角和为(n﹣2)•180°是解题的关键14.50【解析】【分析】根据等腰三角形三线合一的性质可得D是AC的中点,已知又E是AB的中点,由此可得ED是①ABC的中位线,根据三角形的中位线定理可得DE①BC;根据等腰三角形三线合一的性质可得①DBA=①CBD=50°,由平行线的性质即可得①EDB =①CBD=50°.【详解】①BD是等腰①ABC的①ABC的平分线,①D是AC的中点,又①E是AB的中点,①ED是①ABC的中位线,①DE①BC.①①ABC=100°,BD是①ABC的平分线,①①DBA=①CBD=50°,①DE①BC,①①EDB =①CBD=50°.故答案为:50°.【点睛】本题考查了等腰三角形的性质、三角形的中位线定理及平行线的性质,根据等腰三角形的性质证得ED是①ABC的中位线是解决问题的关键.15.7或-1【解析】【详解】①x2+(m−3)x+4是完全平方式,①m−3=±4,①m=7或−1.故答案为7或-1.16.2m ≥【解析】【分析】根据大大小小无解了,即可求出m 的取值范围.【详解】解:①不等式组321x x m <⎧⎨>-⎩无解, ①213m -≥,①2m ≥;故答案为:2m ≥.【点睛】本题考查了已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.17.PM=PN ,①PON=①POM (答案不唯一).【解析】【分析】连接OP ,证明Rt①OPM①Rt①OPN (HL ),①APM①①PBN (ASA ),再利用全等三角形的性质解答即可.【详解】如PM=PN ,①PON=①POM ,①OPN=①OPM ,BN=AM ,OA=OB .从中选择边和角不同的结论即可.①AN①OB ,BM①OA ,①在Rt①OPM 与Rt①OPN 中ON OM OP OP =⎧⎨=⎩, ①Rt①OPM①Rt①OPN (HL ),①①PON=①POM ,PN=PM ,①OPN=①OPM ,在①APM 与①PBN 中90PNB PMA PN PM BPN APM∠∠︒⎧⎪⎨⎪∠∠⎩====,①①APM①①PBN (ASA ),①BN=AM ,①OA=AM+OM ,OB=BN+ON ,①OA=OB .故答案为:PM=PN ,①PON=①POM (答案不唯一).【点睛】本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键. 18.(1)()222y x -;(2)()()33a b b a +-【解析】【分析】(1)先提取公因式,再运用完全平方公式因式分解即可;(2)运用平方差公式因式分解后化简即可.【详解】(1)2288x y xy y -+()2244y x x =-+()222y x =-(2)()()2222a b a b +--()()2222a b a b a b a b =++-+-+()()33a b b a =+-【点睛】本题主要考查了因式分解,熟记因式分解的公式以及灵活运用是解题的关键.19.(1)4x >,图详见解析;(2)-21x ≤≤【解析】【分析】(1)先去括号,移项、合并同类项,把x 的系数化为1,再在数轴上表示出来即可.(2)先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.【详解】解:(1)()()3227x x ->-解:36142x x ->-32146x x +>+520x >4x >在数轴上表示解集如下:(2)6234211132x x x x +≥-⎧⎪⎨+--≤⎪⎩①② 解:解不等式①得2x ≥-解不等式①得1x ≤在同一数轴上表示不等式①①的解集如图所示:所以不等式组的解集为-21x ≤≤【点睛】本题考查了解一元一次不等式及解一元一次不等式组,掌握不等式的基本性质是解题的关键.20.无解【解析】【分析】先去分母,去括号,移项合并,求出方程的解,通过检验即可得到分式方程的解.【详解】 解:2181393x x x x x-=+--- 方程两边同乘以()()33x x +-得:()23893x x x x x +-=--+,①3793x x -=--,①412x =①3x =;经检验,3x =是原方程的增根①原方程无解.【点睛】本题考查了解分式方程,解题的关键是熟练掌握运算法则进行解题,注意分式方程需要检验.21【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.【详解】 原式=()()2m 1m 21m 2m 22m 1++⎛⎫-÷ ⎪+++⎝⎭ m 12=m 2m 1+⋅++ =2m 2+,当m 2时,原式= 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 22.特快列车从甲地到乙地的时间为12 h .【解析】【分析】由路程÷速度=时间,利用“乘高铁列车从甲地到乙地比乘特快列车少用8h ,高铁列车的平均行驶速度是特快列车的3倍”得出等量关系即可建立方程求得答案即可.【详解】解:设高铁列车从甲地到乙地的时间为y h ,则特快列车从甲地到乙地的时间为(y+8) h , 根据题意得1200120038y y =⨯+ 解这个方程得 4y =经检验,4y=是原分式方程的根则812y+=;答:特快列车从甲地到乙地的时间为12 h.【点睛】此题考查分式方程的实际运用,掌握路程、时间、速度三者之间的关系是解决问题的关键.23.(1)详见解析;(2)14【解析】【分析】(1)由平行四边形的性质可得AO=CO,BO=DO,由中点的性质可得EO=12AO,GO=12CO,FO=12BO,HO=12DO,由对角线互相平分的四边形是平行四边形可得结论;(2)由平行四边形的性质可得EO+FO=9,由三角形中位线定理可得EF=5,即可求解.【详解】证明:(1)①四边形ABCD是平行四边形①AO=CO,BO=DO①E、F、G、H分别是AO、BO、CO、DO的中点①EO=12AO,GO=12CO,FO=12BO,HO=12DO①EO=GO,FO=HO①四边形EFGH是平行四边形(2)①E、F分别是AO、BO的中点①EF=12AB,且AB=10①EF=5①AC+BD=36①AO+BO=18①EO+FO=9①①OEF 的周长=OE+OF+EF=9+5=14.【点睛】本题考查了平行四边形的判定和性质,熟练运用平行四边形的性质是本题的关键. 24.(1)见解析;(2)CH①DG ,见解析【解析】【分析】(1)由平行四边形的性质可得:AB‖DC ,则可求出①BAE=①CFE ,结合题目条件可证得结论;(2)由(1)可证得CF=CD ,可得CH 为三角形DFG 的中位线,则可得CH‖AF ,可证CH①DG .【详解】(1)证明:①四边形ABCD 为平行四边形,①AB‖DC ,①①BAE=①CFE ,①E 为BC 的中点,①BE=CE ,在①ABE 和①FCE 中:BAE CFE AEB CEF BE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ①①ABE ≅①FCE (AAS );(2)解:CH①DG ,理由如下:由(1)得①ABE ≅①FCE ,①AB=CF ,①四边形ABCD 为平行四边形,①AB=CD ,①CF=CD ,①C 为FD 的中点,①H 为DG 的中点,①CH 为①DFG 的中位线,①CH‖AF ,①DG①AE,①①DHC=①DGF=90°,①DG①AE.【点睛】此题考查平行四边形的性质,三角形全等和中位线,其中第二问证明中位线是关键.25.(1)8;(2)等边三角形,理由见解析【解析】【分析】(1)根据直角三角形的性质和旋转的性质即可得到结论;(2)根据三角形的内角和得到①A=60°,根据旋转的性质得到AC=CD,于是得到结论.【详解】解:(1)①在Rt①ABC中,①ACB=90°,①B=30°,AC=4,①AB=2AC=8,①将①ABC绕点C顺时针旋转一定角度得到①DEC,①DE=AB=8;(2)①ACD是等边三角形,理由:①①ACB=90°,①ABC=30°,①①A=60°,①将①ABC绕点C顺时针旋转一定角度得到①DEC,①AC=CD,①①ACD是等边三角形.【点睛】本题考查了旋转的性质,直角三角形的性质,等边三角形的判定,正确的识别图形是解题的关键.26.(1)见解析;(2)(3)见解析【解析】【分析】(1)先判断出①ACD=①BCE,得出①ADC①①CBE(SAS),即可得出结论;(2)先判断出CD,进而得出①CDE的周长为()CD,进而判断出当CD①AB时,CD 最短,即可得出结论;(3)先判断出①A=①ABC=45°,进而判断出①DBE=90°,再用勾股定理得出BE 2+DB 2=DE 2,即可得出结论.【详解】证明:(1)①①ACB =①DCE =90°,①①1+①3=90°,①2+①3=90°,①①1=①2.①BC =AC ,CD =CE ,①①CAD①①CBE ,①AD =BE .(2)①①DCE=90°,CD=CE .①由勾股定理可得.①①CDE 周长等于CD+CE+DE=2CD =(2CD .①当CD 最小时①CDE 周长最小.由垂线段最短得,当CD①AB 时,①CDE 的周长最小.①BC =AC =6,①ACB =90°,①AB=此时AD =CD =1122BD AB ==⨯①当CD =时,①CDE 的周长最小.(3)由(1)易知AD =BE ,①A =①CBA =①CBE =45°,①①DBE =①CBE +①CBA =90°.在Rt①DBE 中:222BE BD DE +=.222AD BD DE ∴+=在Rt①CDE中:222+=.CD CE DE222∴+=CE CE DE①222+=.AD BD CE2【点睛】此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理,判断出CD①AB时,CD最短是解本题的关键.21。
北师大版八年级数学下册期末试卷及答案【完整版】
北师大版八年级数学下册期末试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为( )A .12B .C .12或D .以上都不对2.(2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或73.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( )A .122y y >>B .212y y >>C .122y y >>D .212y y >>4.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩ 5.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )A .平均数B .中位数C .众数D .方差6.如果a ,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.若aba 和b 互为( )A .倒数B .相反数C .负倒数D .有理化因式8.关于▱ABCD 的叙述,正确的是( )A .若AB ⊥BC ,则▱ABCD 是菱形 B .若AC ⊥BD ,则▱ABCD 是正方形C .若AC=BD ,则▱ABCD 是矩形 D .若AB=AD ,则▱ABCD 是正方形9.如图,由四个全等的直角三角形拼成的图形,设CE a =,HG b =,则斜边BD 的长是( )A .+a bB .⋅a b C.222a b +D .222a b - 10.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=________.2.不等式组34012412x x +≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________. 3.计算:()()201820195-252+的结果是________.4.如图,把△ABC 绕点C 按顺时针方向旋转35°,得到△A ’B ’C ,A ’B ’交AC 于点D ,若∠A ’DC=90°,则∠A= °.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2(1)30x +-= (2)4(2)3(2)x x x +=+2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.5.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、A4、B5、D6、C7、D8、C9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、0324、55.5、706、6三、解答题(本大题共6小题,共72分)1、(1)11x =,21x =;(2)12x =-,243x =.2、-3.3、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.4、略.5、(1)略;(2)MB =MC .理由略;(3)MB =MC 还成立,略.6、(1)120件;(2)150元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013—2014学年(下)八年级期末测试题
一、选择题(每小题3分,共24分)
1. 若a<0,则下列不等式不成立的是( )
A . a+5<a+7
B .5a >7a
C .5-a <7-a
D .7
5
a a > 2.下列从左到右的变形是因式分解的是( ) A.(x+1)(x-1)=x 2-1 B.(a-b)(m-n)=(b-a)(n-m) C.ab-a-b+1=(a-1)(b-1) D.m 2-2m-3=m(m-2-m
3) 3.方程1
3
2+=
x x
的解为( ) A .2 B .1 C .-2 D .-1
4.不等式3(2x+5)> 2(4x+3)的解集为( )
A.x>4.5
B.x<4.5
C.x=4.5
D.x>9新 课 标 第 一5.下面的图形是天气预报的图标,其中既是轴对称图形又是中心对称图形的是( )
A .
B .
C .
D .
6.在△ABC 中,∠C=90°,AC=BC,AD 平分∠CAB,交BC 于点D,DE⊥AB 于点E ,且AB=10,则△EDB 的周长是( ) A.4 B.6 C.8 D.10
B
A
C
D
E
7.在△ABC 中,∠ACB=90° ,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D ,E ,F 分别为垂足,且AB=10,BC=8,则点O 到三边AB,AC,BC 的距离分别是( )
A.2,2,2
B.3,3,3
C.4,4,4
D.2,3,5
C
B
O A
E F
F
8.如图,平行四边形ABCD 的对角线相交于点
O ,且AB≠AD,过O 作OE⊥BD 交BC 于点E .若△CDE 的周长为10,则AB+AD 的值是( ) A.10 B.15 C.25 D.30
二.填空题(每题3分,共24分)
9.分解因式: x 2y-y 3= .
10.当x 时,分式1
12-x x 值为0.
11.如图,已知函数y = 3x + b 和y = ax - 3的图象交于点P( -2,-5) ,则根据图象可得不等式3x + b >ax - 3的解集是 .
12.如图,面积为12cm 2的△ABC 沿BC 方向平移至△DEF 位置,平移的距离是边BC 长的两倍,则图中的四边形ACED 的面积是______cm 2.
13. 已知两个分式:X X B X A -++=-=
21
21,4
42
.其中x ≠2且x ≠-2,则A 与B 的关系是 .
14.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,现在平均每天生产 台机器.
15. 如图,平行四边形ABCD 的周长为36,对角线AC ,BD 相交于点O ,点E 是CD 的中点,BD=12,则⊿DOE 的周长为 .
B
C
A
D
E
16. 如图,Rt △ABC 中,∠ABC=90°,BC=3,AC=4,AB 的垂直平分线DE 交BC 的延长线于点E,则CE 的长为 .
C
B
E
D
三、解答题(本大题7个小题,共72分) 17.(12分)分解因式:
(1)-4a 2x+12ax -9x (2) (2x+y)2 – (x+2y)2
18.(9分)解不等式组⎪⎩
⎪⎨
⎧+-≤〉+2320
1x x x ,并写出该不等式组的最大整数解.
19.(9分)先化简a
a a a a a 1
12112÷+---+,然后给a 选择一个你喜欢的数
代入求值.
20.(9分)解方程
14
222=-+-x x x
21.(10分)如图,OC 是∠AOB 的平分线,点P 为OC 上一点,若∠POD+∠PEO=180°,试判断PD 和PE 的大小关系,并说明理由.
O
B
C
P
D
E
22.(11分)我国沪深股市交易中,如果买、卖一次股票均需要付交易金额的0.5%作费用.张先生以每股5元的价格买入“陕西电力”股票1000股,若他期望获利不低于1000元,问至少要等到该股涨到每股多少元时才能卖出?(精确到0.01元)
23.(12分)将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB 的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;
(2
)在图②中,若AP1=2,则CQ等于多少?
参考答案
一、1.D 2.C 3.A 4.B 5.A 6.D 7.A 8.A
二、9.y(x+y)(x-y) 10.x=-1 11.x>-2 12.36
7
13.互为相反数 14.200 15.15 16.
6三、17.(1)-x(2a-3)2 (2).3(x+y)(x-y)
3最大整数解:1.
18.-1<x≤
2
1代入求值略.
19.-
1-a
20.x=-3.(注意:分式方程要检验)
21.PD=PE.(提示:作PF⊥OA于点F,PG⊥OB于点G.)
22. 解:设至少涨到每股x元时才能卖出.
1000x-(5000+1000x)×0.5%≥5000+1000,
1205,x≥6.06
解这个不等式x≥
199
答:至少要涨到每股6.06时才能卖出.
23.(1)提示证明:∴△B1CQ≌△BCP1(ASA).
(2)提示作如下辅助线:。