人教B版高考数学大一轮总复习讲义立体几何中的向量方法
2020高考数学大一轮复习第八章立体几何7第7讲立体几何中的向量方法课件理

如图,在三棱锥 P-ABC 中,PA⊥底面 ABC, ∠BAC=90°.点 D,E,N 分别为棱 PA,PC, BC 的中点,M 是线段 AD 的中点,PA=AC =4,AB=2. (1)求证:MN∥平面 BDE; (2)已知点 H 在棱 PA 上,且直线 NH 与直线 BE 所成角的余弦 值为217,求线段 AH 的长.
因为 BD⊄平面 EFC,EF⊂平面 EFC, 所以 BD∥平面 EFC. 又 MN∩BD=N,所以平面 BDM∥平面 EFC.
(2)因为 DE⊥平面 ABCD,四边形 ABCD 是正方形, 所以 DA,DC,DE 两两垂直,如图,建立空间直角坐标系 D-xyz. 设 AB=2,则 DE=4,从而 D(0,0,0),B(2,2,0),M(1,0, 2),A(2,0,0),E(0,0,4), 所以D→B=(2,2,0),D→M=(1,0,2), 设平面 BDM 的法向量为 n=(x,y,z),
2y-4z=0,Biblioteka 即 25x+y-2z=0,
可取 n=(0,2,1).
于是|cos
〈n,A→N〉|=
→ |n·A→N|=8255,则直线
AN
与平面
PMN
|n||AN|
所成角的正弦值为8255.
二面角(师生共研)
(2019·高 考 全 国 卷 Ⅰ) 如 图 , 直 四 棱 柱 ABCD-A1B1C1D1 的底面是菱形,AA1=4,AB =2,∠BAD=60°,E,M,N 分别是 BC,BB1, A1D 的中点. (1)证明:MN∥平面 C1DE; (2)求二面角 A-MA1N 的正弦值.
已知两平面的法向量分别为 m=(0,1,0),n=(0,1,1),
则两平面所成的二面角为( )
2024届高考一轮复习数学教案(新人教B版):空间向量与立体几何

必刷大题14空间向量与立体几何1.(2022·新高考全国Ⅰ改编)如图,直三棱柱ABC -A 1B 1C 1的体积为4,△A 1BC 的面积为22.(1)求A 到平面A 1BC 的距离;(2)设D 为A 1C 的中点,AA 1=AB ,平面A 1BC ⊥平面ABB 1A 1,求平面ABD 与平面BCD 夹角的正弦值.解(1)设点A 到平面A 1BC 的距离为h ,因为直三棱柱ABC -A 1B 1C 1的体积为4,所以1A A BC V -=13S △ABC ·AA 11111433ABC A B C V -==,又△A 1BC 的面积为22,1113A A BC A BC V S h -=△=13×22h =43,所以h =2,即点A 到平面A 1BC 的距离为2.(2)取A 1B 的中点E ,连接AE ,则AE ⊥A 1B .因为平面A 1BC ⊥平面ABB 1A 1,平面A 1BC ∩平面ABB 1A 1=A 1B ,AE ⊂平面ABB 1A 1,所以AE ⊥平面A 1BC ,又BC ⊂平面A 1BC ,所以AE ⊥BC .又AA 1⊥平面ABC ,BC ⊂平面ABC ,所以AA 1⊥BC .因为AA 1∩AE =A ,AA 1,AE ⊂平面ABB 1A 1,所以BC ⊥平面ABB 1A 1,又AB ⊂平面ABB 1A 1,所以BC ⊥AB .以B 为坐标原点,分别以BC →,BA →,BB 1—→的方向为x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系,由(1)知,AE =2,所以AA 1=AB =2,A 1B =22.因为△A 1BC 的面积为22,所以22=12·A 1B ·BC ,所以BC =2,所以A (0,2,0),B (0,0,0),C (2,0,0),A 1(0,2,2),D (1,1,1),E (0,1,1),则BD →=(1,1,1),BA →=(0,2,0).设平面ABD 的法向量为n =(x ,y ,z ),n ·BD →=0,n ·BA →=0,x +y +z =0,2y =0,令x =1,得n =(1,0,-1).又平面BDC 的一个法向量为AE →=(0,-1,1),所以cos 〈AE →,n 〉=AE →·n |AE →|·|n |=-12×2=-12.设平面ABD 与平面BCD 的夹角为θ,则sin θ=1-cos 2〈AE →,n 〉=32,所以平面ABD 与平面BCD 夹角的正弦值为32.2.如图,四棱锥P -ABCD 的底面为正方形,PA ⊥平面ABCD ,M 是PC 的中点,PA =AB .(1)求证:AM ⊥平面PBD ;(2)设直线AM 与平面PBD 交于O ,求证:AO =2OM .证明(1)由题意知,AB ,AD ,AP 两两垂直,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,如图,设PA =AB =2,则P (0,0,2),B (2,0,0),D (0,2,0),C (2,2,0),M (1,1,1),PB →=(2,0,-2),PD →=(0,2,-2),AM →=(1,1,1),设平面PBD 的法向量为n =(x ,y ,z ),n ·PB →=2x -2z =0,n ·PD →=2y -2z =0,取x =1,得n =(1,1,1),∵AM →=n ,∴AM ⊥平面PBD .(2)如图,连接AC 交BD 于点E ,则E 是AC 的中点,连接PE ,∵AM ∩平面PBD =O ,∴O ∈AM 且O ∈平面PBD ,∵AM ⊂平面PAC ,∴O ∈平面PAC ,又平面PBD ∩平面PAC =PE ,∴O ∈PE ,∴AM ,PE 的交点就是O ,连接ME ,∵M 是PC 的中点,∴PA ∥ME ,PA =2ME ,∴△PAO ∽△EMO ,∴PA ME =AO OM =21,∴AO =2OM .3.如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AB ∥CD ,PA =AB =2CD =2,∠ADC =90°,E ,F 分别为PB ,AB 的中点.(1)求证:CE ∥平面PAD ;(2)求点B 到平面PCF 的距离.(1)证明连接EF (图略),∵E ,F 分别为PB ,AB 的中点,∴EF ∥PA ,∵EF ⊄平面PAD ,PA ⊂平面PAD ,∴EF ∥平面PAD ,∵AB ∥CD ,AB =2CD ,∴AF ∥CD ,且AF =CD .∴四边形ADCF 为平行四边形,即CF ∥AD ,∵CF ⊄平面PAD ,AD ⊂平面PAD ,∴CF ∥平面PAD ,∵EF ∩CF =F ,EF ,CF ⊂平面EFC ,∴平面PAD ∥平面EFC ,CE ⊂平面EFC ,则CE ∥平面PAD .(2)解∵∠ADC =90°,AB ∥CD ,∴AB ⊥AD ,CF ⊥AB ,又PA ⊥平面ABCD ,∴PA ⊥CF ,又PA ∩AB =A ,∴CF ⊥平面PAB ,∴CF ⊥PF .设CF =x ,则S △AFC =12×1×x =x 2,S △PFC =12×5×x =52x ,设点A 到平面PCF 的距离为h ,由V P -AFC =V A -PFC ,得13×x 2×2=13×5x 2×h ,则h =255.∵点F 为AB 的中点,∴点B 到平面PCF 的距离等于点A 到平面PCF 的距离,为255.4.(2022·全国乙卷)如图,四面体ABCD 中,AD ⊥CD ,AD =CD ,∠ADB =∠BDC ,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设AB =BD =2,∠ACB =60°,点F 在BD 上,当△AFC 的面积最小时,求CF 与平面ABD 所成的角的正弦值.(1)证明因为AD =CD ,E 为AC 的中点,所以AC ⊥DE .在△ADB 和△CDB 中,因为AD =CD ,∠ADB =∠CDB ,DB =DB ,所以△ADB ≌△CDB ,所以AB =BC .因为E 为AC 的中点,所以AC ⊥BE .又BE ∩DE =E ,BE ,DE ⊂平面BED ,所以AC ⊥平面BED ,又AC ⊂平面ACD ,所以平面BED ⊥平面ACD .(2)解由(1)可知AB =BC ,又∠ACB =60°,AB =2,所以△ABC 是边长为2的正三角形,则AC =2,BE =3,AE =1.因为AD =CD ,AD ⊥CD ,所以△ADC 为等腰直角三角形,所以DE =1.所以DE 2+BE 2=BD 2,则DE ⊥BE .由(1)可知,AC ⊥平面BED .连接EF ,因为EF ⊂平面BED ,所以AC ⊥EF ,当△AFC 的面积最小时,点F 到直线AC 的距离最小,即EF 的长度最小.在Rt △BED 中,当EF 的长度最小时,EF ⊥BD ,EF =DE ·BE BD =32.方法一由(1)可知,DE ⊥AC ,BE ⊥AC ,所以EA ,EB ,ED 两两垂直,以E 为坐标原点,EA ,EB ,ED 所在的直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (1,0,0),B (0,3,0),D (0,0,1),C (-1,0,0),AB →=(-1,3,0),DB →=(0,3,-1).易得DF =12,FB =32,所以3DF →=FB →.设F (0,y ,z ),则DF →=(0,y ,z -1),FB →=(0,3-y ,-z ),所以3(0,y ,z -1)=(0,3-y ,-z ),得y =34,z =34,即,34,所以CF →,34,设平面ABD 的法向量为n =(x 1,y 1,z 1),·AB →=-x 1+3y 1=0,·DB →=3y 1-z 1=0,不妨取y 1=1,则x 1=3,z 1=3,n =(3,1,3).记CF 与平面ABD 所成的角为α,则sin α=|cos 〈CF →,n 〉|=|CF →·n ||CF →||n |=437.所以CF 与平面ABD 所成角的正弦值为437.方法二因为E 为AC 的中点,所以点C 到平面ABD 的距离等于点E 到平面ABD 的距离的2倍.因为DE ⊥AC ,DE ⊥BE ,AC ∩BE =E ,AC ,BE ⊂平面ABC ,所以DE ⊥平面ABC .因为V D -AEB =V E -ADB ,所以13·12AE ·BE ·DE =13·S △ABD ·d 2,其中d 为点C 到平面ABD 的距离.在△ABD 中,BA =BD =2,AD =2,所以S △ABD =72,所以d =2217.由(1)知AC ⊥平面BED ,EF ⊂平面BED ,所以AC ⊥EF ,所以FC =FE 2+EC 2=72.记CF 与平面ABD 所成的角为α,则sin α=d CF =437.所以CF 与平面ABD 所成角的正弦值为437.方法三如图,过点E 作EM ⊥AB 交AB 于点M ,连接DM ,过点E 作EG ⊥DM 交DM 于点G .因为DE ⊥AC ,DE ⊥BE ,AC ∩BE =E ,AC ,BE ⊂平面ABC ,所以DE ⊥平面ABC ,又AB ⊂平面ABC ,所以DE ⊥AB ,又EM ∩DE =E ,EM ,DE ⊂平面DEM ,所以AB ⊥平面DEM ,又EG ⊂平面DEM ,所以AB ⊥EG ,又AB ∩DM =M ,AB ,DM ⊂平面ABD ,所以EG ⊥平面ABD ,则EG 的长度等于点E 到平面ABD 的距离.因为E 为AC 的中点,所以EG 的长度等于点C 到平面ABD 的距离的12.因为EM =AE ·sin 60°=32,所以EG =DE ·EM DM =DE ·EM DE 2+EM 2=217,所以点C 到平面ABD 的距离d =2217.FC =FE 2+EC 2=72.记CF 与平面ABD 所成的角为α,则sin α=d CF =437.所以CF 与平面ABD 所成角的正弦值为437.5.(2023·青岛模拟)如图①,在梯形ABCD 中,AB ∥DC ,AD =BC =CD =2,AB =4,E 为AB 的中点,以DE 为折痕把△ADE 折起,连接AB ,AC ,得到如图②的几何体,在图②的几何体中解答下列问题.(1)证明:AC ⊥DE ;(2)请从以下两个条件中选择一个作为已知条件,求平面DAE 与平面AEC 夹角的余弦值.①四棱锥A -BCDE 的体积为2;②直线AC 与EB 所成角的余弦值为64.(1)证明在图①中,连接CE (图略),因为DC ∥AB ,CD =12AB ,E 为AB 的中点,所以DC ∥AE ,且DC =AE ,所以四边形ADCE 为平行四边形,所以AD =CE =CD =AE =2,同理可证DE =2,在图②中,取DE 的中点O ,连接OA ,OC (图略),则OA =OC =3,因为AD =AE =CE =CD ,所以DE ⊥OA ,DE ⊥OC ,因为OA ∩OC =O ,OA ,OC ⊂平面AOC ,所以DE ⊥平面AOC ,因为AC ⊂平面AOC ,所以DE ⊥AC .(2)解若选择①:由(1)知DE ⊥平面AOC ,DE ⊂平面BCDE ,所以平面AOC ⊥平面BCDE ,且交线为OC ,所以过点A 作AH ⊥OC 交OC 于点H (图略),则AH ⊥平面BCDE ,因为S 四边形BCDE =23,所以四棱锥A -BCDE 的体积V A -BCDE =2=13×23·AH ,所以AH =OA =3,所以AO 与AH 重合,所以AO ⊥平面BCDE ,建立如图所示的空间直角坐标系,则O (0,0,0),C (-3,0,0),E (0,1,0),A (0,0,3),易知平面DAE 的一个法向量为CO →=(3,0,0),设平面AEC 的法向量为n =(x ,y ,z ),因为CE →=(3,1,0),CA →=(3,0,3),·CE →=3x +y =0,·CA →=3x +3z =0,取n =(1,-3,-1),设平面DAE 与平面AEC 的夹角为θ,则cos θ=|CO →·n ||CO →||n |=33×5=55,所以平面DAE 与平面AEC 夹角的余弦值为55.若选择②:因为DC ∥EB ,所以∠ACD 即为异面直线AC 与EB 所成的角,在△ADC 中,cos ∠ACD =AC 2+4-44AC=64,所以AC =6,所以OA 2+OC 2=AC 2,即OA ⊥OC ,因为DE ⊥平面AOC ,DE ⊂平面BCDE ,所以平面AOC ⊥平面BCDE ,且交线为OC ,又OA ⊂平面AOC ,所以AO ⊥平面BCDE ,建立如图所示的空间直角坐标系,则O (0,0,0),C (-3,0,0),E (0,1,0),A (0,0,3),易知平面DAE 的一个法向量为CO →=(3,0,0),设平面AEC 的法向量为n =(x ,y ,z ),因为CE →=(3,1,0),CA →=(3,0,3),·CE →=3x +y =0,·CA →=3x +3z =0,取n =(1,-3,-1),设平面DAE 与平面AEC 的夹角为θ,则cos θ=|CO →·n ||CO →||n |=33×5=55,所以平面DAE 与平面AEC 夹角的余弦值为55.6.(2022·连云港模拟)如图,在三棱锥A -BCD 中,△ABC 是正三角形,平面ABC ⊥平面BCD ,BD ⊥CD ,点E ,F 分别是BC ,DC 的中点.(1)证明:平面ACD ⊥平面AEF ;(2)若∠BCD =60°,点G 是线段BD 上的动点,问:点G 运动到何处时,平面AEG 与平面ACD 的夹角最小.(1)证明因为△ABC 是正三角形,点E 是BC 的中点,所以AE ⊥BC ,又因为平面ABC ⊥平面BCD ,平面ABC ∩平面BCD =BC ,AE ⊂平面ABC ,所以AE ⊥平面BCD ,又因为CD ⊂平面BCD ,所以CD ⊥AE ,因为点E ,F 分别是BC ,CD 的中点,所以EF ∥BD ,又因为BD ⊥CD ,所以CD ⊥EF ,又因为AE ∩EF =E ,AE ⊂平面AEF ,EF ⊂平面AEF ,所以CD ⊥平面AEF ,又因为CD ⊂平面ACD ,所以平面ACD ⊥平面AEF .(2)解在平面BCD 中,过点E 作EH ⊥BD ,垂足为H ,此时EH ∥CD ,即H 为BD 的中点,设BC =4,则EA =23,DF =FC =1,EF = 3.以E 为原点,以EH ,EF ,EA 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则E (0,0,0),A (0,0,23),C (-1,3,0),D (1,3,0),设G (1,y ,0)(-3≤y ≤3),则EA →=(0,0,23),AD →=(1,3,-23),CD →=(2,0,0),EG →=(1,y ,0),设平面AEG 的法向量为n 1=(x 1,y 1,z 1),n 1·EA →=23z 1=0,n 1·EG →=x 1+yy 1=0,令y 1=-1,得n 1=(y ,-1,0),设平面ACD 的法向量为n 2=(x 2,y 2,z 2),2·CD →=2x 2=0,2·AD →=x 2+3y 2-23z 2=0,令z 2=1,得n 2=(0,2,1),设平面AEG 与平面ACD 的夹角为θ,则cos θ=|cos 〈n 1,n 2〉|=|-2|5·y 2+1=25·y 2+1,当y =0时,cos θ最大,此时平面AEG 与平面ACD 的夹角θ最小,故当点G 为BD 的中点时,平面AEG 与平面ACD 的夹角最小.。
高考数学一轮复习 第七章 立体几何 7.7 立体几何中的向量方法课件

12/11/2021
第二十一页,共六十三页。
【解析】
(1)如图所示,以 D 为坐标原点,以 DA 所在直线为 x 轴, DC 所在直线为 y 轴,DD1 所在直线为 z 轴,建立空间直角坐标 系,设正方体 ABCD-A1B1C1D1 的棱长为 2,易得 E(2,2,1),F(1,1,2), D(0,0,0),A1(2,0,2),
第四页,共六十三页。
01 知识梳理 诊断自测
课前热身 稳固根基
12/11/2021
第五页,共六十三页。
知识点一
异面直线所成角
设异面直线 a,b 所成的角为 θ,则 cosθ=||aa|·|bb||,其中 a,b 分别是 直线 a,b 的方向向量.
两异面直线所成的角为锐角或直角,而不共线的向量的夹角 为(0,π),所以公式中要加绝对值.
则
cosθ=
→→ AC1·AC2 →→
=12+30×+38=
3 2.
|AC1||AC2|
又 θ∈0,π2,所以 θ=π6.
(3)以点 D 为坐标原点建立如图所示的空间直角坐标系,
12/11/2021
第十六页,共六十三页。
设 PD=DC=1, 则 D(0,0,0),P(0,0,1),C(0,1,0),B(1,1,0), 所以D→P=(0,0,1),P→C=(0,1,-1),D→B=(1,1,0), B→C=(-1,0,0),设平面 PBD 的一个法向量为 n1=(x1,y1,z1),由 n1·D→P=0,n1·D→B=0 得zx11=+0y, 1=0, 令 x1=1,得 n1=(1,-1,0).
设直线 PB 与 AC 所成角为 θ,则 cosθ=
→→ PB·AC →→
=2
2025届高考数学一轮复习讲义立体几何与空间向量之 空间角和空间距离

形,则在正四棱柱 ABCD - A 1 B 1 C 1 D 1中,异面直线 AK 和 LM 所成的角的大小为
(
D )
A. 30°
B. 45°
C. 60°
D. 90°
[解析] 根据题意还原正四棱柱的直观图,如图所示,取 AA 1的中点 G ,连接 KG ,
则有 KG ∥ LM ,所以∠ AKG 或其补角为异面直线 AK 和 LM 所成的角.由题知 AG =
A 1 C 1=5, BC 1=4 2 ,所以 cos
52 +52 −(4 2)2
9
1
∠ BA 1 C 1=
= < ,所以60°<
2×5×5
25
2
∠ BA 1 C 1<90°,则过点 D 1作直线 l ,与直线 A 1 B , AC 所成的角均为60°,即过一
点作直线,使之与同一平面上夹角大于60°的锐角的两边所在直线所成的角均成
2 z -1=0的交线,试写出直线 l 的一个方向向量 (2,2,1)
的余弦值为
65
9
.
,直线 l 与平面α所成角
[解析] 由平面α的方程为 x +2 y -2 z +1=0,可得平面α的一个法向量为 n =(1,
⑫ [0, ] ,二面角的
2
n1,n2>|.
范围是⑬
[0,π] .
易错警示
1. 线面角θ与向量夹角< a , n >的关系
π
2
π
2
如图1(1),θ=< a , n >- ;如图1(2),θ= -< a , n >.
图1
2. 二面角θ与两平面法向量夹角< n 1, n 2>的关系
图2(2)(4)中θ=π-< n 1, n 2>;图2(1)(3)中θ=< n 1, n 2>.
2021年高考数学一轮复习 第八篇 立体几何 第7讲 立体几何中的向量方法(一)教案 理 新人教版

2021年高考数学一轮复习第八篇立体几何第7讲立体几何中的向量方法(一)教案理新人教版【xx年高考会这样考】1.通过线线、线面、面面关系考查空间向量的坐标运算.2.能用向量方法证明直线和平面位置关系的一些定理.3.利用空间向量求空间距离.【复习指导】本讲复习中要掌握空间向量的坐标表示和坐标运算,会找直线的方向向量和平面的法向量,并通过它们研究线面关系,会用向量法求空间距离.基础梳理1.空间向量的坐标表示及运算(1)数量积的坐标运算设a=(a1,a2,a3),b=(b1,b2,b3),则①a±b=(a1±b1,a2±b2,a3±b3);②λa=(λa1,λa2,λa3);③a·b=a1b1+a2b2+a3b3.(2)共线与垂直的坐标表示设a=(a1,a2,a3),b=(b1,b2,b3),则a∥b⇔a=λb⇔a1=λb1,a2=λb2,a3=λb3(λ∈R),a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3=0(a,b均为非零向量).(3)模、夹角和距离公式设a=(a1,a2,a3),b=(b1,b2,b3),则|a|=a·a=a21+a22+a23,cos 〈a ,b 〉=a·b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. 设A (a 1,b 1,c 1),B (a 2,b 2,c 2), 则d AB =|AB →|=a 2-a 12+b 2-b 12+c 2-c 12.2.立体几何中的向量方法(1)直线的方向向量与平面的法向量的确定①直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量.②平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n·a =0,n·b =0.(2)用向量证明空间中的平行关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.②设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.③设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . ④设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2. (3)用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.(4)点面距的求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.一种思想向量是既有大小又有方向的量,而用坐标表示向量是对共线向量定理、共面向量定理和空间向量基本定理的进一步深化和规范,是对向量大小和方向的量化: (1)以原点为起点的向量,其终点坐标即向量坐标; (2)向量坐标等于向量的终点坐标减去其起点坐标.得到向量坐标后,可通过向量的坐标运算解决平行、垂直等位置关系,计算空间成角和距离等问题. 三种方法主要利用直线的方向向量和平面的法向量解决下列问题: (1)平行⎩⎪⎨⎪⎧直线与直线平行直线与平面平行平面与平面平行(2)垂直⎩⎪⎨⎪⎧直线与直线垂直直线与平面垂直平面与平面垂直(3)点到平面的距离求点到平面距离是向量数量积运算(求投影)的具体应用,也是求异面直线之间距离,直线与平面距离和平面与平面距离的基础.双基自测1.两不重合直线l 1和l 2的方向向量分别为v 1=(1,0,-1),v 2=(-2,0,2),则l 1与l 2的位置关系是( ).A .平行B .相交C .垂直D .不确定 解析 ∵v 2=-2v 1,∴v 1∥v 2. 答案 A2.已知平面α内有一个点M (1,-1,2),平面α的一个法向量是n =(6,-3,6),则下列点P 中在平面α内的是( ). A .P (2,3,3) B .P (-2,0,1) C .P (-4,4,0)D .P (3,-3,4)解析 ∵n =(6,-3,6)是平面α的法向量, ∴n ⊥MP →,在选项A 中,MP →=(1,4,1),∴n ·MP →=0. 答案 A3.(xx·唐山月考)已知点A ,B ,C ∈平面α,点P ∉α,则AP →·AB →=0,且AP →·AC →=0是AP →·BC →=0的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析 由⎩⎪⎨⎪⎧AP →·AB →=0AP →·AC →=0,得AP →·(AB →-AC →)=0,即AP →·CB →=0,亦即AP →·BC →=0, 反之,若AP →·BC →=0,则AP →·(AC →-AB →)=0⇒AP →·AB →=AP →·AC →,未必等于0. 答案 A4.(人教A 版教材习题改编)已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),则下列结论正确的是( ). A .a∥c ,b∥c B .a∥b ,a⊥c C .a∥c ,a⊥bD .以上都不对解析 ∵c =(-4,-6,2)=2(-2,-3,1)=2a ,∴a∥c , 又a·b =-2×2+(-3)×0+1×4=0,∴a⊥b . 答案 C5.(xx·舟山调研)已知AB →=(2,2,1),AC →=(4,5,3),则平面ABC 的单位法向量是________. 解析 设平面ABC 的法向量n =(x ,y ,z ). 则⎩⎪⎨⎪⎧AB →·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2x +2y +z =0,4x +5y +3z =0.令z =1,得⎩⎪⎨⎪⎧x =12,y =-1,∴n =⎝ ⎛⎭⎪⎫12,-1,1,∴平面ABC 的单位法向量为±n |n|=±⎝ ⎛⎭⎪⎫13,-23,23.答案 ±⎝ ⎛⎭⎪⎫13,-23,23考向一 利用空间向量证明平行问题【例1】►如图所示,在正方体ABCD A 1B 1C 1D 1中,M 、N 分别是C 1C 、B 1C 1的中点.求证:MN ∥平面A 1BD .[审题视点] 直接用线面平行定理不易证明,考虑用向量方法证明.证明 法一 如图所示,以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,1,1,D (0,0,0),A 1(1,0,1),B (1,1,0), 于是MN →=⎝ ⎛⎭⎪⎫12,0,12,设平面A 1BD 的法向量是n =(x ,y ,z ).则n ·DA 1→=0,且n ·DB →=0,得⎩⎪⎨⎪⎧x +z =0,x +y =0.取x =1,得y =-1,z =-1.∴n =(1,-1,-1). 又MN →·n =⎝ ⎛⎭⎪⎫12,0,12·(1,-1,-1)=0,∴MN →⊥n ,又MN ⊄平面A 1BD , ∴MN ∥平面A 1BD .法二 MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→, ∴MN →∥DA 1→,又∵MN 与DA 1不共线,∴MN ∥DA 1, 又∵MN ⊄平面A 1BD ,A 1D ⊂平面A 1BD , ∴MN ∥平面A 1BD .证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,然后说明直线在平面外即可.这样就把几何的证明问题转化为了数量的计算问题.【训练1】 如图所示,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E 、F 、G 分别是线段PA 、PD 、CD 的中点.求证:PB ∥平面EFG . 证明 ∵平面PAD ⊥平面ABCD 且ABCD 为正方形,∴AB 、AP 、AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系A xyz ,则A (0,0,0)、B (2,0,0)、C (2,2,0)、D (0,2,0)、P (0,0,2)、E (0,0,1)、F (0,1,1)、G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →、FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG .考向二 利用空间向量证明垂直问题【例2】►如图所示,在棱长为1的正方体OABC O 1A 1B 1C 1中,E ,F 分别是棱AB ,BC 上的动点,且AE =BF =x ,其中0≤x ≤1,以O 为原点建立空间直角坐标系O xyz . (1)求证A 1F ⊥C 1E ;(2)若A 1,E ,F ,C 1四点共面 求证:A 1F →=12A 1C 1→+A 1E →.[审题视点] 本题已建好空间直角坐标系,故可用向量法求解,要注意找准点的坐标. 证明 (1)由已知条件A 1(1,0,1),F (1-x,1,0),C 1(0,1,1),E (1,x,0), A 1F →=(-x,1,-1),C 1E →=(1,x -1,-1),则A 1F →·C 1E →=-x +(x -1)+1=0, ∴A 1F →⊥C 1E →,即A 1F ⊥C 1E .(2)A 1F →=(-x,1,-1),A 1C 1→=(-1,1,0), A 1E →=(0,x ,-1),设A 1F →=λA 1C 1→+μA 1E →,⎩⎪⎨⎪⎧-x =-λ,1=λ+μx ,-1=-μ,解得λ=12,μ=1.∴A 1F →=12A 1C 1→+A 1E →.证明直线与直线垂直,只需要证明两条直线的方向向量垂直,而直线与平面垂直,平面与平面垂直可转化为直线与直线垂直证明.【训练2】 如图所示,在四棱锥P ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明:(1)AE ⊥CD ; (2)PD ⊥平面ABE .证明 AB 、AD 、AP 两两垂直,建立如图所示的空间直角坐标系,设PA =AB =BC =1, 则P (0,0,1). (1)∵∠ABC =60°, △ABC 为正三角形.∴C ⎝ ⎛⎭⎪⎫12,32,0,E ⎝ ⎛⎭⎪⎫14,34,12. 设D (0,y,0),由AC ⊥CD ,得AC →·CD →=0, 即y =233,则D ⎝ ⎛⎭⎪⎫0,233,0,∴CD →=⎝ ⎛⎭⎪⎫-12,36,0.又AE →=⎝ ⎛⎭⎪⎫14,34,12,∴AE →·CD →=-12×14+36×34=0,∴AE →⊥CD →,即AE ⊥CD .(2)法一 ∵P (0,0,1),∴PD →=⎝ ⎛⎭⎪⎫0,233,-1.又AE →·PD →=34×233+12×(-1)=0,∴PD →⊥AE →,即PD ⊥AE .AB →=(1,0,0),∴PD →·AB →=0, ∴PD ⊥AB ,又AB ∩AE =A ,∴PD ⊥平面AEB . 法二 AB →=(1,0,0),AE →=⎝ ⎛⎭⎪⎫14,34,12,设平面ABE 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧x =0,14x +34y +12z =0,令y =2,则z =-3,∴n =(0,2,-3). ∵PD →=⎝ ⎛⎭⎪⎫0,233,-1,显然PD →=33n .∵PD →∥n ,∴PD →⊥平面ABE ,即PD ⊥平面ABE .考向三 利用向量求空间距离【例3】►在三棱锥SABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA =SC =23,M 、N 分别为AB 、SB 的中点,如图所示,求点B 到平面CMN 的距离. [审题视点] 考虑用向量法求距离,距离公式不要记错. 解 取AC 的中点O ,连接OS 、OB . ∵SA =SC ,AB =BC , ∴AC ⊥SO ,AC ⊥BO .∵平面SAC ⊥平面ABC ,平面SAC ∩平面ABC =AC , ∴SO ⊥平面ABC ,∴SO ⊥BO .如图所示,建立空间直角坐标系O xyz , 则B (0,23,0),C (-2,0,0),S (0,0,22),M (1,3,0),N (0,3,2).∴CM →=(3,3,0),MN →=(-1,0,2), MB →=(-1,3,0).设n =(x ,y ,z )为平面CMN 的一个法向量, 则⎩⎪⎨⎪⎧CM →·n =3x +3y =0,MN →·n =-x +2z =0,取z =1,则x =2,y =-6,∴n =(2,-6,1). ∴点B 到平面CMN 的距离 d =|n ·MB →||n |=423.点到平面的距离,利用向量法求解比较简单,它的理论基础仍出于几何法,如本题,事实上,作BH ⊥平面CMN 于H .由BH →=BM →+MH →及BH →·n =n ·BM →,得|BH →·n |=|n ·BM →|=|BH →|·|n |, 所以|BH →|=|n ·BM →||n |,即d =|n ·BM →||n |.【训练3】 (xx·江西)如图,△BCD 与△MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,AB =2 3.(1)求点A 到平面MBC 的距离;(2)求平面ACM 与平面BCD 所成二面角的正弦值.解 取CD 中点O ,连OB ,OM ,则OB ⊥CD ,OM ⊥CD . 又平面MCD ⊥平面BCD ,则MO ⊥平面BCD .取O 为原点,直线OC 、BO 、OM 为x 轴、y 轴、z 轴,建立空间直角坐标系如图.OB =OM =3,则各点坐标分别为C (1,0,0),M (0,0,3),B (0,-3,0),A (0,-3,23).(1)设n =(x ,y ,z )是平面MBC 的法向量,则BC →=(1,3,0), BM →=(0,3,3),由n ⊥BC →得x +3y =0;由n ⊥BM →得3y +3z =0. 取n =(3,-1,1),BA →=(0,0,23),则 d =|BA →·n ||n |=235=2155.(2)CM →=(-1,0,3),CA →=(-1,-3,23). 设平面ACM 的法向量为n 1=(x ,y ,z ), 由n 1⊥CM →,n 1⊥CA →得⎩⎨⎧-x +3z =0,-x -3y +23z =0,解得x =3z ,y =z ,取n 1=(3,1,1). 又平面BCD 的法向量为n 2=(0,0,1). 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=15.设所求二面角为θ,则sin θ=255.规范解答15——立体几何中的探索性问题【问题研究】 高考中立体几何部分在对有关的点、线、面位置关系考查的同时,往往也会考查一些探索性问题,主要是对一些点的位置、线段的长度,空间角的范围和体积的范围的探究,对条件和结论不完备的开放性问题的探究,这类题目往往难度都比较大,设问的方式一般是“是否存在?存在给出证明,不存在说明理由.”【解决方案】 解决存在与否类的探索性问题一般有两个思路:一是直接去找存在的点、线、面或是一些其他的量;二是首先假设其存在,然后通过推理论证或是计算,如果得出了一个合理的结果,就说明其存在;如果得出了一个矛盾的结果,就说明其不存在. 【示例】► (本小题满分14分) (xx·福建)如图,四棱锥PABCD 中,PA ⊥底面ABCD .四边形ABCD 中,AB ⊥AD ,AB +AD =4,CD =2,∠CDA =45°.(1)求证:平面PAB ⊥平面PAD ; (2)设AB =AP .(ⅰ)若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;(ⅱ)在线段AD 上是否存在一个点G ,使得点G 到点P 、B 、C 、D 的距离都相等?说明理由. (1)可先根据线线垂直,证明线面垂直,即可证得面面垂直.(2)由于题中PB 与平面PCD 所成的角不好作出,因此用向量法求解.至于第2小问,可先假设点G 存在,然后推理得出矛盾或列出方程无解,从而否定假设. [解答示范] (1)因为PA ⊥平面ABCD ,AB ⊂平面ABCD , 所以PA ⊥AB .又AB ⊥AD ,PA ∩AD =A , 所以AB ⊥平面PAD .又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .(4分) (2)以A 为坐标原点,建立空间直角坐标系Axyz (如图). 在平面ABCD 内,作CE ∥AB 交AD 于点E , 则CE ⊥AD .在Rt △CDE 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1.设AB =AP =t ,则B (t,0,0),P (0,0,t ).由AB +AD =4得,AD =4-t ,所以E (0,3-t,0),C (1,3-t,0),D (0,4-t,0),C D →=(-1,1,0),P D →=(0,4-t ,-t ).(6分)(ⅰ)设平面PCD 的法向量为n =(x ,y ,z ),由n ⊥C D →,n ⊥P D →,得⎩⎪⎨⎪⎧ -x +y =0,4-t y -tz =0.取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ).又P B →=(t,0,-t ), 故由直线PB 与平面PCD 所成的角为30°得cos 60°=⎪⎪⎪⎪⎪⎪⎪⎪n ·P B →|n |·|P B →|,即|2t 2-4t |t 2+t 2+4-t 2·2t 2=12, 解得t =45或t =4(舍去),因为AD =4-t >0,所以AB =45.(9分)(ⅱ)法一 假设在线段AD 上存在一个点G ,使得点G 到P ,B ,C ,D 的距离都相等, 设G (0,m,0)(其中0≤m ≤4-t ),则G C →=(1,3-t -m,0),G D →=(0,4-t -m,0),G P →=(0,-m ,t ).由|G C →|=|G D →|得12+(3-t -m )2=(4-t -m )2,即t =3-m ;(1)由|G D →|=|G P →|得(4-t -m )2=m 2+t 2.(2)由(1)、(2)消去t ,化简得m 2-3m +4=0.(3)(12分)由于方程(3)没有实数根,所以在线段AD 上不存在一个点G ,使得点G 到点P 、C 、D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P 、B 、C 、D 的距离都相等.(14分)法二 (1)同法一.(2)(ⅰ)以A 为坐标原点,建立空间直角坐标系Axyz (如图).在平面ABCD 内,作CE ∥AB 交AD 于点E ,则CE ⊥AD .在Rt △CDE 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1.设AB =AP =t ,则B (t,0,0),P (0,0,t ),由AB +AD =4得AD =4-t .所以E (0,3-t,0),C (1,3-t,0),D (0,4-t,0),C D →=(-1,1,0),P D →=(0,4-t ,-t ).设平面PCD 的法向量为n =(x ,y ,z ),由n ⊥C D →,n ⊥P D →,得⎩⎪⎨⎪⎧ -x +y =0,4-t y -tz =0.取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ).又P B →=(t,0,-t ),故由直线PB 与平面PCD 所成的角为30°得cos 60°=⎪⎪⎪⎪⎪⎪⎪⎪n ·P B →|n |·|P B →|, 即|2t 2-4t |t 2+t 2+4-t 2·2t 2=12, 解得t =45或t =4(舍去,因为AD =4-t >0),所以 AB =45.法二 假设在线段AD 上存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等. 由GC =GD ,得∠GCD =∠GDC =45°,从而∠CGD =90°,即CG ⊥AD ,所以GD =CD ·cos 45°=1.设AB =λ,则AD =4-λ,AG =AD -GD =3-λ,(11分)在Rt △ABG 中,GB =AB 2+AG 2=λ2+3-λ2= 2⎝⎛⎭⎪⎫λ-322+92>1, 这与GB =GD 矛盾.所以在线段AD 上不存在一个点G ,使得点G 到点B ,C ,D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等.(14分)[解答示范] ∵函数y =c x在R 上单调递减,∴0<c <1.(2分)即p :0<c <1.∵c >0且c ≠1,∴綈p :c >1.(3分) 又∵f (x )=x 2-2cx +1在⎝ ⎛⎭⎪⎫12,+∞上为增函数, ∴c ≤12.即q :0<c ≤12. ∵c >0且c ≠1,∴綈q :c >12且c ≠1.(6分) 又∵“p ∨q ”为真,“p ∧q ”为假,∴p 真q 假或p 假q 真.(7分)①当p 真,q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c |c >12且c ≠1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c ⎪⎪⎪ 12<c <1;(9分) ②当p 假,q 真时,{c |c >1}∩⎩⎨⎧⎭⎬⎫c |0<c ≤12=∅.(11分) 综上所述,实数c 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c ⎪⎪⎪ 12<c <1.(12分) 探索性问题只要根据设问把问题确定下来就变为了普通问题,解题的关键是如何把要探索的问题确定下来,如本题第(2)问,法一是先设出G 点,由条件列出方程无解知G 点不存在.法二是由已知先确定G 点,然后推理得出矛盾,故G 点不存在.。
高考数学一轮总复习第6章立体几何第6节立体几何中的向量方法__证明平行与垂直教师用书

第六节 立体几何中的向量方法——证明平行与垂直考试要求:1.理解直线的方向向量及平面的法向量,能用向量语言表述线线、线面、面面的平行和垂直关系.2.能用向量方法证明立体几何中有关直线、平面位置关系的判定定理.一、教材概念·结论·性质重现1.直线的方向向量与平面的法向量直线的方向向量直线的方向向量是指和这条直线平行( 或重合) 的非零向量,一条直线的方向向量有无数个平面的法向量直线l⊥平面α,取直线l的方向向量a ,我们称向量a为平面α的法向量.显然一个平面的法向量有无数个,它们是共线向量方向向量和法向量均不为零向量且不唯一.2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2 l1⊥l2n1⊥n2⇔n1·n2=直线l的方向向量为n,平面α的法向量为m l∥αn⊥m⇔m·n=0 l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,m α∥ βn∥m⇔n=λm α⊥βn⊥m⇔n·m=0二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)直线的方向向量是唯一确定的.( × )(2)平面的单位法向量是唯一确定的.( × )(3)若两平面的法向量平行,则两平面平行.( √ )(4)若两直线的方向向量不平行,则两直线不平行.( √ )(5)若a∥b,则a所在直线与b所在直线平行.( × )(6)若空间向量a平行于平面α,则a所在直线与平面α平行.( × ) 2.若直线l的方向向量a=(1,-3,5),平面α的法向量n=(-1,3,-5),则有( )A.l∥α B.l⊥αC.l与α斜交 D.l⊂α或l∥αB 解析:由a=-n知,n∥a,则有l⊥α.故选B.3.已知平面α,β的法向量分别为n1=(2,3,5),n2=(-3,1,-4),则( )A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不对C 解析:因为n1≠λn2,且n1·n2=2×(-3)+3×1+5×(-4)=-23≠0,所以α,β既不平行,也不垂直.4.如图,在正方体ABCD A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D 的中点,N是A1B1的中点,则直线ON,AM的位置关系是________.垂直 解析:以A为原点,分别以AB,AD,AA1所在的直线为x轴、y轴、z轴建立空间直角坐标系(图略).设正方体的棱长为1,则A(0,0,0),M,O,N,AM·ON=·=0,所以ON与AM垂直.5.在空间直角坐标系中,已知A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB与CD的位置关系是________.平行 解析:由题意得,AB=(-3,-3,3),CD=(1,1,-1),所以AB=-3CD,所以AB与CD共线.又AB与CD没有公共点,所以AB∥CD.考点1 利用空间向量证明平行问题——基础性如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点.求证:PB∥平面EFG.证明:因为平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD,所以AB,AP,AD两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0),则EF=(0,1,0),EG=(1,2,-1).设平面EFG的法向量为n=(x,y,z),则即令z=1,则n=(1,0,1)为平面EFG的一个法向量.因为PB=(2,0,-2),所以PB·n=0,所以n⊥PB.因为PB⊄平面EFG,所以PB∥平面EFG.本例中条件不变,证明:平面EFG∥平面PBC.证明:因为EF=(0,1,0),BC=(0,2,0),所以BC=2EF,所以BC∥EF.又因为EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC,同理可证GF∥PC,从而得出GF∥平面PBC.又EF∩GF=F,EF⊂平面EFG,GF⊂平面EFG,所以平面EFG∥平面PBC.利用空间向量证明平行的方法线线平行证明两直线的方向向量共线线面平行(1)证明该直线的方向向量与平面的某一法向量垂直.(2)证明直线的方向向量与平面内某直线的方向向量平行面面平行(1)证明两平面的法向量为共线向量.(2)转化为线面平行、线线平行问题如图,在四棱锥P ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°角.求证:CM∥平面PAD.证明:由题意知,CB,CD,CP两两垂直,以C为坐标原点,CB所在直线为x轴,CD所在直线为y轴,CP所在直线为z轴建立如图所示的空间直角坐标系Cxyz.因为PC⊥平面ABCD,所以∠PBC为PB与平面ABCD所成的角,所以∠PBC=30°.因为PC=2,所以BC=2,PB=4,所以D(0,1,0),B(2,0,0),A(2,4,0),P(0,0,2),M,所以DP=(0,-1,2),DA=(2,3,0),CM=.设n=(x,y,z)为平面PAD的一个法向量,由得取y=2,得x=-,z=1,所以n=(-,2,1)是平面PAD的一个法向量.因为n·CM=-×+2×0+1×=0,所以n⊥CM.又CM⊄平面PAD,所以CM∥平面PAD.考点2 利用空间向量证明垂直问题——应用性如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE =2AB.求证:平面BCE⊥平面CDE.证明:设AD=DE=2AB=2a,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),C(2a,0,0),B(0,0,a),D(a,a,0),E(a,a,2a),所以BE=(a,a,a),BC=(2a,0,-a),CD=(-a,a,0),ED=(0,0,-2a).设平面BCE的法向量为n1=(x1,y1,z1),由n1·BE=0,n1·BC=0可得即令z1=2,可得n1=(1,-,2).设平面CDE的法向量为n2=(x2,y2,z2),由n2·CD=0,n2·ED=0可得即令y2=1,可得n2=(,1,0).因为n1·n2=1×+1×(-)=0,所以n1⊥n2,所以平面BCE⊥平面CDE.若本例中条件不变,点F是CE的中点,证明:DF⊥平面BCE.证明:由例2知C(2a,0,0),E(a,a,2a),平面BCE的法向量n1=(1,-,2).因为点F是CE的中点,所以f,所以DF=,所以DF=n1,所以DF∥n1,故DF⊥平面BCE.1.利用空间向量证明垂直的方法线线垂直证明两直线所在的方向向量互相垂直,即证它们的数量积为零线面垂直证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示面面垂直证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示2.向量法证明空间垂直、平行关系时,是以计算为手段,寻求直线上的线段对应的向量和平面的基向量、法向量的关系,关键是建立空间直角坐标系(或找空间一组基底)及平面的法向量.如图,在四棱锥P ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)AE⊥CD;(2)PD⊥平面ABE.证明:以A为原点,AB,AD,AP所在直线分别为x轴、y轴、z轴建立如图所示的空间直角坐标系Axyz.设PA=AB=BC=1,则P(0,0,1).(1)因为∠ABC=60°,所以△ABC为正三角形,所以C,E.设D(0,y,0),由AC⊥CD,得AC·CD=0,即y=,则D,所以CD=.又AE=,所以AE·CD=-×+×=0,所以AE⊥CD,即AE⊥CD.(2)(方法一)由(1)知,D,P(0,0,1),所以PD=.又AE·PD=×+×(-1)=0,所以PD⊥AE,即PD⊥AE.因为AB=(1,0,0),所以PD·AB=0,所以PD⊥AB.又AB∩AE=A,AB,AE⊂平面AEB,所以PD⊥平面AEB.(方法二)由(1)知,AB=(1,0,0),AE=.设平面ABE的法向量为n=(x,y,z),则令y=2,则z=-,所以n=(0,2,-)为平面ABE的一个法向量.因为PD=,显然PD=n.因为PD∥n,所以PD⊥平面ABE,即PD⊥平面ABE.考点3 利用空间向量解决探索性问题——应用性如图,在正方体ABCD A1B1C1D1中,E是棱DD1的中点.在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.解:在棱C1D1上存在一点F(C1D1的中点),使B1F∥平面A1BE.证明如下:依题意,建立如图所示的空间直角坐标系,设正方体ABCDA1B1C1D1的棱长为1,则A1(0,0,1),B(1,0,0),B1(1,0,1),E,所以BA1=(-1,0,1),BE=.设n=(x,y,z)是平面A1BE的一个法向量,则由得所以x=z,y=z.取z=2,得n=(2,1,2).设棱C1D1上存在点F(t,1,1)(0≤t≤1)满足条件,又因为B1(1,0,1),所以B1F=(t-1,1,0).而B1F⊄平面A1BE,于是B1F∥平面A1BE⇔B1F·n=0⇔(t-1,1,0)·(2,1,2)=0⇔2(t-1)+1=0⇔t=⇔F为C1D1的中点.即说明在棱C1D1上存在点F(C1D1的中点),使B1F∥平面A1BE.向量法解决与垂直、平行有关的探索性问题的思路在四棱锥PABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.(1)求证:EF⊥CD;(2)在平面PAD内是否存在一点G,使GF⊥平面PCB?若存在,求出点G坐标;若不存在,试说明理由.(1)证明:由题意知,DA,DC,DP两两垂直.如图所示,以DA,DC,DP所在直线分别为x轴、y轴、z轴建立空间直角坐标系.设AD=a,则D(0,0,0),A(a,0,0),B(a,a,0),C(0,a,0),E,P(0,0,a),F,所以EF=,DC=(0,a,0).因为EF·DC=0,所以EF⊥DC,从而得EF⊥CD.(2)解:假设存在满足条件的点G,设G(x,0,z),则FG=.若使GF⊥平面PCB,则由FG·CB=·(a,0,0)=a=0,得x=.由FG·CP=·(0,-a,a)=+a=0,得z=0,所以点G坐标为,故存在满足条件的点G,且点G为AD的中点.。
高考数学一轮复习方案 立体几何第六节 立体几何中的向量方法课件
证明 如图所示建立空间直角坐标系 D-xyz,则有 D(0,0,0)、 A(2,0,0)、C(0,2,0)、C1(0,2,2)、E(2,2,1)、F(0,0,1),所以F→C1 = (0,2,1)、 D→A=(2,0,0)、A→E=(0,2,1).
(2)证明线面垂直 ①一种思路是证明这条直线的方向向量与平面的法向量平行, 依据是两条平行直线中的一条垂直于一个平面,另一条也垂直于这 个平面;另一种思路是证明直线所对应的向量与平面内两条相交直 线所对应的向量垂直,依据线面垂直的判定定理. ②证明面面垂直:转化为证明线面垂直.
(3)证明平行与垂直 结论一:设 A、B 是直线 m 上的点,C、D 是直线 n 上的点, 现有 m∥n⇔A→B∥C→D(AB、CD 不重合);m⊥n⇔A→B·C→D=0.利用这 一结论还可以进一步解决直线与平面平行、直线与平面垂直、平面 与平面平行及平面与平面垂直等问题. 结论二:设 n 是平面 α 的一个法向量,直线 a⊄平面 α,若 a⊥n, 则 a∥α. 结论三:设 n 是 α 的一个法向量,若 a∥n,则 a⊥α.
解析 ∵A→B=(2,2,1),A→C=(4,5,3),设 n=(x,y,1). 则由nn··AA→ →CB= =00, ⇒42xx+ +52yy+ +31= =00., ∴ n= (12, -1,1). 于是单位法向量为±|nn|=±23(12,-1,1)=±(13,-23,23).
点评 一般情况下求法向量用待定系数法.由于法向量没规定 长度,仅规定了方向,所以有一个自由度,可以把 n 的某个坐标设 为 1.再求另两个坐标.平面法向量是垂直于平面的向量,故法向量 的相反向量也是法向量,所以本题的单位法向量应有两解.
(2)设向量 n=(x,y,z)是平面 DA1E 的一个法向量,则 n⊥ D→E, n⊥D→A1. 故 2y+z=0,2x+4z=0.
高考人教版数学(理)一轮复习课件:7.7立体几何中的向量方法5
解析:在 Rt△SAB 中,SA=SB,
S△SAB=12×SA2=8, 解得 SA=4. 设圆锥的底面圆心为 O,底面半径为 r,高为 h, 在 Rt△SAO 中,∠SAO=30°, 所以 r=2 3,h=2, 所以圆锥的体积为13πr2·h=13π×(2 3)2×2=8π. 答案:8π
考向一 向量法求直线与平面所成的角 [互动讲练型] [例 1]
[变式练]——(着眼于举一反三)
1.[2018·浙江卷,19]如图,已知多面体 ABCA1B1C1,A1A, B1B,C1C 均垂直于平面 ABC,∠ABC=120°,A1A=4,C1C=1, AB=BC=B1B=2.
(1)证明:AB1⊥平面 A1B1C1; (2)求直线 AC1 与平面 ABB1 所成的角的正弦值.
(1)求证:AB∥EF; (2)若 PA=PD=AD=2,且平面 PAD⊥平面 ABCD,求平面 PAF 与平面 AE 所成的锐二面角的余弦值.
解析:(1)∵底面 ABCD 是菱形,∴AB∥CD, 又 AB⊄平面 PCD,CD⊂平面 PCD,∴AB∥平面 PCD, ∵A,B,E,F 四点共面,且平面 ABEF∩平面 PCD=EF, ∴AB∥EF.
2.直线和平面所成角的求法 如图所示,设直线 l 的方向向量为 e,平面 α 的法向量为 n, 直线 l 与平面 α 所成的角为 φ,两向量 e 与 n 的夹角为 θ,则有 sinφ=|cosθ|=③||ee|·|nn||.
3.二面角的求法 (1)如图①,AB,CD 是二面角 α-l-β 两个半平面内与棱 l 垂直的直线,则二面角的大小 θ=〈A→B,C→D〉.
n1,n2 的夹角是相等(一个平面的法向量指向二面角的内部,另 一个平面的法向量指向二面角的外部),还是互补(两个法向量同 时指向二面角的内部或外部),这是利用向量求二面角的难点、 易错点.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业50 立体几何中的向量方法
1.如图,三棱锥P ABC 中,底面△ABC 为直角三角形,AB =BC =2,D 为AC 的中点,PD =DB ,PD ⊥DB ,PB ⊥CD .
(1)求证:PD ⊥平面BCD ;
(2)求PA 与平面PBC 所成角的正弦值.
解:(1)证明:∵在直角三角形ABC 中,AB =BC =2,D 为AC 的中点,∴BD ⊥CD ,又∵PB ⊥CD ,BD ∩PB =B ,
∴CD ⊥平面PBD ,∴CD ⊥PD .
又∵PD ⊥BD ,BD ∩CD =D ,∴PD ⊥平面BCD . (2)
以D 为坐标原点,DA ,DB ,DP 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系D xyz ,则A (
,0,0),B (0,,0),
22C (,0,0),P (0,0,). 22=(,0,-),=(0,,-),=(,,PA → 22PB →
22CB → 22
0).
设平面PBC 的法向量为n =(x ,y ,z ),
由Error!得Error!
取x =1,得y =-1,z =-1,∴n =(1,-1,-1).
∵cos 〈,n 〉==, PA → PA →
·n |PA →
||n |63∴直线PA 与平面PBC 所成角的正弦值为. 6
32.(2019·全国卷Ⅲ)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,
BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.
(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;
(2)求图2中的二面角B CG A 的大小.
解:(1)证明:由已知得AD ∥BE ,CG ∥BE ,所以AD ∥CG , 故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面. 由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE .
又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .
(2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC .
由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =
1,EH =.
3以H 为坐标原点,的方向为x 轴的正方向,建立如图所示的HC →
空间直角坐标系H xyz ,则A (-1,1,0),C (1,0,0),G (2,0,),3CG →
=(1,0,),=
(2,-1,0). 3AC →
设平面ACGD 的法向量为n =(x ,y ,z ),则Error!
即Error!所以可取n =(3,6,-
). 3又平面BCGE 的法向量可取为m =(0,1,0),
所以cos 〈n ,m 〉==. n ·m |n ||m |32
因此二面角B CG A 的大小为30°.
3.(2020·合肥质检)如图,三棱台ABC EFG 的底面是正三角形,平面ABC
⊥平面BCGF ,CB =2GF ,BF =CF .
(1)求证:AB ⊥CG ;
(2)若BC =CF ,求直线AE 与平面BEG 所成角的正弦值. 解:
(1)证明:取BC 的中点为D ,连接DF ,如图.由题意得,平面ABC ∥平面EFG ,平面ABC ∩平面BCGF =BC ,平面EFG ∩平面BCGF =FG ,从而BC ∥FG .∵CB =2GF ,∴CD 綊GF ,
∴四边形CDFG 为平行四边形,∴CG ∥DF .
∵BF =CF ,D 为BC 的中点,
∴DF ⊥BC ,∴CG ⊥BC .
∵平面ABC ⊥平面BCGF ,且平面ABC ∩平面BCGF =BC ,CG ⊂平面BCGF ,
∴CG ⊥平面ABC ,又AB ⊂平面ABC ,∴CG ⊥AB .
(2)连接AD .由△ABC 是正三角形,且D 为BC 的中点得,AD ⊥BC .由(1)知,CG ⊥平面ABC ,CG ∥DF ,∴DF ⊥AD ,DF ⊥BC ,∴DB ,DF ,DA 两两垂直.以D 为坐标原点,DB ,DF ,DA 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系D xyz .设BC =2,则A (0,0,),B (1,0,0),F (0,,0),G (-1,,0),
333∴=(-2,,0). BG →
3∵CB =2GF ,∴=2,∴E , AB → EF → (-12,3,32)∴=,=.
AE → (-12,3,-32)BE → (-32,3,3
2)设平面BEG 的法向量为n =(x ,y ,z ),
由Error!可得,Error!
令x =
,则y =2,z =-1, 3∴n =(,2,-1)为平面BEG 的一个法向量.
3设AE 与平面BEG 所成的角为θ,
则sin θ=|cos 〈,n 〉|==. AE → |AE →
·n |AE →
|·|n ||64∴直线AE 与平面BEG 所成角的正弦值为. 6
44.(2020·安徽五校质检)如图,在五面体ABCDFE 中,底
面ABCD 为矩形,EF ∥AB ,BC ⊥FD ,过BC 的平面交棱FD 于P ,交棱FA 于Q .
(1)证明:PQ ∥平面ABCD ;
(2)若CD ⊥BE ,EF =EC ,CD =2EF ,BC =tEF ,求平面ADF 与平面BCE 所成锐二面角的大小.
解:(1)证明:因为底面ABCD 为矩形,所以AD ∥BC ,
Error!⇒BC ∥平面ADF ,
Error!⇒BC ∥PQ ,
Error!⇒PQ ∥平面ABCD .
(2)由CD ⊥BE ,CD ⊥CB ,BE ∩CB =B ,
得CD ⊥平面BCE ,所以CD ⊥CE .
由BC ⊥CD ,BC ⊥FD ,CD ∩FD =D ,。