浙江省江北区2017_2018学年八年级数学上学期期末考试试题浙教版201812212112
浙教新版2017-2018学年浙江省宁波市江北区八年级(上)期末数学试卷

2017-2018学年浙江省宁波市江北区八年级(上)期末数学试卷14. (3分)函数y=??2中,自变量x 的取值范围是()5. (3分)如图,在△ ABC 中,/ A=35°, / C=45°,则与/ ABC 相邻的外角的度6. (3分)如图所示,在厶ABC 中,AB=AC D 、E 分别是AC AB 的中点,且BD, CE 相交于O 点,某一位同学分析这个图形后得出以下结论: ①厶BCD^A CBE ②厶BDA ^A CEA ③厶BOE^A COD ④厶BAD ^A BCD ⑤厶ACE^A BCE 上述结论一定正确的2. 3.、选择题(每小题3分,10小题, (3分)在平面直角坐标系中,点 A .第一象限B .第二象限(3分)不等式2x >- 3的解是( 3 3A . x v -B . x >- T22共 30 分)(2,- 3)在( C •第三象限C. (3分)以下图形中对称轴条数最多的是( 2 x v -3))D .第四象限2D ・ x >-3B.A . x >- 2B . X M 0C. x >- 2 且 X M 0 D . X M — 2 B . 45 C. 80D . 100 D .是()B CA.①②③B.②③④C.①③⑤D.①③④7. (3分)下列各组数中,不能作为直角三角形三边长的是()A. 1.5,2,3B. 5,12,13C. 7,24,25D. 8,15,178. (3分)已知等腰三角形三边中有两边的长分别为4、9,则这个等腰三角形的周长为()A. 13B. 17C. 22D. 17 或229. (3分)在平面直角坐标系中,若有一点P (2,1)向上平移3个单位或向左平移4个单位,恰好都在直线y=kx+b上,则k的值是()1 3 4A. B. C. D. 22 4 310. (3分)如图,点D是正△ ABC内的一点,DB=3, DC=4, DA=5,则/ BDC的A. 120°B. 135°C. 140°D. 150二■填空题(每题3分,8小题,共24分)11. ______________________________________________________ (3分)小明的身高h超过了160cm,用不等式表示为:______________________ .12. (3分)命题若a, b互为倒数,则ab=1”的逆命题是__________13. (3 分)已知△ ABG^A DEF 若AB=5, BC=6 AC=8,则△ DEF的周长是____14. (3分)点A位于第二象限,到x轴的距离为2,到y轴的距离为5,则点A的坐标为_______ .15. (3分)在Rt△中有一个内角为30°,且斜边和较短直角边之和为15cm,则这个直角三角形的斜边长上的中线长为_______ cm.16. (3分)已知等腰三角形的腰长为xcm,顶角平分线与对边的交点到一腰的距离为4cm,这个等腰三角形的面积为ycm2,则y与x的函数关系式为__________ 17. (3分)如图,在△ ABC中,/ C=90°, AB的中垂线DE交AB于E,交BC于D,若/ B=35°,则/ CAD ________ °18. (3分)一次函数y=kx+b的图象经过A (- 1,1 )和B (- 7, 0),则不等式组0 v kx+b v- x的解为_________ .三■解答题(7小题,共46 分)19. (5分)解不等式组?* 7>2(?* 3)并把它的解表示在数轴上.2- 3??c11-4 -3 -2 -1 0 1 2 34,20. (5分)请你用直尺和圆规作图(要求:不必写作法,但要保留作图痕迹)点P,使点P到OA、OB的距离相等,且PM=PN. 21. (6分)如图,C是线段AB的中点,CD// BE,且CD=BE求证:AD=CES£。
2017-2018学年度上学期期末考试八年级数学试卷1

浙教版2017-2018学年度上学期期末考试八年级数学试卷1(时间:120分钟 满分:120分 )一、用心选一选(每小题3分,共30分)1.下列图形中不一定是轴对称图形的是( )A.等腰三角形B.线段C.钝角D.直角三角形 2.下列命题是真命题的是( )A.若两个角相等,则它们是对顶角B.如果a b >,a c >,那么b c> C.两边和其中一边的对角对应相等的两个三角形全等 D.全等三角形的面积相等3.如图在△ABC 中,∠C =90°,BD 平分∠ABC ,交AC 于点D ,若BCBD则点D 到AB 的 距离是()A.1B. 2C.D. 4.下列图象中,以方程240y x --=的解为坐标的点组成的图象是选项中的( ) +5.下列判断正确的是( )A. 35a a ->-B. a a ≥C.a a >- D. 2a a >6.等腰三角形一腰上的中线把这个三角形的周长分成1︰2两部分,已知这个三角形周长为36cm ,则个等腰三角形的底边为( )cm.A.4B.10C.20D.4或207.已知不等式:①2x -<-;②5x >;③2x <;④22x -<-,从这四个不等式中取两个,构成正整数解是3的不等式组是()A.①与②B.②与③C.③与④D.①与④ 8.在函数13y x =-中,自变量的取值范围是( ) A. 3x ≥- B. 3x ≥-且3x ≠ C. 3x ≥且3x ≠- D. 3x ≠-A. B. C. D.第3题图9. 将一次函数213y x =-+的图象,先向左平移3个单位长度,再向下5个单位长度,得到的函数解析式为( ) A. 26y x =-- B. 22y x =-- C. 27y x =-+ D. 23y x =-+ A.第一、二、三象限 B. 第二、三、四象限 C. 第一、三、四象限 D. 第一、二、四象限距离相等,则可选择的地址有 处. m解集为______.18.如图,在△ABC 中,FD 、EG 分别是AB 、AC 的垂直平分线,分别交BC 于点D 、E ,若BC =17cm,则△ADE 的周长是 .19.如图,△ABC ≌△ABE ≌△ADC ,若∠1︰∠2︰∠3=28︰5︰3,则∠α的度数是 .20. 在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点A (0,4)点B 是x 轴正半轴上的整点,记△AOB 内部(不包括边界)的整点个数为m .当m =3时,点B 的横坐标的所有可能值是 ;当点B 的横坐标为28时,m= .第17题图第18题图 第19题图三、专心答一答(共60分)21. (6分)请在下图方格中画出三个以AB 为腰的等腰三角形ABC .(要求:1、锐角三角形、直角三角形、钝角三角形各画一个;2、点C 在格点上;3、只需画出图形即可,不写画法;4、标上字母,每漏标一个扣1分.)23. (9分)先阅读理解下面的例题,再按要求解答: 例题:解一元二次不等式x 2-16>0. 解:∵x 2-16=(x +4)(x -4), ∴(x +4)(x -4)>0.由有理数的乘法法则“两数相乘,同号得正”,有 (1)4040x x +>⎧⎨->⎩或(2)4040x x +<⎧⎨-<⎩24. (9分)如图,在等腰△ABC 中,点D 是AB 上任一点,AE ⊥CD ,垂足为E ,CH ⊥AB ,垂足为H , 交A E 于点G .(1)若AG =CD ,求证:∠ACB =90°; (2)BD 与CG 相等吗?请说明理由.第22题图第24题图25.(10分)如图,l 1、l 2分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (小时)的函数图象,假设两种灯的使用寿命都是 2 000小时,照明效果一样.(1)根据图象分别求出l 1、l 2的函数关系式; (2)当照明时间为多少时,两种灯的费用相等? (3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程)26.(8分)如图已知一块四边形草地ABCD ∠A=60°,∠B =∠D =90°,AB =28米,CD =16米,求这块草地的面积.第25题图 第27题图。
2017-2018年浙教版数学八年级上学期期末练习卷(无答案)

2017-2018年浙教版数学八年级上学期期末专项练习卷一、选择题(每小题3分,共30分)1、在平面直角坐标系中,点(5,-3)位于…………………………………………………( )A.第一象限B.第二象限C.第三象限D.第四象限2、一个等腰三角形的一个外角等于110°,则这个三角形的底角应该为 ………………( )A. 55°B.70°C. 55°或70°D.40°或55°3、若正比例函数y=kx 的图像经过点(1,-3),则k 的值…………………………………( )A.-3B.3C.31D.-31 4、函数y=3-x 1中,自变量x 的取值范围……………………………………………………( ) A.x >3 B.x ≥3 C.x ≠3 D.x <35、函数y=(m-4)x+2m-3的图像经过一、二、四象限,那么m 的取值范围…………( )A.m >4B.1.5<m <4C.-1.5<m <4D.m >46、如图,在△ABC 中,AB=AC=5,BC=8,点P 是BC 边上的动点,过点P 作PD ⊥AB 于点D ,PE ⊥AC 于点E ,则PD+PE 的长为………………………………………………………………( )A.4.8B.4.8或3.8C.3.8D.57、如图,已知∠AOB=30°,点P 在边OA 上,OP=4,点M ,N 在边OB 上,PM=PN ,且∠MPN=90°,则ON=……………………………………………………………………………( )A.8B.6C.432+D.232+8、如图(1),在Rt △ABC 中,∠ACB=90°,D 是斜边AB 的中点,动点P 从B 点出发,沿B →C →A 运动,设S △DPB=y ,点P 运动的路程为x ,若y 与x 之间的函数图象如图(2)所示,则△ABC 的面积为……………………………………………………………………………( )A.14B.7C.4D.29、如图,在平面直角坐标系中,已知直线y=x 上一点P (1,1),C 为y 轴上一点,连结PC ,线段PC 绕点P 顺时针旋转90°至线段PD ,过点D 作直线AB ⊥x 轴。
2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。
2017-2018学年浙教版八年级上数学期末综合练习数学试卷附答案

八年级数学期末综合练习试题卷(八年级数学上册,本卷满分120分)一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项最符合题目要求.1.已知a =3cm ,b =6cm ,则下列长度的线段中,能与a ,b 组成三角形的是(▲)A .2cmB .6cmC .9cmD .11cm 2.在平面直角坐标系中,点M (a 2+1,-3)所在的象限是(▲)A .第一象限B .第二象限C .第三象限D .第四象限3.正比例函数y =(k -2)x 中,y 随x 的增大而减小,则k 的取值范围是(▲)A .k ≥2B .k ≤2C .k >2D .k <24.不等式1-x >0的解在数轴上表示正确的是(▲)AB C D5.下列判断正确的是(▲)A .两边和一角对应相等的两个三角形全等B .一边及一锐角相等的两个直角三角形全等C .顶角和底边分别相等的两个等腰三角形全等D .三个内角对应相等的两个三角形全等6.已知a >b ,则下列四个不等式中,不正确的是(▲)A .a -3>b -3B .-a +2>-b +2C .1a >51bD .1+4a >1+4b517.已知(-1,y 1),(1.8,y 2),(-,y 3)是直线y =-3x +m (m 为常数)上的三个点,则y 1,y 2,2y 3的大小关系是(▲)A .y 3>y 1>y 2B .y 1>y 3>y 2C .y 1>y 2>y 3D .y 3>y 2>y 18.如图,给出下列四个条件,AB =DE ,BC =EF ,∠B =∠E ,∠C =∠F ,从中任选三个条件能使△ABC ≌△DEF 的共有(▲)A .4组B .3组C .2组D .1组9.如图,直线y =3x +6与x ,y 轴分别交于点A ,B ,以OB 为底边在y 轴右侧作等腰△OBC ,将点C 向左平移5个单位,使其对应点C′恰好落在直线AB 上,则点C 的坐标为(▲)八年级数学试题卷(第1页,共4页)A.(3,3)B.(4,3)C.(-1,3)D.(3,4)第9题图第10题图10.如图,∠AOB=30º,∠AOB内有一定点P,且OP=12,在OA上有一动点Q,OB上有一动点R。
2017--2018学年度八年级 (上)数学期末测试卷及答案

A B C D 2017--2018学年度八年级 (上)数学期末测试一、选择题(每小题3分,共36分)1.下列平面图形中,不是轴对称图形的是 ( )2.下列运算中,正确的是( )A 、 (x 2)3=x 5B 、3x 2÷2x=xC 、 x 3·x 3=x 6D 、(x+y 2)2=x 2+y 43.已知:在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD :DC =9:7,则D 到AB 边的距离为 ( )A .18B .16C .14D .124.下列各式由左边到右边的变形中,是分解因式的为( )A 、a (x + y) =a x + a yB 、x 2-4x+4=x(x -4)+4C 、10x 2-5x=5x(2x -1)D 、x 2-16+3x=(x -4)(x+4)+3x 5.如图,C F BE ,,,四点在一条直线上,,,D A CF EB ∠=∠=再添一个条件仍不能证明⊿ABC≌⊿DEF的是( )A .AB=DEB ..DF ∥AC C .∠E=∠ABCD .AB ∥DE 6.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )A .1、2、3B .2、3、4C .3、4、5D .4、5、6 7.已知m 6x =,3n x =,则2m n x-的值为( ) A 、9 B 、 12 C 、 43 D 、34 8.已知:如图,△ABC 与△DEF 是全等三角形,则图中相等的线段的组数是 ( )A .3B . 4C .5D .6(第8题) (第9题) (第10题)9.如图,在∠AOB 的两边上截取AO=BO ,CO=DO ,连接AD ,BC 交于点P ,那么在结论①△AOD ≌△BOC ;②△APC ≌△BPD ;③点P 在∠AOB 的平分线上.其中正确的是 ( )A .只有①B . 只有②C . 只有①②D . ①②③ABE CF D O D C A B P A B D CE α γ β A BF E C D10.如图,D ,E 分别是△ABC 的边BC ,AC ,上的点,若AB=AC ,AD=AE ,则 ( )A .当∠B 为定值时,∠CDE 为定值 B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值11.已知等腰三角形一边长为4,一边的长为10,则等腰三角形的周长为( )A 、14B 、18C 、24D 、18或2412.若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—2二、填空题(每小题3分,共24分)13.用科学记数法表示—0.000 000 0314= .14.如图,△ABC ≌△ADE ,∠EAC =25°,则∠BAD = °15.如图,D ,E 是边BC 上的两点,AD =AE ,请你再添加一个条件: 使△ABE ≌△ACD 16.计算(-3a 3)·(-2a 2)=________________17.已知,2,522-=+=+b ab ab a 那么=-22b a . 18.等腰三角形一腰上的高与另一腰的夹角为40°,则它的顶角的度数为 °.19.如图,△ABC 中,DE 是AC 的垂直平分线,AE =3cm ,△ABD 的周长为13cm ,则△ABC 的周长为__________cm .20.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,CF 平分∠ACB ,CF ,BE 交于点P ,AC =4cm ,BC =3cm ,AB =5cm ,则△CPB 的面积为 2cm三、解答题(本大题共60分)21.①(5分) 因式分解:33ab b a -B AC D E A C B F E P (第20题) A D B E C B D E C A (第14题) (第15题) (第19题)② (5分)化简求值:[]{})24(32522222b a ab ab b a b a ----其中5.0,3=-=b a22.(5分)如图,A 、B 、C 三点表示3个村庄,为了解决村民子女就近入学问题,计划新建一所小学,要使学校到3个村庄的距离相等,请你在图中有尺规确定学校的位置.(保留作图痕迹,不写画法)23.(7分)一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?24.(8分)如图,BD 平分∠MBN ,A ,C 分别为BM ,BN 上的点,且BC >BA ,E 为BD 上的一点,AE =CE ,求证 ∠BAE +∠BCE =180°C A B · · · B C NDE MAA D BE FC 25.(8分) 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,求△ABC 各角的度数.26.(10分)如图,已知AC ⊥CB ,DB ⊥CB ,AB ⊥DE ,AB =DE ,E 是BC 的中点.(1)观察并猜想BD 和BC 有何数量关系?并证明你猜想的结论.(2)若BD =6cm ,求AC 的长.27.(12分)如图,在△ABC 中,∠ACB =90°,CE ⊥AB 于点E ,AD=AC ,AF 平分∠CAB •交CE 于点F ,DF 的延长线交AC 于点G ,求证:(1)DF ∥BC ;(2)FG =FE .A D C B2017--2018学年度八年级 (上)数学期末测试3参考答案一、选择题(每小题3分,共36分)ACACACBBDACD二、填空题(每小题3分,共24分)13.-3.14×610-14.25°15.∠B=∠C16.65a17.918.5019.19cm20.1.5三、解答题(本大题共60分) 21.①(5分) 因式分解: 33ab b a -=ab(2a -2b )=ab(a+b)(a-b)② (5分)化简求值:[]{})24(32522222b a ab ab b a b a ----其中5.0,3=-=b a 解:原式=[]{})24(32522222b a ab ab b a b a ----=ab(5a-b)=138.522.答案略23.设江水的流速为x 千米/时,则可列方程xx -=+306030100 解得:x=7.5答:江水的流速为7.5千米/时.24.提示(过E 点分别BA 与BC 的垂线,即可证明)25.∠A=36°,∠ABC=∠C=72°26.解(1)BD 和BC 相等。
2017-2018学年八年级数学上学期期末考试试题 (含答案)
2017-2018学年八年级数学上学期期末考试试题(考试时间120分钟,总分150分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求,答案填在答题卡上.1.下已知⎩⎪⎨⎪⎧x =1y =2是二元一次方程组⎩⎪⎨⎪⎧ax +y =-12x -by =0的解,则a +b 的值是( )(A )2 (B )-2 (C )4 (D )-42.将直尺和直角三角板按如图方式摆放(ACB ∠为直角),已知130∠=︒,则2∠的大小是( )A. 30︒B. 45︒C. 60︒D. 65︒3.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5, 1.0,则下列说法正确的是( )(A )乙同学的成绩更稳定 (B )甲同学的成绩更稳定(C )甲、乙两位同学的成绩一样稳定 (D )不能确定哪位同学的成绩更稳定 4. 如图,以两条直线1l ,2l 的交点坐标为解的方程组是((A )⎩⎪⎨⎪⎧x -y =12x -y =1 (B )⎩⎪⎨⎪⎧x -y =-12x -y =-1 (C )⎩⎪⎨⎪⎧x -y =-12x -y =1 (D )⎩⎪⎨⎪⎧x -y =12x -y =-15.如图,长方体的底面边长分别为2cm 和3cm ,高为6cm. 如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B ,那么所用细线最短需要( ) (A )11cm (B )234cm (C )(8+210)cm (D )(7+35)cm 6. 16的平方根是( )(A )±4 (B )±2 (C )4 (D )4- 7.在平面直角坐标系中,下列的点在第二象限的是( )A B 3cm2cm6cm8.如图,AC ∥DF ,AB ∥EF ,若∠2=50°,则∠1的大小是( ) (A )60° (B )50° (C )40° (D )30°9.一次函数y =x +1的图像不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 10. 满足下列条件的△ABC ,不是直角三角形的是( ) (A )b 2-c 2=a 2(B )a:b:c =3:4:5 (C )∠A: ∠B: ∠C =9:12:15 (D )∠C =∠A -∠B 第Ⅱ卷(非选择题,共70分) 二、填空题(每小题4分,共l6分) 11. 计算:(-2)2= .12.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是 . 13、点A(-2,3)关于x 轴对称的点B 的坐标是14、如图,直线l 过正方形ABCD 的顶点B ,点A 、点B 到直线l 的距离分别是3和4,则该正方形的面积是 。
2017-2018学年浙教版八年级上学期期末复习试卷及参考答案
2017-2018学年浙教版八年级上学期期末复习试卷一、单选题1. 若三角形两条边的长度分别是3cm和7cm,则第三条边的长度可能是()A . 3cmB . 4cmC . 5cmD . 10cm2. 不等式2x﹣2<0的解集是()A . x<1B . x<﹣1C . x>1D . x>﹣13. 点A(﹣1,2)与A′关于x轴对称,则点A′的坐标是()A . (1,2)B . (1,﹣2)C . (﹣1,﹣2)D . (﹣1,2)4. 可以用来说明命题“若m<n,则 ”是假命题的反例是()A . m=2,n=﹣3B . m=﹣2,n=3C . m=﹣2,n=﹣3D . m=2,n=35. 等腰三角形的一个外角等于130°,则这个等腰三角形的底角为( )A . 65°B . 50°C . 65°或40°D . 50°或65°6. 一次函数y=x﹣2的图象大致是()A .B .C .D .7. 在Rt△ABC中,∠C=90°,当△ABC沿折痕BE翻折时,点C恰好落在AB的中点D上,若BE=4,则AC的长是()A . 4B . 6C . 8D . 108. 如图,在矩形OABC中,OA=8,OC=4,沿对角线OB折叠后,点A与点D重合,OD与BC交于点E,则点D的坐标是( )A . (4,8)B . (5,8)C . (,)D . (,)9. 在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为A .B .C .D .10. 如图,点A,B,C在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()B .C . 1D . 3是斜边长为△ACD的斜边AD为直角边,画第三个等腰A . cmB .C . cmD . cm12. 如图,在等边△ABC AB=10BD=4A . 8B . 10C .D .y= 中,自变量用不等式表示则∠ABE+∠ACE=________16. 如图所示的一块地,∠17. 如图,函数y=2x选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对________题.19. 如图,点E 在边长为4的正方形ABCD 的边AD 上,点A 关于BE 的对称点为A′,延长EA′交DC 于点F ,若CF=1cm ,则AE=________m .三、解答题20. 利用数轴,解一元一次不等式组:.21. 如图,已知在△ABC 中,△ABC 的外角∠ABD 的平分线与∠ACB 的平分线交于点O ,MN 过点O ,且MN ∥BC ,分别交AB 、AC 于点M 、N .求证:MN=CN ﹣BM .22. 如图,已知四边形ABCD 中,AC 平分∠BAD ,AB=AC=5,AD=3,BC=CD .求点C 到AB 的距离.四、综合题23. 如图所示,△ABC 的顶点分别为A (-4, 5),B (﹣3, 2),C (4,-1).(1) 作出△ABC 关于x 轴对称的图形△A B C ;(2) 写出A 、B 、C 的坐标;(3) 若AC=10,求△ABC 的AC 边上的高.24. 某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食品,已知这两种原料的维生素C 含量及购买这两种原料的价格如下表:原料维生素C 及价格甲种原料乙种原料111111维生素C(单位/千克)600400原料价格(元/千克)95现要配制这种营养食品20千克,要求每千克至少含有9600单位的维生素C.设购买甲种原料x千克.(1)至少需要购买甲种原料多少千克?(2)设食堂用于购买这两种原料的总费用为y元,求y与x的函数关系式.并说明购买甲种原料多少千克时,总费用最少?最少费用是多少?25. 在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣4,0),点B的坐标是(0,b)(b>0),点P是直线AB 上的一个动点,记点P关于y轴对称的点为P′.(1)当b=3时(如图1),①求直线AB的函数表达式.(2)②在x轴上找一点Q(点O除外),使△APQ与△AOB全等,直接写出点Q的所有坐标(3)若点P在第一象限(如图2),设点P的横坐标为a,作PC⊥x轴于点C,连结AP′,CP′.当△ACP′是以点P′为直角顶点的等腰直角三角形时,求出a,b的值.(4)当线段OP′恰好被直线AB垂直平分时(如图3),直接写出b=.五、作图题26. 已知:如图△ABC .求作:①AC边上的高BD;②△ABC的角平分线CE .参考答案1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.。
2017-2018第一学期浙教版八年级数学期末试卷
………○……:___________班级:__…○…………线………绝密★启用前 2017-2018第一学期浙教版八年级数学期末试卷 张,要平心静气,不要急于下结论;下笔时,要把字写得规矩些,让自己和老师都看得舒服些,祝你成功!一、单选题(计36分) 1.(本题3分)点P ()3,1m m +-在x 轴上,则m 的值为( ) A. 1 B. 2 C. -1 D. 0 2.(本题3分)在△ABC 中,AB=AC ,BD 为△ABC 的高,如果∠BAC=40°,则∠CBD 的度数是( ) A. 70° B. 40° C. 20° D. 30° 3.(本题3分)在下列条件中①∠A +∠B =∠C ②∠A ﹕∠B ﹕∠C =1﹕2﹕3 ③∠A =21∠B =13∠C ④∠A =∠B =2∠C ⑤∠A =∠B =12∠C 中,能确定△ABC 为直角三角形的条件有( ) A .5个 B .4个 C .3个 D .2个 4.(本题3分)如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么 A .0k >,0b > B .0k <,0b < C .0k >,0b < D .0k <,0b > 5.(本题3分)把点A (-2,1)向右平移3个单位长度,再向上平移2个单位长度后得到点B ,点B 的坐标是( ) A .(1,3) B .(-5,3) C .(1,-3)D .(-5,-1) 6.(本题3分)如图,∠BAD =∠BCD =90°,AB =CB ,据此可以证明△BAD ≌△BCD ,证明的依据是 ( )………外………………○…………○……A. AASB. ASAC. SASD. HL7.(本题3分)已知关于x的不等式组()324213x xa xx--≤⎧⎪⎨+>-⎪⎩的解集是13x≤<,则a=( )A.1B.2C.0D.-18.(本题3分)如图,画△ABC中AB边上的高,下列画法中正确的是()9.(本题3分)一直角三角形的两边长分别为3和4,则第三条边的长为()A.5 B.5 C.7 D.5或710.(本题3分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是()A.(63,32) B.(64,32) C.(63,31) D.(64,31)11.(本题3分)如图,点A、B的坐标分别为(-5,6)、(3,2)则三角形ABO的面积为()A. 12B. 14C. 16D. 1812.(本题3分)如图,若在象棋盘上建立平面直角坐标系,使“将”位于点(1,-2),“象”位于(3,-2),则“炮”位于点()………○………学校:______…装…………○………二、填空题(计27分) 13.(本题3分)已知P 1(a ,-1)和P 2(2,b )关于原点对称,则(a+b )2016=. 14.(本题3分)已知△ABC 为等腰三角形,其面积为30,一边长为10,则另两边长是. 15.(本题3分)如图中的螺旋由一系列直角三角形组成,则第n 个三角形的面积为. 16.(本题3分)如图,△ABC 绕点A 旋转后与△ADE 完全重合,则△ABC ≌△_______,那么两个三角形的对应边为__ ___,__ ___,___ __,对应角为____ __,___ ___,___ ____. 17.(本题3分)直线y =2x +2沿y 轴向下移动6个单位长度后,与x 轴的交点坐标为_______ 18.(本题3分)如图所示,在△ABC 中,∠B=90°,AB=3,AC=5,线段AC 的垂直平分线DE 交AC 于D 交BC 于E ,则△ABE 的周长为. 19.(本题3分)小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是。
2017-2018学年浙教版八年级数学上专题测试及期末复习试卷(附答案)
小专题(一) 构造全等三角形的方法技巧类型1 连结线段构造全等三角形【例1】 如图,已知AB =AD ,BC =CD ,求证:∠B =∠D.证明:连结AC ,在△ABC 和△ADC 中,⎩⎨⎧AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC(SSS ). ∴∠B =∠D.【方法归纳】 通过连结两点,构造出三角形,再证明两个三角形全等,然后利用全等三角形的性质说明角相等或边相等.1.如图,已知AB ∥CD ,AD ∥BC ,求证:∠A =∠C.证明:连结BD , ∵AB ∥CD , ∴∠ABD =∠CDB. ∵AD ∥BC , ∴∠ADB =∠CBD. 又∵BD =DB ,∴△ABD ≌△CDB(ASA ).∴∠A =∠C.2.如图,在△ABC 中,AB =AC ,点M 为BC 中点,MD ⊥AB 于点D ,ME ⊥AC 于点E.求证:MD =ME.证明:连结AM.在△ABM 和△ACM 中,⎩⎨⎧AB =AC ,AM =AM ,BM =CM ,∴△ABM ≌△ACM(SSS ). ∴∠BAM =∠CAM.∵MD ⊥AB ,ME ⊥AC ,∴MD =ME.类型2 利用“截长补短”构造全等三角形【例2】 如图,AD ∥BC ,点E 在线段AB 上,∠ADE =∠CDE ,∠DCE =∠ECB.求证:CD =AD +BC.证明:在CD 上截取DF =DA ,连结FE.在△ADE 和△FDE 中,⎩⎨⎧AD =FD ,∠ADE =∠FDE ,DE =DE ,∴△ADE ≌△FDE. ∴∠A =∠DFE.又∵AD ∥BC ,∴∠A +∠B =180°. ∵∠DFE +∠EFC =180°. ∴∠B =∠EFC.在△EFC 和△EBC 中,⎩⎨⎧∠EFC =∠B ,∠ECF =∠ECB ,EC =EC ,∴△EFC ≌△EBC. ∴FC =BC.∴CD =DF +FC =AD +BC.【方法归纳】 遇到证明线段的和差倍分问题时,通常利用截长法或补短法,具体的作法是在某条线段上截取一条线段与特定线段相等,或者延长某条线段,使之与特定线段相等,再利用三角形全等的有关性质解决.3.如图,在△ABC 中,∠A =60°,BD ,CE 分别平分∠ABC 和∠ACB ,BD ,CE 交于点O ,试判断BE ,CD ,BC 的数量关系,并加以证明.解:BC =BE +CD.证明:在BC 上截取BF =BE ,连结OF. ∵BD 平分∠ABC , ∴∠EBO =∠FBO. 又∵BO =BO , ∴△EBO ≌△FBO.∴∠EOB =∠FOB.∵∠A =60°,BD ,CE 分别平分∠ABC 和∠ACB ,∴∠BOC =180°-∠OBC -∠OCB =180°-12∠ABC -12∠ACB =180°-12(180°-∠A)=120°.∴∠EOB =∠DOC =60°.∴∠BOF =60°,∠FOC =∠DOC =60°. ∵CE 平分∠DCB ,∴∠DCO =∠FCO.又∵CO =CO ,∴△DCO ≌△FCO.∴CD =CF.∴BC =BF +CF =BE +CD.4.(德州中考)问题背景:如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.点E ,F 分别是BC ,CD 上的点.且∠EAF =60°.探究图中线段BE ,EF ,FD 之间的数量关系.(1)小王同学探究此问题的方法是:延长FD 到点G ,使DG =BE ,连结AG.先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是EF =BE +DF ;(2)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12∠BAD ,上述结论是否仍然成立,并说明理由.解:EF =BE +DF 仍然成立.证明:延长FD 到G ,使DG =BE ,连结AG ,∵∠B +∠ADC =180°,∠ADC +∠ADG =180°, ∴∠B =∠ADG.在△ABE 和△ADG 中,⎩⎨⎧BE =DG ,∠B =∠ADG ,AB =AD ,∴△ABE ≌△ADG(SAS ). ∴AE =AG ,∠BAE =∠DAG . ∵∠EAF =12∠BAD ,∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD -∠EAF =∠EAF. ∴∠EAF =∠GAF.在△AEF 和△AGF 中,⎩⎨⎧AE =AG ,∠EAF =∠GAF ,AF =AF ,∴△AEF ≌△AGF(SAS ).∴EF =FG .∵FG =DG +DF =BE +DF ,∴EF =BE +DF.类型3 利用“中线倍长”构造全等三角形【例3】 如图,在△ABC 中,AD 是BC 边上的中线,AC>AB ,求证:AB +AC>2AD>AC -AB.证明:延长AD 至E ,使AD =DE ,并连结CE , ∵D 是BC 上的中点,∴CD =BD.又∵AD =DE ,∠ADB =∠CDE , ∴△ADB ≌△EDC(SAS ). ∴AB =CE.∵AC +CE>2AD>AC -CE ,∴AB +AC>2AD>AC -AB.【方法归纳】 当题目中出现中线时,常常延长中线,使所延长部分与中线的长度相等,然后连结相应的端点,便可以得到全等三角形.5.已知:如图,AD ,AE 分别是△ABC 和△ABD 的中线,且BA =BD.求证:AE =12AC.证明:延长AE 至F ,使EF =AE ,连结DF. ∵AE 是△ABD 的中线, ∴BE =DE.又∵∠AEB =∠FED ,∴△ABE ≌△FDE.∴∠B =∠BDF ,AB =DF. ∵BA =BD ,∴∠BAD =∠BDA ,BD =DF.∵∠ADF =∠BDA +∠BDF ,∠ADC =∠BAD +∠B , ∴∠ADF =∠ADC.∵AD 是△ABC 的中线, ∴BD =CD. ∴DF =CD. 又∵AD =AD ,∴△ADF ≌△ADC(SAS ). ∴AC =AF =2AE ,即AE =12AC.6.如图,AB =AE ,AB ⊥AE ,AD =AC ,AD ⊥AC ,点M 为BC 的中点,求证:DE =2AM.证明:延长AM至点N,使MN=AM,连结BN,∵M为BC中点,∴BM=CM.又∵AM=MN,∠AMC=∠NMB,∴△AMC≌△NMB(SAS).∴AC=BN,∠C=∠NBM.∴∠ABN=∠ABC+∠NBM=∠ABC+∠C=180°-∠BAC=∠EAD. ∵AD=AC,AC=BN,∴AD=BN.又∵AB=AE,∴△ABN≌△EAD(SAS).∴DE=NA.又∵AM=MN,∴DE=2AM.小专题(二) 等腰三角形中的分类讨论类型1 对顶角和底角的分类讨论对于等腰三角形,只要已知它的一个内角的度数,就能算出其他两个内角的度数,如果题中没有确定这个内角是顶角还是底角,就要分两种情况来讨论.在分类时要注意:三角形的内角和等于180°;等腰三角形中至少有两个角相等.1.等腰三角形中有一个角为52°,它的一条腰上的高与底边的夹角为多少度?解:①若已知的这个角为顶角,则底角的度数为(180°-52°)÷2=64°,故一腰上的高与底边的夹角为26°; ②若已知的这个角为底角,则一腰上的高与底边的夹角为38°. 故所求的一腰上的高与底边的夹角为26°或38°.类型2 对腰长和底长的分类讨论在解答已知等腰三角形边长的问题时,当题目条件中没有明确说明哪条边是“腰”、哪条边是“底”时,往往要进行分类讨论.判定的依据是:三角形的任意两边之和大于第三边;两边之差小于第三边. 2.(1)已知等腰三角形的一边长等于6 cm ,一边长等于7 cm ,求它的周长;(2)等腰三角形的一边长等于8 cm ,周长等于30 cm ,求其他两边的长. 解:(1)周长为19 cm 或20 cm .(2)其他两边的长为8 cm ,14 cm 或11 cm ,11 cm .3.若等腰三角形一腰上的中线分周长为9 cm 和12 cm 两部分,求这个等腰三角形的底和腰的长.解:如图,由于条件中中线分周长的两部分,并没有指明哪一部分是9 cm 、哪一部分是12 cm ,因此,应有两种情形.设这个等腰三角形的腰长为x cm ,底边长为y cm ,根据题意,得⎩⎨⎧x +12x =9,12x +y =12或⎩⎨⎧x +12x =12,12x +y =9.解得⎩⎨⎧x =6,y =9,或⎩⎪⎨⎪⎧x =8,y =5.故腰长是6 cm ,底边长是9 cm 或腰长是8 cm ,底边长是5 cm .类型3 几何图形之间的位置关系不明确的分类讨论4.已知C 、D 两点在线段AB 的中垂线上,且∠ACB =50°,∠ADB =80°,求∠CAD 的度数.解:①如图1,当C 、D 两点在线段AB 的同侧时, ∵C 、D 两点在线段AB 的垂直平分线上,∴CA =CB.∴△CAB 是等腰三角形. 又∵CE ⊥AB ,∴CE 是∠ACB 的平分线.∴∠ACE =∠BCE. ∵∠ACB =50°,∴∠ACE =25°. 同理可得∠ADE =40°,∴∠CAD =∠ADE -∠ACE =40°-25°=15°;图1 图2②如图2,当C 、D 两点在线段AB 的两侧时,同①的方法可得∠ACE =25°,∠ADE =40°,∴∠CAD =180°-(∠ADE +∠ACE)=180°-(40°+25°)=180°-65°=115°. 故∠CAD 的度数为15°或115°.类型4 运动过程中等腰三角形中的分类讨论5.(下城区校级期中)在Rt △ABC 中,∠C =90°,BC =8 cm ,AC =6 cm ,在射线BC 上一动点D ,从点B 出发,以2厘米每秒的速度匀速运动,若点D 运动t 秒时,以A 、D 、B 为顶点的三角形恰为等腰三角形,则所用时间t 为258或5或8秒. 解析:①当AD =BD 时,在Rt △ACD 中,根据勾股定理,得AD 2=AC 2+CD 2,即BD 2=(8-BD)2+62, 解得BD =254cm .则t =2542=258(秒);②当AB =BD 时,在Rt △ABC 中,根据勾股定理,得 AB =AC 2+BC 2=62+82=10(cm ), 则t =102=5(秒);③当AD =AB 时,BD =2BC =16 cm ,则t =162=8(秒).综上所述,t 的值可以是:258,5,8.6.(杭州期中)如图,已知△ABC 中,∠B =90°,AB =8 cm ,BC =6 cm ,P 、Q 是△ABC 边上的两个动点,其中点P 从点A 开始沿A →B 方向运动,且速度为每秒1 cm ,点Q 从点B 开始沿B →C 方向运动,且速度为每秒2 cm ,它们同时出发,设出发的时间为t 秒.(1)当t =2秒时,求PQ 的长;(2)求出发时间为几秒时,△PQB 是等腰三角形?(3)若Q 沿B →C →A 方向运动,则当点Q 在边CA 上运动时,求能使△BCQ 成为等腰三角形的运动时间.解:(1)BQ =2×2=4(cm ),BP =AB -AP =8-2×1=6(cm ), ∵∠B =90°,∴PQ =BQ 2+BP 2=42+62=213(cm ). (2)根据题意,得BQ =BP , 即2t =8-t , 解得t =83.∴出发时间为83秒时,△PQB 是等腰三角形.(3)分三种情况:①当CQ =BQ 时,如图1所示, 则∠C =∠CBQ , ∵∠ABC =90°,∴∠CBQ +∠ABQ =90°,∠A +∠C =90°. ∴∠A =∠ABQ. ∴BQ =AQ.∴CQ =AQ =5 cm . ∴BC +CQ =11 cm . ∴t =11÷2=5.5(秒).②当CQ =BC 时,如图2所示, 则BC +CQ =12 cm . ∴t =12÷2=6(秒).③当BC =BQ 时,如图3所示, 过B 点作BE ⊥AC 于点E , 则BE =AB·BC AC =6×810=4.8(cm ).∴CE =BC 2-BE 2=3.6 cm .∴CQ =2CE =7.2 cm . ∴BC +CQ =13.2 cm . ∴t =13.2÷2=6.6(秒).由上可知,当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.小专题(三) 利用勾股定理解决折叠与展开问题类型1 利用勾股定理解决平面图形的折叠问题1.如图所示,有一张直角三角形纸片,∠C =90°,AC =4 cm ,BC =3 cm ,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CE 的长为(A )A .1 cmB .1.5 cmC .2 cmD .3 cm第1题图 第2题图2.如图,长方形ABCD 的边AD 沿折痕AE 折叠,使点D 落在BC 上的F 处,已知AB =6,△ABF 的面积是24,则FC 等于(B )A .1B .2C .3D .43.如图,有一张直角三角形纸片,两直角边AC =5 cm ,BC =10 cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 的长为(D )A .252cmB .152cm C .254cmD .154cm第3题图 第4题图4.(铜仁中考)如图,在长方形ABCD 中,BC =6,CD =3,将△BCD 沿对角线BD 翻折,点C 落在点C′处,BC ′交AD 于点E ,则线段DE 的长为(B )A .3B .154C .5D .1525.(上城区期末)在矩形纸片ABCD 中,AB =3,AD =5,如图所示,折叠纸片,使点A 落在BC 边上的A′处,折痕为PQ ,当点A′在BC 边上移动时,折痕的端点P 、Q 也随之移动,若限定点P 、Q 分别在线段AB 、AD 边上移动,则点A′在BC 边上可移动的最大距离为(B )A .1B .2C .3D .4解析:如图1,当点D 与点Q 重合时,根据翻折对称性可得 A′D =AD =5.在Rt △A ′CD 中,A ′D 2=A′C 2+CD 2, 即52=(5-A′B)2+32,解得A′B =1.如图2,当点P 与点B 重合时,根据翻折对称性可得A′B =AB =3. ∵3-1=2,∴点A′在BC 边上可移动的最大距离为2. 故选B .6.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为7.第6题图 第7题图7.如图,在Rt △ABC 中,∠C =90°,BC =6 cm ,AC =8 cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C′点,那么△ADC′的面积是6_cm 2.8.如图,长方形ABCD 中,CD =6,BC =8,E 为CD 边上一点,将长方形沿直线BE 折叠,使点C 落在线段BD 上C′处,求DE 的长.解:∵在长方形ABCD 中,∠C =90°,DC =6,BC =8, ∴BD =62+82=10.由折叠可得BC ′=BC =8,EC ′=EC ,∠BC ′E =∠C =90°, ∴C ′D =2,∠DC ′E =90°. 设DE =x ,则C ′E =CE =6-x . 在Rt △C ′DE 中,x 2=(6-x )2+22, 解得x =103.∴DE 的长为103.类型2 利用勾股定理解决立体图形的最短路径问题9.如图是一个封闭的正方体纸盒,E 是CD 中点,F 是CE 中点,一只蚂蚁从一个顶点A 爬到另一个顶点G ,那么这只蚂蚁爬行的最短路线是(C )A .A ⇒B ⇒C ⇒G B .A ⇒C ⇒G C .A ⇒E ⇒GD .A ⇒F ⇒G10.如图,在一个长为2 m ,宽为1 m 的长方形草地上,放着一根长方体的木块,它的棱和场地宽AD 平行且棱长大于AD ,木块从正面看是边长为0.2 m 的正方形,一只蚂蚁从点A 处到达点C 处需要走的最短路程是2.60m .(精确到0.01 m )第10题图第11题图11.(凉山中考)如图,圆柱形玻璃杯,高为18 cm,底面周长为24 cm,在杯内离杯底4 cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为20cm.12.一位同学要用彩带装饰一个长方体礼盒.长方体高6 cm,底面是边长为4 cm的正方形,从顶点A到顶点C′如何贴彩带用的彩带最短?最短长度是多少?解:把长方体的面DCC′D′沿棱CD展开至面ABCD上,如图.构成矩形ABC′D′,则A到C′的最短距离为AC′的长度,连结AC′交DC于O,易证△AOD≌△C′OC.∴OD=OC,即O为DC的中点.由勾股定理得AC′2=AD′2+D′C′2=82+62=100,∴AC′=10 cm.即从顶点A沿直线到DC中点O(或A′B′中点O′),再沿直线到顶点C′,贴的彩带最短,最短长度为10 cm.13.如图,一个长方体形状的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长.解:(1)如图,木柜的表面展开图是两个矩形ABC′1D1和ACC1A1.蚂蚁能够最快到达目的地的可能路径有如图所示的AC′1和AC1两种.(2)蚂蚁沿着木柜表面经线段A1B1到C′1,爬过的路径的长l1=42+(4+5)2=97;蚂蚁沿着木柜表面经线段BB1到C1,爬过的路径的长l2=(4+4)2+52=89. ∵l1>l2,∴最短路径的长是89.小专题(四) 全等三角形的基本模型类型1 平移型把△ABC 沿着某一条直线l 平行移动,所得到△DEF 与△ABC 称为平移型全等三角形.图1,图2是常见的平移型全等三角形.在证明平移型全等的试题中,常常要碰到移动方向的边加(减)公共边.如图1,若BE =CF ,则BE +EC =CF +CE ,即BC =EF.如图2,若BE =CF ,则BE -CE =CF -CE ,即BC =EF.1.如图,已知EF ∥MN ,EG ∥HN ,且FH =MG ,求证:△EFG ≌NMH.证明:∵EF ∥MN ,EG ∥HN , ∴∠F =∠M ,∠EGF =∠NHM. ∵FH =MG ,∴FH +HG =MG +HG , 即GF =HM.在△EFG 和△NMH 中,⎩⎨⎧∠F =∠M ,GF =HM ,∠EGF =∠NHM ,∴△EFG ≌△NMH(ASA ).2.(金华六校10月联考)如图,A 、B 、C 、D 四点在同一直线上,请你从下面四项中选出三个选项作为条件,余下一个作为结论,构成一个真命题,并进行证明.①AB =CD ;②∠ACE =∠D ;③∠EAG =∠FBG ;④AE =BF. 你选择的条件是:①②③,结论是:④.(填写序号)证明:∵∠EAG =∠FBG , ∴∠EAD =∠FBD. ∵AB =CD ,∴AB +BC =BC +CD , 即AC =BD.在△ACE 和△BDF 中,⎩⎨⎧∠ACE =∠D ,AC =BD ,∠EAD =∠FBD ,∴△ACE ≌△BDF(ASA).类型2翻折型将原图形沿着某一条直线折叠后,直线两边的部分能够完全重合,这两个三角形称之为翻折型全等三角形.此类图形中要注意其隐含条件,即公共边或公共角相等.3.(下城区校级期中)如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连结CD、EB.(1)不添加辅助线,找出图中其他的全等三角形;(2)求证:CF=EF.解:(1)图中其他的全等三角形为:△ACD≌△AEB,△DCF≌△BEF.(2)证明:∵Rt△ABC≌Rt△ADE,∴AC=AE,AD=AB,∠CAB=∠EAD.∴∠CAB-∠DAB=∠EAD-∠DAB,即∠CAD=∠EAB.∴△CAD≌△EAB.∴CD=EB,∠ADC=∠ABE.又∵∠ADE=∠ABC,∴∠CDF=∠EBF.又∵∠DFC=∠BFE,∴△CDF≌△EBF(AAS).∴CF=EF.类型3旋转型将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形.识别旋转型三角形时,如图1,涉及对顶角相等;如图2,涉及等角加(减)等角的条件.4.已知:如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:AD=AE.证明:∵AB⊥AC,AD⊥AE,∴∠BAC=∠DAE=90°.∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,∠BAD=∠CAE,AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE.5.如图,△ABC ,△CDE 是等边三角形,B ,C ,E 三点在同一直线上.(1)求证:AE =BD ;(2)若BD 和AC 交于点M ,AE 和CD 交于点N ,求证:CM =CN ; (3)连结MN ,猜想MN 与BE 的位置关系,并加以证明. 解:(1)证明:∵△ABC 和△DCE 均为等边三角形, ∴AC =BC ,CE =CD ,∠ACB =∠DCE =60°. ∴∠BCD =∠ACE =120°.在△ACE 和△BCD 中,⎩⎨⎧AC =BC ,∠ACE =∠BCD ,CE =CD ,∴△ACE ≌△BCD(SAS ). ∴AE =BD.(2)证明:∵△ACE ≌△BCD ,∴∠CBD =∠CAE.∵∠ACN =180°-∠ACB -∠DCE =60°, ∴∠BCM =∠ACN.在△BCM 和△ACN 中,⎩⎨⎧∠CBM =∠CAN ,CB =CA ,∠BCM =∠ACN ,∴△BCM ≌△ACN(ASA ). ∴CM =CN.(3)MN ∥BE.证明:∵CM =CN ,∠MCN =60°, ∴△MCN 为等边三角形. ∴∠CMN =60°. ∴∠CMN =∠ACB. ∴MN ∥BE.类型4 双垂型基本图形如图:此类图形通常告诉BD ⊥DE ,AB ⊥AC ,CE ⊥DE ,那么一定有∠B =∠CAE. 6.如图,AD ⊥AB 于点A ,BE ⊥AB 于点B ,点C 在AB 上,且CD ⊥CE ,CD =CE.求证:AD =CB.证明:∵AD ⊥AB ,BE ⊥AB , ∴∠A =∠B =90°. ∴∠D +∠ACD =90°. ∵CD ⊥CE ,∴∠ACD +∠BCE =180°-90°=90°. ∴∠D =∠BCE .在△ACD 和△BEC 中,⎩⎨⎧∠A =∠B ,∠D =∠BCE ,CD =CE ,∴△ACD ≌△BEC (AAS). ∴AD =CB . 7.如图,△ABC 为等腰直角三角形,∠ACB =90°,直线l 经过点A 且绕点A 在△ABC 所在平面内转动,作BD ⊥l ,CE ⊥l ,D 、E 为垂足.求证:DA +DB =2DE.证明:在l 上截取FA =DB ,连结CD 、CF.∵△ABC 为等腰直角三角形,∠ACB =90°,BD ⊥l , ∴AC =BC ,∠BDA =90°.∴∠CBD +∠CAD =360°-∠BDA -∠ACB =360°-90°-90°=180°. 又∵∠CAF +∠CAD =180°, ∴∠CBD =∠CAF.在△CBD 和△CAF 中,⎩⎨⎧CB =CA ,∠CBD =∠CAF ,BD =AF ,∴△CBD ≌△CAF(SAS ). ∴CD =CF. ∵CE ⊥l ,∴DE =EF =12DF =12(DA +FA)=12(DA +DB).∴DA +DB =2DE.小专题(五) 一元一次不等式(组)的解法1.解下列不等式(组):(1)(金华金东区期末)5x +3<3(2+x); 解:去括号,得5x +3<6+3x. 移项,得5x -3x <6-3. 合并同类项,得2x <3. 系数化为1,得x <32.(2)(黄冈中考)x +12≥3(x -1)-4;解:去分母,得x +1≥6(x -1)-8. 去括号,得x +1≥6x -6-8. 移项,得x -6x ≥-6-8-1. 合并同类项,得-5x ≥-15. 两边都除以-5,得x ≤3.(3)⎩⎪⎨⎪⎧x +1≥2,①3(x +1)>x +5;② 解:由①,得x ≥1. 由②,得x>1.所以,不等式组的解集为x>1.(4)(莆田中考)⎩⎪⎨⎪⎧x -3(x -2)≥4,①1+2x3>x -1;②解:由①,得x ≤1.由②,得x <4.所以原不等式组的解集为x ≤1.(5)(金华金东区期末)⎩⎪⎨⎪⎧5x -2>3(x +1),①12x -1≤7-32x.② 解:解不等式①,得x >52.解不等式②,得x ≤4. 故不等式组的解集为52<x ≤4.2.(苏州中考)解不等式2x -1>3x -12,并把它的解集在数轴上表示出来.解:去分母,得4x -2>3x -1. 移项,得4x -3x >2-1. 合并同类项,得x >1.将不等式解集表示在数轴上如图:3.(萧山区校级月考)解不等式x3<1-x -36,并求出它的非负整数解.解:去分母,得2x<6-(x -3).去括号,得2x<6-x +3. 移项,得x +2x<6+3. 合并同类项,得3x<9. 系数化为1,得x<3.所以,非负整数解为0,1,2.4.(杭州经济开发区期末)解不等式组⎩⎪⎨⎪⎧x -4≥3(x -2),①x +113-1>-x.②并把它的解在数轴上表示出来.解:解不等式①,得x ≤1.解不等式②,得x >-2. ∴原不等式组的解为-2<x ≤1. 在数轴上表示为:5.(十堰中考)x 取哪些整数值时,不等式5x +2>3(x -1)与12x ≤2-32x 都成立?解:根据题意解不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),①12x ≤2-32x.② 解不等式①,得x >-52.解不等式②,得x ≤1. 所以-52<x ≤1.故满足条件的整数有-2、-1、0、1.小专题(六) 一元一次不等式的实际应用1.建设“新丝绸之路经济带”和“21世纪海上丝绸之路”的战略构想,强调相关各国要打造互利共赢的“利益共同体”和共同发展繁荣的“命运共同体”.某国有企业在“一带一路”的战略合作中,向东南亚销售A 、B 两种外贸产品共6万吨.已知A 种外贸产品每吨800元,B 种外贸产品每吨400元.若A 、B 两种外贸产品销售额不低于3 200万元,则至少销售A 产品多少万吨?解:设销售A 产品x 万吨.根据题意,得 800x +400(6-x)≥3 200. 解得x ≥2.答:至少销售A 产品2万吨.2.(来宾中考)已知购买一个足球和一个篮球共需130元,购买2个足球和一个篮球共需180元.(1)求每个足球和每个篮球的售价;(2)如果某校计划购买这两种球共54个,总费用不超过4 000元,问最多可买多少个篮球? 解:(1)设每个足球的售价为x 元,每个篮球的售价为y 元.根据题意,得⎩⎪⎨⎪⎧x +y =130,2x +y =180. 解得⎩⎪⎨⎪⎧x =50,y =80. 答:每个足球和每个篮球的售价分别为50元、80元. (2)设可购买z 个篮球.根据题意,得 50(54-z)+80z ≤4 000.解得z ≤1303.∵z 取整数,∴z 最大可取43.答:最多可买43个篮球.3.2017年的5月20日是第17个中国学生营养日,我市某校社会实践小组在这天开展活动,调查快餐营养情况,他们从食品安全监督部门获取了一份快餐的信息(如图),若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,这份快餐最多含有多少克的蛋白质?信 息1.快餐成分:蛋白质、脂肪、碳水化合物和其他. 2.快餐总质量为400克.3.碳水化合物质量是蛋白质质量的4倍.解:设这份快餐含有x 克的蛋白质.根据题意,得x +4x ≤400×70%.解得x ≤56.答:这份快餐最多含有56克的蛋白质.4.(玉林中考)蔬菜经营户老王近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如下表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少钱?(2)今天因进价不变,老王仍用10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(精确到0.1元)解:(1) 设老王批发青菜x 市斤,西兰花y 市斤,根据题意,得⎩⎪⎨⎪⎧x +y =200,2.8x +3.2y =600.解得⎩⎪⎨⎪⎧x =100,y =100. (4-2.8)×100+(4.5-3.2)×100=250(元). 答:当天售完后老王一共能赚250元钱. (2)设青菜的售价定为a 元,根据题意,得 100×(1-10%)a +4.5×100-600≥250. 解得a ≥409≈4.44.答:青菜售价至少定为4.5元/市斤.小专题(七) 一次函数的图象与性质类型1 一次函数的图象与字母系数的关系1.在平面直角坐标系中,正比例函数y =kx(k<0)的图象可能是(C )2.(怀化中考)一次函数y =kx +b(k ≠0)在平面直角坐标系中的图象如图所示,则k 和b 的取值范围是(C )A .k >0,b >0B .k <0,b <0C .k <0,b >0D .k >0,b <0第2题图 第3题图3.(江山期末)已知一次函数y =kx +b 的图象如图所示,则下列语句中不正确的是(B )A .函数值y 随x 的增大而增大B .当x >0时,y >0C .k +b =0D .kb <04.已知函数y =kx +b 的图象如图,则y =2kx +b 的图象可能是(C )5.已知一次函数y =(2k -1)x +b -1的图象经过第一、二、四象限,则k ,b 的取值范围为(B )A .k>12,b>1B .k<12,b>1C .k>12,b<1D .k<12,b<16.对于一次函数y =kx +b ,其中b 实际是该函数的图象与y 轴交点的纵坐标.在画图实践中我们发现当k>0,b>0时,其图象经过第一、二、三象限.请你随意画几个一次函数的图象继续探究:(1)当b>0时,图象与y 轴的交点在x 轴上方;当b<0时,图象与y 轴的交点在x 轴下方;(2)当k 、b 取何值时,图象经过第一、三、四象限?第一、二、四象限?第二、三、四象限?请写出你的探究结论和同伴交流.解:当k>0,b<0时,图象经过第一、三、四象限; 当k<0,b>0时,图象经过第一、二、四象限; 当k<0,b<0时,图象经过第二、三、四象限.7.一次函数y =mx +n 的图象如图所示.(1)试化简代数式:m 2-|m -n|;(2)若点(-2,a),(3,b)在函数图象上,比较a ,b 的大小.解:(1)由图象可知,m <0,n >0, 所以m -n<0.所以m 2-|m -n|=-m +m -n =-n.(2)因为一次函数y =mx +n 的图象从左往右逐渐下降, 所以y 随x 的增大而减小.又因为点(-2,a),(3,b)在函数图象上,且-2<3,所以a >b.类型2 一次函数图象上点的坐标特征8.(遂宁中考)直线y =2x -4与y 轴的交点坐标是(D )A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)9.一次函数y =5x -2的图象经过点A(1,m),如果点B 与点A 关于y 轴对称,那么点B 所在的象限是(B )A .第一象限B .第二象限C .第三象限D .第四象限10.已知点(-2,y 1),(-1,y 2),(1,y 3)都在直线y =-3x +2上,则y 1,y 2,y 3的大小关系是(A )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 2>y 3>y 1D .y 3>y 2>y 111.(钦州中考)一次函数y =kx +b(k ≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第三象限.12.(株洲中考)已知直线y =2x +(3-a)与x 轴的交点在A(2,0),B(3,0)之间(包括A ,B 两点),则a 的取值范围是7≤a ≤9.类型3 一次函数表达式的确定13.(金华金东区期末)将直线y =2x 向右平移2个单位长度所得的直线的表达式是(C )A .y =2x +2B .y =2x -2C .y =2(x -2)D .y =2(x +2)14.如图,A 、B 两点在坐标平面上,已知A(-3,0),B(0,-4),那么直线AB 关于y 轴对称的直线表达式为(B )A .y =-43x -4B .y =43x -4C .y =43x +4D .y =-43x +415.(江山期末)一次函数的图象经过M(3,2),N(-1,-6)两点.(1)求函数表达式;(2)请判定点A(1,-2)是否在该一次函数图象上,并说明理由. 解:(1)设y =kx +b(k ≠0),将点(3,2)(-1,-6)代入,得⎩⎨⎧2=3k +b ,-6=-k +b ,解得⎩⎪⎨⎪⎧k =2,b =-4. ∴y =2x -4.(2)当x =1时,y =2×1-4=-2, ∴点A(1,-2)在一次函数图象上.16.(益阳中考)如图,直线l 上有一点P 1(2,1),将点P 1先向右平移1个单位长度,再向上平移2个单位长度得到像点P 2,点P 2恰好在直线l 上.(1)写出点P 2的坐标;(2)求直线l 所表示的一次函数的表达式;(3)若将点P 2先向右平移3个单位长度,再向上平移6个单位长度得到像点P 3.请判断点P 3是否在直线l 上,并说明理由.解:(1)P 2(3,3).(2)设直线l 所表示的一次函数的表达式为y =kx +b(k ≠0). 因为点P 1(2,1),P 2(3,3)在直线l 上,所以⎩⎨⎧2k +b =1,3k +b =3,解得⎩⎪⎨⎪⎧k =2,b =-3.所以直线l 所表示的一次函数的表达式为y =2x -3.(3)点P 3在直线l 上.由题意知点P 3的坐标为(6,9). 因为2×6-3=9, 所以点P 3在直线l 上.小专题(八) 一次函数与方程、不等式的综合应用类型1 一次函数与一元一次方程的综合应用 1.方程2x +12=0的解是直线y =2x +12(C )A .与y 轴交点的横坐标B .与y 轴交点的纵坐标C .与x 轴交点的横坐标D .与x 轴交点的纵坐标2.已知方程kx +b =0的解是x =3,则函数y =kx +b 的图象可能是(C )A B C D3.一次函数y =kx +b(k ,b 为常数,且k ≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx +b =0的解为(A )A .x =-1B .x =2C .x =0D .x =3第3题图 第4题图4.如图,已知直线y =3x +b 与y =ax -2的交点的横坐标为-2,则关于x 的方程3x +b =ax -2的解为x =-2. 5.已知方程3x +9=0的解是x =-3,则函数y =3x +9与x 轴的交点坐标是(-3,0),与y 轴的交点坐标是(0,9).类型2 一次函数与二元一次方程组的综合应用6.如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧y =ax +b ,y =kx 的解是(B )A .⎩⎪⎨⎪⎧x =-2y =-4B .⎩⎪⎨⎪⎧x =-4y =-2 C .⎩⎪⎨⎪⎧x =2y =-4D .⎩⎪⎨⎪⎧x =-4y =2第6题图 第7题图7.如图,两条直线l 1和l 2的交点坐标可以看作下列哪个方程组中的解(B )A .⎩⎪⎨⎪⎧y =2x +1y =x +2B .⎩⎪⎨⎪⎧y =-x +3y =3x -5C .⎩⎪⎨⎪⎧y =-2x +1y =x -1D .⎩⎪⎨⎪⎧y =-2x +1y =x +18.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x 人,进3个球的有y 人,若(x ,y)恰好是两条直线的交点坐标,则这两条直线的表达式是(C )A .y =x +9与y =23x +223B .y =-x +9与y =23x +223C .y =-x +9与y =-23x +223D .y =x +9与y =-23x +2239.利用一次函数的图象解二元一次方程组:⎩⎪⎨⎪⎧x +y =1,2x -y =5.解:根据图象可得出方程组⎩⎪⎨⎪⎧y =-x +1,y =2x -5的解是⎩⎪⎨⎪⎧x =2,y =-1.10.在平面直角坐标系中,直线l 1经过点(2,3)和点(-1,-3),直线l 2经过原点O ,且与直线l 1交于点P(-2,a).(1)求a 的值;(2)(-2,a)可看成怎样的二元一次方程组的解?(3)设直线l 1与y 轴交于点A ,试求出△APO 的面积. 解:(1)设直线l 1的表达式为y =kx +b , ∵直线l 1经过(2,3)和(-1,-3),∴⎩⎪⎨⎪⎧2k +b =3,-k +b =-3.解得⎩⎪⎨⎪⎧k =2,b =-1. ∴直线l 1的表达式为y =2x -1.把P(-2,a)代入y =2x -1,得a =2×(-2)-1=-5.(2)设直线l 2的表达式为y =mx ,把P(-2,-5)代入,得-5=-2m ,解得m =52.∴直线l 2的表达式为y =52x.∴(-2,-5)可以看作是二元一次方程组⎩⎪⎨⎪⎧y =2x -1,y =52x 的解.(3)对于y =2x -1,令x =0,解得y =-1,则A 点坐标为(0,-1). ∴S △APO =12×2×1=1.11.(青岛中考)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l 1和l 2分别表示甲、乙两人跑步的路程y(m )与甲跑步的时间x(s )之间的函数关系,其中l 1的关系式为y 1=8x ,问甲追上乙用了多长时间?解:设l 2的关系式为y 2=kx +b(k ≠0),根据题意,可得方程组⎩⎪⎨⎪⎧10=b ,22=2k +b.解得⎩⎪⎨⎪⎧k =6,b =10. ∴y 2=6x +10.当y 1=y 2时,8x =6x +10,解得x =5.答:甲追上乙用了5 s .类型3 一次函数与不等式的综合应用12.一次函数y =kx +b(k ≠0)的图象如图所示,当kx +b <0时,x 的取值范围是(D )A .x <0B .x >0C .x <2D .x >2第12题图 第14题图 13.对于函数y =-x +4,当x >-2时,y 的取值范围是(D )A .y <4B .y >4C .y >6D .y <614.如图,函数y =2x -4与x 轴、y 轴分别交于点(2,0),(0,-4),当-4<y <0时,x 的取值范围是(C )A .x <-1B .-1<x <0C .0<x <2D .-1<x <215.(杭州开发区期末)一次函数y =kx +b(k ≠0)的图象如图所示,当y <0时,自变量x 的取值范围是(A )A .x <-2B .x >-2C .x >2D .x <2第15题图 第16题图16.(绍兴五校联考期末)直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b<k 2x +c 的解集为x<1.17.已知函数y 1=kx -2和y 2=-3x +b 相交于点A(2,-1).(1)求k 、b 的值,在同一坐标系中画出两个函数的图象;(2)利用图象求出:当x 取何值时有:①y 1<y 2;②y 1≥y 2;(3)利用图象求出:当x 取何值时有:①y 1<0且y 2<0;②y 1>0且y 2<0. 解:(1)k =12,b =5.图象略.(2)①当x<2时,y 1<y 2. ②当x ≥2时,y 1≥y 2.(3)①当53<x<4时,y 1<0且y 2<0.②当x>4时,y 1>0且y 2<0.小专题(九)分段函数1.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h和放水时间t之间的关系的是(A )第1题图第2题图2.如图是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费(A )A.0.4元B.0.45 元C.约0.47元D.0.5元3.如图是某工程队在一项修筑公路的工程中,修筑的公路长度y(米)与时间x(天)之间的关系函数(图象为折线).根据图象提供的信息,可知到第七天止,该工程队修筑的公路长度为(D )A.630米B.504米C.480米D.450米第3题图第4题图4.(绍兴五校联考期末)小波、小威从学校出发到青少年宫参加书法比赛,小波步行一段时间后,小威骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小波出发时间t(分)之间的函数关系如图所示.下列说法:①小威先到达青少年宫;②小威的速度是小波速度的2.5倍;③a=24;④b=480.其中正确的是(B ) A.①②③B.①②④C.①③④D.①②③④5.(江山期末)在全民健身环城越野赛中,甲、乙两选手的行程y(千米)随时间x(小时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省江北区2017-2018学年八年级数学上学期期末考试试题考生须知:全卷共4页,有三大题,25小题.满分100分,考试时间90分钟.温馨提醒:请认真审题,细心答题,相信你是最棒的!一. 选择题(每小题3分,10小题,共30分)1.在平面直角坐标系中,点(2,-3)所在的象限是………………………………( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限2.不等式32->x 的解是………………………………………………………………( ▲ ) A. 23-<x B. 23->x C.32-<x D.32->x 3.以下图形中对称轴条数最多..的是……………………………………………………( ▲ )4.函数y=21+x 中,自变量x 的取值范围是………………………………………( ▲ ) A .x >﹣2 B .x ≠0 C .x >﹣2且x ≠0 D .x ≠﹣25.如图,在△ABC 中,∠A=35°,∠C=45°,则与∠ABC 相邻的外角的度数是…( ▲ )A.35°B.45°C.80°D.100°(第5题图) (第6题图)6.如图所示,在△ABC 中,AB=AC ,D 、E 分别是AC 、AB 的中点,且BD ,CE 相交于O 点, 某一位同学分析这个图形后得出以下结论: ①△BCD ≌△CBE ; ②△BDA ≌△CEA ;③△BOE ≌△COD ; ④△BAD ≌△BCD ;⑤△ACE ≌△BCE ,上述结论一定正确..的是( ▲ ) A.①②③ B.②③④ C.①③⑤ D.①③④7. 下列各组数中,不能..作为直角三角形三边长的是…………………………………( ▲ )A .1.5,2,3B .5,12,13C .7,24,25D .8,15,178.已知等腰三角形的其中两边长分别为4,9,则这个等腰三角形的周长是……( ▲ )A .13B .17C .22D .17或229. 在平面直角坐标系中,若有一点P (2,1)向上平移3个单位或.向左平移4个单位,恰 好都在直线y=kx+b 上,则k 的值是…………………………………………………( ▲ )A .21B .43C .34 D .2 10.如图,点D 是正△ABC 内的一点,DB=3,DC=4,DA=5,则∠BDC 的度数是…( ▲ )A.120°B.135°C.140°D.150°(第10题图)二.填空题(每题3分,8小题,共24分)11.小明的身高h 超过了160cm ,用不等式可表示为 ▲ .12.命题“若a,b 互为倒数,则ab=1”的逆命题是 ▲ .13.已知△ABC ≌△DEF ,若AB=5,BC=6,AC=8,则△DEF 的周长是 ▲ .14.在第二象限到x 轴距离为2,到y 轴距离为5的点的坐标是 ▲ .15.在Rt △中有一个内角为30°,且斜边和较短直角边之和为15cm ,则这个直角三角形的斜边长上的中线长为 ▲ cm.16.已知等腰三角形的腰长为xcm ,顶角平分线与对边的交点到一腰的距离为4cm ,这个等腰三角形的面积为ycm 2,则y 与x 的函数关系式为 ▲ .17.如图,在Rt △ABC 中,∠C=90°,斜边AB 的垂直平分线交AB 于点E ,交BC 于点D ,若∠B=35°,则∠CAD= ▲ °.(第17题图) (第18题图)18. 一次函数b kx y +=的图象经过A(-1,1)和B(-7 ,0),则不等式组x b kx -<+<0的解为 ▲ .三.解答题(7小题,共46分)19.(本小题5分)解不等式组⎩⎨⎧≤-+>+,1132),3(27x x x 并把它的解表示在数轴上.20.(本小题5分)请你用直尺和圆规作图(要求:不必写作法,但要保留作图痕迹).已知:∠AOB ,点M 、N .求作:点P ,使点P 到OA 、OB 的距离相等,且PM=PN .(第20题图)21.(本小题6分)如图,C 是线段AB 的中点,CD ∥BE ,且CD=BE ,求证:AD=CE .(第21题图)22. (本小题6分)如图,△ABC 在平面直角坐标系内.(1)试写出△ABC 各顶点的坐标;(2)求出△ABC 的面积.(第22题图) 3-2-1-01+2+3+4+4-23.(本小题7分)宁波某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A 、B 两种型号的污水处理设备共10台,具体情况如下表:经预算,企业最多支出136万元购买设备,且要求月处理污水能力不低于2150吨.(1)该企业有哪几种购买方案?(2)哪种方案更省钱?并说明理由.24.(本小题7分)甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走. 设甲、乙两人相距.......s (米),甲行走的时间为t (分),s 关于t 的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s 关于t 函数图象的其余部分,并写出已画图象另一个端点的坐标;(3)问甲、乙两人何时相距390米?(第24题图) 25. (本小题10分)如图,已知∠ABC=90°,△ABE 是等边三角形,点P 为射线BC 上任意一点(点P 与点B 不重合),连接AP ,将线段AP 绕点A 逆时针旋转60°得到线段AQ ,连接QE 并延长交射线BC 于点F .(1)如图,当BP=BA 时,∠EBF=______°,猜想∠QFC =______°;(2)如图,当点P 为射线BC 上任意一点时,猜想∠QFC 的度数,并加以证明.(3)已知线段AB =34,设BP =x ,点Q 到射线BC 的距离为y ,求y 关于x 的函数关系式.(第25题图)(第25题备用图)2017学年第一学期八年级期末测试数学答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共24分)11. h >160 12. 若ab=1,则a,b 互为倒数 13. 19 14. (-5,2)15. 5 16. y=4x 17. 20 18. -三、解答题(7小题,共46分)19. (5分) 3-≤x<1 (图略)两个不等式的解各1分,不等式组的解2分,图1分20.(5分)(作图略)作出一条得2分,不写结论扣一分21.(6分)证明:∵C 是AB 的中点(已知),∴AC=CB(线段中点的定义), ……………1分∵CD∥BE(已知),∴∠ACD=∠B(两直线平行,同位角相等) ……………2分在△ACD 和△CBE 中,⎪⎩⎪⎨⎧BE =CD B =∠ACD ∠CB =AC ,∴△ACD≌△CBE(SAS ). ……………5分∴AD=CE. ……………6分22.(6分) 解:(1)由图可知:A (6,6),B (0,3),C (3,0).…3分(2)S △ABC=S 正方形AEOD —S△AEB —S△OBC —S△ACD=6×6-21×3×6-21×3×3-21×3×6=227 …6分 (其它割补求面积或利用等腰三角形求得面积亦可)23.(7分)(1)解:设购买污水处理设备A 型号x 台,则购买B 型号(10-x )台, 根据题意,得⎩⎨⎧0215≥x)-200(10+250x 136≤x)-12(10+15x ……………2分解这个不等式组,得:∵x 是整数∴x=3或x=4或x=5. ……………3分 当x=3时,10-x=7;当x=4时,10-x=6;当x=5时,10-x=5.答:有3种购买方案:第一种是购买3台A 型污水处理设备,7台B 型污水处理设备.第二种是购买4台A 型污水处理设备,6台B 型污水处理设备;第三种是购买5台A 型污水处理设备,5台B 型污水处理设备. ……………4分(2)当x=3时,购买资金为15×3+12×7=129(万元),当x=4时,购买资金为15×4+12×6=132(万元),当x=5时,购买资金为15×5+12×5=135(万元).因为135>132>129,所以为了节约资金,应购污水处理设备A 型号3台,B 型号7台. (用一次函数y=3x+120增减性说明也可以) ……………7分 答:购买3台A 型污水处理设备,7台B 型污水处理设备更省钱.3163≤≤x24.(7分) 解:(1)甲行走的速度为:305150=÷(米/分). ……………2分(2)补画s 关于t 函数图象如图所示,已画图象另一个端点的坐标(50,0);……………4分(3),,分分5.1255.75.7)3050(150=+=-÷在x 轴上拐点坐标为(12.5,0)当t=12.5和t=50时,s=0;当t=35时,s=450,当355.12≤≤t 时,由待定系数法可求:s=20t-250,令390=s ,即20t-250=390,解得t=32. ……………6分当5035≤<t 时,由待定系数法可求:s=-30t+1500,令390=s ,即-30t+1500=390,解得t=37. ………… …7分(不用一次函数,用其它追及问题解法说明也可以)∴甲行走32分钟或37分钟时,甲、乙两人相距390米.25.(10分)解:(1)∠EBF=30°; ∠QFC=60°; ……………2分(2)∠QFC=60°.……………3分解法1:不妨设BP >AB ,如图1所示.∵∠BAP=∠BAE+∠EAP=60°+∠EAP,∠EAQ=∠QAP+∠EAP=60°+∠EAP,∴∠BAP=∠EAQ . ……………4分在△ABP 和△AEQ 中AB=AE ,∠BAP=∠EAQ,AP=AQ ,∴△ABP≌△AEQ.(SAS )∴∠AEQ=∠ABP=90°.……………6分∴∠BEF=180°-∠AEQ -∠AEB=180°-90°-60°=30°.∴∠QFC=∠EBF+∠BEF=30°+30°=60°. (7)分(事实上当BP≤AB 时,如图2情形,不失一般性结论仍然成立,不分类讨论不扣分)解法2:设AP 交QF 于M ,∠QMP 为△AMQ 和△FMP 共同的外角,∴∠QMP=∠Q+∠PAQ=∠APB+∠QFC,由△ABP≌△AEQ 得∠Q=∠APB,由旋转知∠PAQ=60°,∴∠QFC=∠PAQ=60°.(3)在图1中,过点F 作FG⊥BE 于点G ,过点Q 作QH ⊥BC 于点H ,∵△ABE 是等边三角形,∴BE=AB=34,由(1)得∠EBF=30°,在Rt △BGF 中,3221==BE BG∴FG=2,BF=4,∴EF=BF=4, …………8分∵△ABP ≌△AEQ ,∴QE=PB=x ,∴QF=QE+EF=x+4, …………9分由(2)得∠QFC=60°,∴在Rt △QHF 中,∠FQH=30°)4(2323+===x QF QH y (x >0不写不扣分) …… …10分即y 关于x 的函数关系式是:3223+=x y (x >0).。