线性代数复习题-第三章

合集下载

线性代数第三章习题与答案(东大绝版)

线性代数第三章习题与答案(东大绝版)

第三章 习题与答案 习题 A1.求向量123(4,1,3,2),(1,2,3,2),(16,9,1,3)T T T=--=-=-ααα的线性组合12335.+-ααα 解 12341161293535331223⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-=+- ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ααα1251613109491512561037⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪=+-= ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭. 2.从以下方程中求向量α1233()2()5()-++=+αααααα,其中123(2,5,1,3),(10,1,5,10),(4,1,1,1).TT T ===-ααα 解 由方程得1233322550-++--=αααααα,1232104651112632532515118310124⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=+-=+-= ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭αααα故1234⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭α,即(1,2,3,4)T =α.3.求证:向量组12i s α,α,,α,α 中的任一向量i α可以由这个向量组线性表出. 证 120010(1,2,,)i i s i s =+++++= ααααα4.证明: 包含零向量的向量组线性相关.证 设向量组为1211α,α,,α,0,α,,αi i s -+ ,则有12110α0αα00α0α0,0i i s k k -++++++++=≠而0,0,,0,,0,,0k 不全为0,故向量组线性相关.5.设有m 个向量12α,α,,αm ,证明: 若αα()i j i j =≠,则向量组12α,α,,αm 线性相关. 证 显然有1210α0αα0α()α0α0,0i i j m k k k +++++++-++=≠ , 而0,,0,,0,,0,,0,,0k k - 不全为0.故向量组线性相关.6.判断下列向量组的线性相关性(1) (1,1,0),(0,1,1,),(3,0,0,); (2) (2,0),(0,-1);(3) (-4,-5,2,6),(2,-2,1,3),(6,-3,3,9),(4,-1,5,6);(4) (1,0,0,2,5),(0,1,0,3,4),(0,0,1,4,7),(2,-3,4,11,12).解 (1)设有三个数123,,k k k ,使123(1,1,0)(0,1,1,) (3,0,0,)=(0,0,0)k k k ++则有方程组131223000k k k k k +=⎧⎪+=⎨⎪=⎩,因为系数行列式10311030010D =≠.方程组仅有零解,所以三个向量线性无关. (2)设有两个数12,k k 使12(2,0)(0,-1)=(0,0)k k + 则有方程组12200k k =⎧⎨-=⎩,由此解得120k k ==,所以两个向量线性无关.另外,也可由其分量不成比例看出两个向量线性无关. (3)设有四个数1234,,,k k k k ,使1234(-4,-5,2,6)(2,-2,1,3)(6,-3,3,9)(4,-1,5,6)=(0,0,0,0)k k k k +++,则有方程组1234123412341234426405230235063960k k k k k k k k k k k k k k k k +++=⎧⎪----=⎪⎨+++=⎪⎪+++=⎩,其系数行列式42645231021356396D ----==,所以方程组有非零解,向量组线性相关.(4) 设有四个数1234,,,k k k k ,使1234(1,0,0,2,5)(0,1,0,3,4)(0,0,1,4,7)(2,-3,4,11,12)=(0,0,0,0)k k k k +++则有方程组14243412341234203040234110547120k k k k k k k k k k k k k k +=⎧⎪-=⎪⎪+=⎨⎪+++=⎪⎪+++=⎩由前三个方程得1424342,3,4k k k k k k =-==-,代入第五个方程得4140k -=, 即40k =,从而1230k k k ===,所以向量组线性无关.7.设123α,α,α线性无关,证明:122331αα,αα,αα+++也线性无关. 证 设有三个数123,,k k k ,使()()()112223331αααααα0k k k +++++=, 则()()()131122233ααα0k k k k k k +++++=,因123α,α,α线性无关,故13122300k k k k k k +=⎧⎪+=⎨⎪+=⎩,因系数行列式10111020011D ==≠,所以只有1230k k k ===, 由此知122331αα,αα,αα+++线性无关.8.设12α,α,,αn 线性无关,问向量组122311αα,αα,,αα,ααn n n -++++ 是线性相关,还是线性无关?并给出证明. 解 设有n 个数12,,,,n k k k 使()()()()112223111αααααααα0n n n n n k k k k --++++++++= ,则得方程组1122310000n n n k k k k k k k k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩ 其系数行列式11000011100000110001(1),000110000011n n D +==+-可见,当n 为奇数时,20n D =≠,方程组仅有零解,向量组线性无关, 当n 为偶数时,0n D =,方程组有非零解,向量组线性相关.9.设12α(,,,)(1,2,,)i i i in a a a i n == ,证明:向量组12α,α,,αn 线性相关的充分必要条件是det()0ij a =.证 必要性:设12α,α,,αn 线性相关,则存在不全为0的n 个数12,,,,n k k k 使1122ααα0n n k k k +++= ,即有方程组()11121211212222112200*0n n n nn n nn n a k a k a k a k a k a k a k a k a k +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 该方程组有非零解,故系数行列式0n D =,即det()0ij a =,充分性: 对于方程组(*)当det()0ij a =时,系数行列式0n D =,所以有非零解,即存在不全为0的12,,,,n k k k 使1122ααα0n n k k k +++= 成立,故12α,α,,αn 线性相关.10.设12α,α,,αn 是一组n 维向量.已知n 维标准单位向量组12e ,e ,,e n 能由它们线性表出,证明: 12α,α,,αn 线性无关.证 设12α(,,,)(1,2,,)i i i in a a a i n == ,则有1122αe e e ,i i i in n a a a =+++可见12α,α,,αn 也能由12e ,e ,,e n 线性表出,从而两个向量组等价. 因为12e ,e ,,e n 线性无关,所以12α,α,,αn 也线性无关.11.设12α,α,,αn 是一组n 维向量.证明:它们线性无关的充分必要条件是:任一n 维向量都可由它们线性表出.证 必要性:设12α,α,,αn 线性无关,β为任一n 维向量,则12α,α,,αn ,β必线性相关.(个数大于维数),因此β可由12α,α,,αn 线性表出.充分性:设任一n 维向量β都可由12α,α,,αn 线性表出.因此12α,α,,αn 与12e ,e ,,e n 等价,从而12α,α,,αn 线性无关.12.判断下列向量是否线性相关,并求出一个极大线性无关组.(1)123α(1,2,1,4),α(9,100,10,4),α(2,4,2,8);T T T =-==--- (2) 123α(1,1,0),α(0,2,0),α(0,0,3);T T T ===(3) 1234α(1,2,1,3),α(4,1,5,6),α(1,3,4,7),α(2,1,1,0);T T T T ==---=---=- 解 (1)19221004A 1102448-⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭ 192082001900320-⎛⎫ ⎪ ⎪→ ⎪ ⎪-⎝⎭192010000000-⎛⎫ ⎪ ⎪→ ⎪ ⎪⎝⎭102010000000-⎛⎫⎪ ⎪→⎪ ⎪⎝⎭, 向量组的秩为2, 12α,α为一个极大线性无关组.(2) 100A 120003⎛⎫ ⎪= ⎪ ⎪⎝⎭100020003⎛⎫ ⎪→ ⎪ ⎪⎝⎭向量组的秩为3, 123α,α,α为一个极大线性无关组.(3) 14122131A 15413670⎛⎫ ⎪--⎪= ⎪--- ⎪--⎝⎭141209530953018106⎛⎫ ⎪--- ⎪→ ⎪--- ⎪---⎝⎭1412095300000000⎛⎫ ⎪--- ⎪→ ⎪ ⎪⎝⎭向量组的秩为2, 12α,α为一个极大线性无关组.13.求一个秩是4的方阵,它的两个行向量是(1,0,3,0,0),(1,1,0,0,0)--. 解 所求方阵可写成1030011000A 001000001000000⎛⎫ ⎪-- ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,则1030001300A 00100000100000⎛⎫⎪- ⎪⎪→⎪⎪ ⎪⎝⎭显然(A)4R =.14.已知12α,α,,αs 的秩为r ,证明: 12α,α,,αs 中任意r 个线性无关的向量都构成它的一个极大线性无关组.证 设12α,α,,α,r i i i 为12α,α,,αs 中任意r 个线性无关的向量,因为向量组的秩为r ,故1212α,α,,α,α,(,,)r i i i i r i i i i ≠ 线性相关.可见12α,α,,αs 中的每个向量都可由12α,α,,α,r i i i 线性表出.因此, 12α,α,,α,r i i i 是12α,α,,αs 的一个极大线性无关组.15.用初等变换化下列矩阵为阶梯形,并判断其秩.(1)001010100⎛⎫ ⎪ ⎪ ⎪⎝⎭; (2)1234110215610-⎛⎫ ⎪- ⎪ ⎪⎝⎭;(3)023*********-⎛⎫ ⎪- ⎪ ⎪--⎝⎭;(4)1725314353759413254759413420253248⎛⎫⎪⎪⎪⎪⎝⎭.解 (1) 001010100⎛⎫ ⎪ ⎪ ⎪⎝⎭131********r r ↔⎛⎫ ⎪→ ⎪ ⎪⎝⎭,秩为3.(2) 1234110215610-⎛⎫ ⎪- ⎪ ⎪⎝⎭2131123403360336r r r r+-⎛⎫ ⎪→ ⎪ ⎪⎝⎭32123403360000r r -⎛⎫ ⎪→ ⎪ ⎪⎝⎭,秩为2.(3)023*********-⎛⎫ ⎪- ⎪⎪--⎝⎭12011203430471r r ---⎛⎫⎪→- ⎪ ⎪--⎝⎭213134011200130039r r r r ++--⎛⎫ ⎪→-- ⎪ ⎪--⎝⎭323011*********r r ---⎛⎫⎪→-- ⎪ ⎪⎝⎭, 秩为2.(4)1725314353759413254759413420253248⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭213143317253143201330153015r r r r r r ---⎛⎫ ⎪ ⎪→ ⎪ ⎪⎝⎭433217253143201310020000r r r r --⎛⎫⎪⎪→⎪ ⎪⎝⎭1310022013172531430000r r ↔⎛⎫ ⎪⎪→ ⎪ ⎪⎝⎭2131217100200110253190000r r r r --⎛⎫ ⎪- ⎪→ ⎪ ⎪⎝⎭23100202531900110000r r ↔⎛⎫⎪ ⎪→ ⎪- ⎪⎝⎭,秩为3. 16.证明: 两个矩阵和的秩不超过这两个矩阵秩的和,即 (A B)(A)(B)R R R +≤+.证 设1A (α,,α),(A),n R r == 1α,,αr 为一个极大线性无关组,1B (β,,β),(B),n R s == 1β,,βs 为一个极大线性无关组, 1A B (r ,,r )n += .因为1r ,,r n 可由1α,,αn ,1β,,βn 线性表出,从而也可由1α,,αr ,1β,,βs 线性表出.故()1A B (r ,,r )n R R +=≤ ()11α,,α,β,,βr s R r s =+=(A)(B)R R +.17.设A 与B 可乘,且AB 0=,证明: (A)(B)A R R +≤的列数. 证法一 设A 为m n ⨯矩阵,B 为n l ⨯矩阵 由AB 0=,有11111111n l m mn n nl m n n l a a b b a a b b ⨯⨯⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 0000m l⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭ 比较等式两边对应元素,有111111111100n n m mn n a b a b a b a b ++=⎧⎪⎨⎪++=⎩,11121211220,0n n m mn n a b a b a b a b ++=⎧⎪⎨⎪++=⎩ ,11111100l n nl m lmn nl a b a b a b a b ++=⎧⎪⎨⎪++=⎩ . 可见B 的列向量组为上述l 个齐次线性方程组的解向量,因此有 (B)(A)R n R ≤-, 移项得(A)(B)R R n +≤(A 的列数).证法二 设A 为m n ⨯矩阵,B 为n l ⨯矩阵, 12(A),(B)R r R r ==,因为1(A)R r =,则A 的标准形可写成1E 000r ⎛⎫⎪⎝⎭,即存在可逆阵P,Q 使得 PAQ 1E 000r ⎛⎫=⎪⎝⎭.又设()111B Q B B r m n r m ⨯--⨯⎛⎫= ⎪ ⎪⎝⎭, 则10(AB)(PAB)(PAQQ B)R R R -===,但()111111B E 0B PAQQ B Q B B 000r m r r m n r m ⨯⨯---⨯⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 可见11(B )(PAQQ B)0r m R R -⨯==,又因为12(Q B)(B)R R r -==,所以()12(B )n r m R r -⨯=,而()1B n r m -⨯共1n r -行,因此12n r r -≥,即12r r n +≤或(A)(B)R R n +≤.习题 B1.证明: 12α,α,,αs (其中1α0≠)线性相关的充要条件是至少有一个α(1)i i s <≤可被121α,α,,αi - 线性表出.证 必要性:设12α,α,,αs 线性相关(1α0≠),则存在不全为0的s 个数12,,,s k k k 使1122ααα0s s k k k +++= ,设i k 是12,,,s k k k 中最后一个不为零的数,即0i k ≠,而10i s k k +=== ,则1122ααα0i i k k k +++= ,因为1α0≠,所以1i >,即1i s <≤,(否则120,0s k k k ≠=== 则1α0k =不能成立),于是1111αααi i i i ik k k k --=--- ,即αi 可由121α,α,,αi - 线性表出.充分性:如果1111αααi i i k k --=++ ,则11111ααα0αα0i i i i s k k --+++-+++= ,而11,,,1,0,,0i k k -- 不全为0,所以12α,α,,αs 线性相关.2.证明:一个向量组的任一线性无关组都可扩充为一个极大线性无关组. 证 设有向量组12α,α,,αn 秩为s ,12α,α,,αr i i i 是它的任意一个线性无关组,如果r s =,则它就是12α,α,,αn 的一个极大线性无关组.如果r s <,则12α,α,,αn 的其余向量中一定可以选出向量1αr i +,使12α,α,,αr i i i ,1αr i +线性无关(否则与12α,α,,αn 秩s r >矛盾),只要1r s +<,重复上述过程,直到r i s +=时为止.这样121α,α,,α,α,,αr r s i i i i i + 就是由12α,α,,αr i i i 扩充成的一个极大线性无关组.3.已知两向量组有相同的秩,且其中之一可被另一个线性表出,证明:这两个向量组等价. 证 设12A :α,α,,α;s 12B:β,β,,βt 为两个秩为r 的向量组, 1212α,α,,α;β,β,,βr r 分别为A,B 极大线性无关组,设B 可由A 线性表出,则有()()1212β,β,,βα,α,,αTr r K = ,其中K 为组合系数构成的r 阶方阵,因为1212α,α,,α;β,β,,βr r 线性无关,所以K 可逆,()()11212α,α,,αβ,β,,βr r K -= ,从而12α,α,,αr 可由12β,β,,βr 线性表出,从而可由12β,β,,βt 线性表出,又12α,α,,αs 可由12α,α,,αr 线性表出,所以12α,α,,αs 可由12β,β,,βt 线性表出,即A 可由B 线性表出,因此向量组A ,B 等价.4.设向量组12α,α,,αs 的秩为r ,在其中任取m 个向量12α,α,,αm i i i ,证明:{}12α,α,,αm i i i R r m s ≥+- .证 设12α,α,,αm i i i 的秩为t ,从它的一个极大线性无关组(含t 个向量)可扩充为12α,α,,αs 的一个极大线性无关组(含r 个向量),所扩充向量的个数为r t -个.但12α,α,,αs 中除了12α,α,,αm i i i 外,还有s m -个向量,故r t s m -≤-,即t r m s ≥+-.5.设n m ⨯阶矩阵A 的秩为r ,证明:存在秩为r 的n r ⨯阶矩阵P 及秩为r 的r m ⨯阶矩阵Q ,使A PQ =.证 因(A)R r =,故可经有限次初等行变换和初等列变换化为标准形,即存在m 阶可逆阵F 和n 阶可逆阵G ,使得 E 0GAF 00r ⎛⎫=⎪⎝⎭,即11E 0A GF ,00r--⎛⎫= ⎪⎝⎭记111212122G G G ,G G -⎛⎫= ⎪⎝⎭111212122F F F F F -⎛⎫= ⎪⎝⎭,其中1111G ,F 均为r 阶方阵,则111211121121222122G G F F E0E 0A G F GG F F 0000rr--⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111112212122G 0F F G 0F F ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭=1111111221212122G F G F G F G F ⎛⎫ ⎪⎝⎭()11112121G F F G ⎛⎫= ⎪⎝⎭, 记1121G P G ⎛⎫=⎪⎝⎭,则P 为n r ⨯矩阵且(P )R r =(因1G -可逆,故其前r 列线性无关), ()1121Q F F =,则Q 为r m ⨯矩阵且(Q)R r =(因1F -可逆,故其前r 列线性无关),而A PQ =.。

线性代数第3章_线性方程组习题解答

线性代数第3章_线性方程组习题解答

习题33-1.求下列齐次线性方程组的通解:(1)⎪⎩⎪⎨⎧=--=--=+-087305302z y x z y x z y x .解 对系数矩阵施行行初等变换,得⎪⎪⎪⎭⎫ ⎝⎛-----−→−⎪⎪⎪⎭⎫ ⎝⎛-----=1440720211873153211A)(000720211阶梯形矩阵B =⎪⎪⎪⎭⎫ ⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛-−→−0002720211)(000271021101行最简形矩阵C =⎪⎪⎪⎪⎭⎫ ⎝⎛−→−, 与原方程组同解的齐次线性方程组为⎪⎪⎩⎪⎪⎨⎧=+=+0270211z y z x , 即⎪⎪⎩⎪⎪⎨⎧-=-=z y z x 27211(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系T)1,27,211(--=ξ, 所以,方程组的通解为,)1,27,211(Tk k --=ξk 为任意常数. (2)⎪⎩⎪⎨⎧=+++=+++=++++086530543207224321432154321x x x x x x x x x x x x x .解 对系数矩阵施行行初等变换,得⎪⎪⎪⎭⎫ ⎝⎛--−→−⎪⎪⎪⎭⎫ ⎝⎛=21202014101072211086530543272211A)(7000014101072211阶梯形矩阵B =⎪⎪⎪⎭⎫ ⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛-−→−70000141010211201)(100000101001201行最简形矩阵C =⎪⎪⎪⎭⎫ ⎝⎛−→−,与原方程组同解的齐次线性方程组为⎪⎩⎪⎨⎧==+=++0002542431x x x x x x , 即⎪⎩⎪⎨⎧=-=--=02542431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T,得到方程组的一个基础解系T)0,0,1,0,2(1-=ξ,T)0,1,0,1,1(2--=ξ,所以,方程组的通解为=+2211ξξk k T T k k )0,1,0,1,1()0,0,1,0,2(21--+-,21,k k 为任意常数.(3)⎪⎪⎩⎪⎪⎨⎧=-+-+=-++-=-+-=--+0742420436240203543215432143215421x x x x x x x x x x x x x x x x x x .解 对系数矩阵施行行初等变换,得11031112104263424247A --⎛⎫ ⎪--⎪= ⎪-- ⎪ ⎪--⎝⎭11031022210003100000--⎛⎫⎪- ⎪−−→⎪- ⎪⎪⎝⎭)(阶梯形矩阵B =)(0000031100065011067011行最简形矩阵C =⎪⎪⎪⎪⎪⎭⎫⎝⎛----−→−,与原方程组同解的齐次线性方程组为⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=-+03106506754532531x x x x x x x x , 即⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+-=54532531316567x x x x x x x x (其中53,x x 是自由未知量), 令=T x x ),(53(1,0)T ,(0,1)T,得到方程组的一个基础解系T )0,0,1,1,1(1-=ξ,T )1,31,0,65,67(2=ξ,所以,方程组的通解为=+2211ξξk k T T k k )1,31,0,65,67()0,0,1,1,1(21+-,21,k k 为任意常数.3-2.当λ取何值时,方程组⎪⎩⎪⎨⎧=-+=+-=++z z y x y z y x x z y x λλλ6774334 有非零解?解 原方程组等价于⎪⎩⎪⎨⎧=+-+=++-=++-0)6(707)4(303)4(z y x z y x z y x λλλ, 上述齐次线性方程组有非零解的充分必要条件是它的系数行列式0671743134=-----λλλ,即0)756(2=-+λλλ,从而当0=λ和2123±-=λ时方程组有非零解.3-3.求解下列非齐次线性方程组:(1)⎪⎩⎪⎨⎧=++--=-+-=++-5521212432143214321x x x x x x x x x x x x .解 对增广矩阵A 施行行初等变换⎪⎪⎪⎭⎫ ⎝⎛-----=551211112111121A ⎪⎪⎪⎭⎫ ⎝⎛-−→−000001100011121B =,因为()()r A r A =,所以方程组有解,继续施行行初等变换B ⎪⎪⎪⎭⎫⎝⎛-−→−000001100000121C =, 与原方程组同解的齐次线性方程组为⎩⎨⎧==+-124321x x x x , 即⎩⎨⎧=-=124321x x x x (其中32,x x 为自由未知量), 令TT x x )0,0(),(32=,得到非齐次方程组的一个解T )1,0,0,0(0=η,对应的齐次方程组(即导出方程组)为⎩⎨⎧=-=024321x x x x (其中32,x x 为自由未知量), 令T x x ),(32(1,0)T =,(0,1)T,得到对应齐次方程组的一个基础解系T )0,0,1,2(1=ξ,T )0,1,0,1(2-=ξ,方程组的通解为0112212(0,0,0,1)(2,1,0,0)(1,0,1,0)T T T k k k k ηηξξ=++=++-,其中21,k k 为任意常数.(2)⎪⎪⎩⎪⎪⎨⎧=+--=+--=+--=-+-810957245332231324321432143214321x x x x x x x x x x x x x x x x .解 对增广矩阵A 施行行初等变换⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=810957245113322311312A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----−→−000000000039131024511B =, 因为()()r A r A =,所以方程组有解,继续施行行初等变换B ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----−→−000000000039131015801C =, 与原方程组同解的齐次线性方程组为⎩⎨⎧-=-+-=-+3913158432431x x x x x x , 即⎩⎨⎧+--=+--=4324319133581x x x x x x (其中43,x x 为自由未知量), 令34(,)(0,0)T Tx x =,得到非齐次方程组的一个解T )0,0,3,1(0--=η,对应的齐次方程组(即导出方程组)为⎩⎨⎧+-=+-=43243191358x x x x x x (其中43,x x 为自由未知量),令34(,)T x x =(1,0)T ,(0,1)T,得到对应齐次方程组的一个基础解系T )0,1,13,8(1--=ξ,T )1,0,9,5(2-=ξ,方程组的通解为0112212(1,3,0,0)(8,13,1,0)(5,9,0,1)T T T k k k k ηηξξ=++=--+--+-,其中21,k k 为任意常数.(3)⎪⎪⎩⎪⎪⎨⎧=++=-+=-+-=-+10013212213321321321321x x x x x x x x x x x x .解 对增广矩阵A 施行行初等变换⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---−→−⎪⎪⎪⎪⎪⎭⎫⎝⎛----=101400201034101311100111132112121311A ⎪⎪⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎪⎪⎭⎫⎝⎛----−→−96000540034101311101400540034101311,因为3)(4)(=≠=A r A r ,所以方程组无解.3-4.讨论下述线性方程组中,λ取何值时有解、无解、有惟一解?并在有解时求出其解.⎪⎩⎪⎨⎧=++++=+-+=+++3)3()1(3)1(2)3(321321321x x x x x x x x x λλλλλλλλ. 解 方程组的系数行列式为231211(1)3(1)3A λλλλλλλλ+=-=-++.(1)当0A ≠时,即01λλ≠≠且时,方程组有惟一解. (2)当0A =时,即01λλ=或=时, (i) 当0λ=时,原方程组为12323133200333x x x x x x x ++=⎧⎪-+=⎨⎪+=⎩, 显然无解.(ii) 当1λ=时,原方程组为⎪⎩⎪⎨⎧=++=+=++346112432131321x x x x x x x x , 对该方程组的增广矩阵A 施行行初等变换412110111011012361430000A ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为()()23r A r A ==<,所以方程组有无穷多组解, 与原方程组同解的方程组为1323123x x x x +=⎧⎨-=-⎩, 即1323132x x x x =-⎧⎨=-+⎩(其中3x 为自由未知量), 令30x =,得到非齐次方程组的一个解0(1,3,0)T η=-,对应的齐次方程组(即导出方程组)为13232x x x x =-⎧⎨=⎩(其中3x 为自由未知量), 令31x =,得到对应齐次方程组的一个基础解系(1,2,1)T ξ=-,方程组的通解为0(1,3,0)(1,2,1)T T k k ηηξ=+=-+-,其中k 为任意常数.3-5.写出一个以1222341001x c c -⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为通解的齐次线性方程组.解 由已知,1(2,3,1,0)Tξ=-和2(2,4,0,1)T ξ=-是齐次线性方程组AX O =的基础解系,即齐次线性方程组AX O =的基础解系所含解向量的个数为2,而未知数的个数为4,所以齐次线性方程组AX O =的系数矩阵A 的秩为422-=,故可设系数矩阵1112131421222324a a a a A a a a a ⎛⎫=⎪⎝⎭, 由AX O =可知()111121314,,,a a a a α=和()221222324,,,a a a a α=满足方程组()12342234,,,1001x x x x O -⎛⎫ ⎪-⎪= ⎪ ⎪⎝⎭, 即方程组123124230240x x x x x x -+=⎧⎨-++=⎩的线性无关的两个解即为12,αα,方程组的系数矩阵2310204324010111-⎛⎫⎛⎫→ ⎪ ⎪-⎝⎭⎝⎭,该方程组等价于134234243x x x x x x =--⎧⎨=--⎩(其中43,x x 为自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T,得到该齐次方程组的一个基础解系1(2,1,1,0)T α=--,23(,1,0,1)2T ξ=--,故要求的齐次线性方程组为AX O =,其中211031012A --⎛⎫⎪= ⎪--⎝⎭,即12312420302x x x x x x --+=⎧⎪⎨--+=⎪⎩. 3-6.设线性方程组⎪⎩⎪⎨⎧=+++=++0022111212111n mn m m n n x a x a x a x a x a x a, 的解都是02211=+++n n x b x b x b 的解,试证Tn b b b ),,,(21 =β是向量组T n a a a ),,,(112111 =α,T n a a a ),,,(222212 =α, ,),,,(21mn m m m a a a =α的线性组合.证 把该线性方程组记为(*),由已知,方程组(*)的解都是02211=+++n n x b x b x b 的解,所以方程组(*)与方程组111122111221122000n n m m mn n n n a x a x a x a x a x a x b x b x b x ++=⎧⎪⎪⎨+++=⎪⎪+++=⎩, 同解,从而有相同的基础解系,于是二者有相同的秩,则它们系数矩阵的行向量组12,,,m ααα和12,,,,m αααβ的秩相同,故β可由12,,,m ααα线性表示.3-7.试证明:()()r AB r B =的充分必要条件是齐次线性方程组O ABX =的解都是O BX =的解.证 必要性.因为()()r AB r B =,只须证O ABX =与O BX =的基础解系相同.O ABX =与O BX =的基础解系都含有()n r B -个线性无关的解向量.又因为O BX =的解都是O ABX =得解.所以O BX =的基础解系也是O ABX =的基础解系.即O ABX =与O BX =有完全相同的解.所以O ABX =的解都是O BX =的解.充分性.因O ABX =的解都是O BX =的解,而O BX =的解都是ABX O =的解,故O ABX =与O BX =有完全相同的解,则基础解系也完全相同,故()()n r AB n r B -=-,所以()()r AB r B =.3-8.证明()1r A =的充分必要条件是存在非零列向量a 及非零行向量Tb ,使T A ab =.证 充分性.若存在列向量12m a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭及行向量()12T n b b b b =,其中,i j a b 不全为零1,,i m =,1,,j n =,则有()1111212212221212n n T n m m m m n a a b a b a b aa b a b a b A ab b b b a a b a b a b ⎛⎫⎛⎫⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪⎝⎭⎝⎭, 显然矩阵A 的各行元素对应成比例,所以()1r A =.必要性.若()1r A =,则A 经过一系列的初等变换可化为标准形100000000D ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 而矩阵D 可以表示为()100100001,0,,0000D ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则存在可逆矩阵P ,Q 使得1P AQ D -=,从而()11101,0,,00A PDQ P Q --⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,其中1,P Q -均可逆,记100a P ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, ()11,0,,0T b Q -=,又因为P 可逆,则P 至少有一行元素不全为零,故列向量a 的分量不全为零,同理,因为1Q -可逆,所以行向量Tb 的分量不全为零.因此,存在非零列向量a 及非零行向量Tb ,使TA ab =.补充题B3-1.设A 是m n ⨯矩阵,AX O =是非其次线性方程组AX b =所对应齐次线性方程组,则下列结论正确的是( D ).(A ) 若AX O =仅有零解,则AX B =有惟一解; (B ) 若AX O =有非零解,则AX B =有无穷多个解; (C ) 若AX B =有无穷多个解,则AX O =仅有零解;(D ) 若AX B =有无穷多个解,则AX O =有非零解.B3-2.设A 为n 阶实矩阵,T A 是A 的转置矩阵,则对于线性方程组 (ⅰ)AX O =; (ⅱ)TA AX O =,必有( D ). (A )(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解; (B )(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解; (C )(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解; (D)(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解.B3-3.设线性方程组AX B =有n 个未知量,m 个方程组,且()r A r =,则此方程组( A ).(A)r m =时,有解; (B)r n =时,有惟一解;(C)m n =时,有惟一解; (D)r n <时,有无穷多解.B3-4.讨论λ取何值时,下述方程组有解,并求解:⎪⎩⎪⎨⎧=++=++=++21λλλλλz y x z y x z y x . 解 (法一)方程组的系数行列式21111(1)(2)11A λλλλλ==-+,(1)当0A ≠时,即12λλ≠≠-且时,方程组有惟一解211(1),,222x y z λλλλλ++=-==+++.(2)当0A =时,即12λλ-=或=时 (i) 当λ=1时,原方程组为1x y z ++=,因为()()1r A r A ==,所以方程组有无穷多组解,其通解为0112212(1,0,0)(1,1,0)(1,0,1)T T T k k k k ηηξξ=++=+-+-,其中21,k k 为任意常数. (ii) 当λ=-2时,原方程组为212224x y z x y z x y z -++=⎧⎪-+=-⎨⎪+-=⎩, 对该方程组的增广矩阵A 施行行初等变换2111112412120112112400015A --⎛⎫⎛⎫ ⎪ ⎪=--→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,因为()2()3r A r A =≠=,所以方程组无解.解 (法二)对该方程组的增广矩阵A 施行行初等变换2211111111111111A λλλλλλλλλλ⎛⎫⎛⎫ ⎪⎪=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭2223110110111λλλλλλλλλ⎛⎫⎪→--- ⎪ ⎪---⎝⎭22223110110021λλλλλλλλλλλ⎛⎫ ⎪→--- ⎪⎪--+--⎝⎭2221101100(1)(2)(1)(1)B λλλλλλλλλλ⎛⎫ ⎪→---= ⎪ ⎪-+-+⎝⎭,(1)当12λλ≠≠-且时, ()()3r A r A ==,方程组有惟一解211(1),,222x y z λλλλλ++=-==+++.(2) 当λ=1时, ()()1r A r A ==,方程组有无穷多组解,其通解为0112212(1,0,0)(1,1,0)(1,0,1)T T T k k k k ηηξξ=++=+-+-,其中21,k k 为任意常数.(3) 当λ=-2时,由B 知,()2()3r A r A =≠=,所以方程组无解.B3-5.若321,,ηηη是某齐次线性方程组的一个基础解系,证明:122331,,ηηηηηη+++也是该方程组的一个基础解系.证 设有三个数123,,k k k 使得112223331()()()0k k k ηηηηηη+++++=,则有131122233()()()0k k k k k k ηηη+++++=,因为321,,ηηη是某齐次线性方程组的一个基础解系,所以321,,ηηη线性无关,故131223000k k k k k k +=⎧⎪+=⎨⎪+=⎩, 该方程组的系数行列式10111020011=≠, 所以该方程组只有零解.即1230k k k ===.即122331,,ηηηηηη+++线性无关. 又由齐次线性方程组的性质知122331,,ηηηηηη+++都是方程组的解.所以122331,,ηηηηηη+++构成方程组的一个基础解系.B3-6.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ξξξ是它的三个解向量,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321ξ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+432132ξξ,求该方程组的通解.解 因为4,3n r ==,故原方程组的导出组的基础解系含有1n r -=个解向量,所以只须找出其导出组的一个非零解向量即可. 由解的性质知,1213,ξξξξ--均为导出组的解,所以1213123()()2()ξξξξξξξ-+-=-+为导出组的解,即123342()56ηξξξ⎛⎫⎪ ⎪=-+= ⎪ ⎪⎝⎭,为导出组的解.故原方程组的通解为123344556k k ξξη⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,k 为任意常数.B3-7. 设*ξ是非齐次线性方程组B AX =的一个解,r n -ηηη,,,21 是它对应的齐次线性方程组的一个基础解系,证明:(1),*ξr n -ηηη,,,21 线性无关;(2)r n -+++ηξηξηξξ*2*1**,,,, 线性无关.证 (1)反证法.设,*ξr n -ηηη,,,21 线性相关,由r n -ηηη,,,21 是对应的齐次线性方程组的一个基础解系知r n -ηηη,,,21 线性无关,故*ξ可由r n -ηηη,,,21 线性表示,即*ξ是对应的齐次线性方程组的解,与题设矛盾.故,*ξr n -ηηη,,,21 线性无关.(2)反证法.设r n -+++ηξηξηξξ*2*1**,,,, 线性相关,则存在不全为零的数012,,,,n r k k k k -,使得****01122()()()0n r n r k k k k ξξηξηξη--+++++++=,即*0121122()0n r n r n r k k k k k k k ξηηη---++++++++=,由(1)知,,*ξr n -ηηη,,,21 线性无关,则0120n r k k k k -++++=,10k =,20k =,...,0n r k -=,从而00k =,这与012,,,,n r k k k k -不全为零矛盾,故r n -+++ηξηξηξξ*2*1**,,,, 线性无关.B3-8.设线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a22112222212*********, 的系数矩阵的秩等于矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛02121222221111211nn nn n n n n b b b b a a a b a a a b a a a 的秩,试证这个方程组有解.证 令111212122212n n n n nn a a a aa a A a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 11121121222212n n n n nn n a a a b a a a b A a a a b ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 11121121222212120n n n n nn n na a ab a a a b B a a a b b b b ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭, 因为A 比A 多一列,B 比A 多一行,故()()()r A r A r B ≤≤,而由题设()()r A r B =,所以()()r A r A =,所以原方程组有解.B-9.设A 是n 阶方阵,*A 是A 的伴随矩阵,证明:⎪⎩⎪⎨⎧-<-===*1,01,1,n r n r nr n r A A A A 当当当. 证 若A r n =,因为0A ≠,而**AA A A A E ==,1*0n A A-=≠,故A r n *=.若1A r n =-,因为0A =,所以*AA A E O ==,又因为A AA A r r r n **≥+-,而0AA r *=,所以1A r *≤;又因为1A r n =-,所以至少有一个代数余子式0ij A ≠,从而1A r *≥,故1A r *=.若1A r n <-,则A 的任一个代数余子式0ij A =,故*0A =,所以0A r *=.B3-10.设A 是m n ⨯阶方阵,证明:AX AY =,且A r n =,则X Y =. 证 因为AX AY =,所以()A X Y O -=,又因为A r n =,所以方程组()A X Y O -=只有零解,即X Y O -=,所以X Y =.。

线性代数第三章习题及答案

线性代数第三章习题及答案

习 题 3-11.设)1,0,2(-=α,)4,2,1(-=β,求32-αβ.解:)11,4,8()8,4,2()3,0,6()4,2,1(2)1,0,2(323--=---=---=-βα 2.设)4,3,2,1(=α,)3,4,1,2(=β,且324+=αγβ,求γ. 解:由324+=αγβ得αβγ232-= 所以)0,27,1,25()6,29,3,23()6,8,2,4()4,3,2,1(23)3,4,1,2(2-=-=-=γ。

3.试问下列向量β能否由其余向量线性表示,若能,写出线性表示式:(1))1,2(-=β,)1,1(1=α,)4,2(2-=α;(2))1,1(-=β,)1,1(1=α,)1,0(2=α,)0,1(3=α; (3))1,1,1(=β,)1,1,0(1-=α,)2,0,1(2=α,)0,1,1(3=α;(4))1,2,1(-=β,)2,0,1(1=α,)0,8,2(2-=α,0α(5)),,,(4321k k k k =β,)0,0,0,1(1=e ,)0,0,1,0(2=e ,)0,1,0,0(3=e ,)1,0,0,0(4=e . 解:(1)设2211ααβx x +=,即)4,2()4,2()1,1()1,2(212121x x x x x x -+=-+=-从而⎩⎨⎧-=-=+14222121x x x x ,解得⎪⎩⎪⎨⎧==21121x x所以β能由21,αα线性表示,表示式为2121ααβ+=。

(2)设332211αααβx x x ++=,即),()0,1()1,0()1,1()1,1(2131321x x x x x x x ++=++=-从而⎩⎨⎧-=+=+112131x x x x ,有无穷解⎪⎩⎪⎨⎧-=--==cx c x cx 11321所以β能由321,,ααα线性表示,表示式不唯一,为321)1()1(αααβc c c -+--+= (c 为任意常数)(3)设332211αααβx x x ++=即)2,,()0,1,1()2,0,1()1,1,0()1,1,1(213132321x x x x x x x x x +-++=++-=从而⎪⎩⎪⎨⎧=+-=+=+1211213132x x x x x x ,因为010********≠=-,所以有唯一解,解为⎪⎩⎪⎨⎧===011321x x x所以β能由321,,ααα线性表示,且表示式为3210αααβ⋅++=(4)设2211ααβx x +=,即)2,8,2()0,8,2()2,0,1()1,2,1(222121x x x x x x -+=-+=-从而⎪⎩⎪⎨⎧-==-=+1228121221x x x x ,由②,③式得211-=x ,412-=x 代入①式11)41(221≠-=-⋅+-所以该方程组无解, 即β不能由21,αα线性表示。

线性代数复习题带参考答案(一)

线性代数复习题带参考答案(一)

线性代数考试题库及答案第三章 向量一、单项选择题1. 321,,ααα, 21,ββ都是四维列向量,且四阶行列式m =1321βααα,n =2321ααβα,则行列式)(21321=+ββαααn m a +)( n m b -)( n m c +-)( n m d --)(2. 设A 为n 阶方阵,且0=A ,则( )。

成比例中两行(列)对应元素A a )( 线性组合中任意一行为其它行的A )b ( 零中至少有一行元素全为A c )( 线性组合中必有一行为其它行的A )d (3. 设A 为n 阶方阵,n r A r <=)(,则在A 的n 个行向量中( )。

个行向量线性无关必有r a )( 个行向量线性无关任意r )b (性无关组个行向量都构成极大线任意r c )(个行向量线性表示其它任意一个行向量都能被r )d (4. n 阶方阵A 可逆的充分必要条件是( )n r A r a <=)()(n A b 的列秩为)(零向量的每一个行向量都是非)(A c 的伴随矩阵存在)(A d5. n 维向量组s ααα,,,21 线性无关的充分条件是( ))(a s ααα,,,21 都不是零向量)(b s ααα,,,21 中任一向量均不能由其它向量线性表示 )(c s ααα,,,21 中任意两个向量都不成比例 )(d s ααα,,,21 中有一个部分组线性无关6. n 维向量组)2(,,,21≥s s ααα 线性相关的充要条件是( ))(a s ααα,,,21 中至少有一个零向量 s b ααα,,,)(21 中至少有两个向量成比例 s c ααα,,,)(21 中任意两个向量不成比例s d ααα,,,)(21 中至少有一向量可由其它向量线性表示7. n 维向量组)3(,,,21n s s ≤≤ααα 线性无关的充要条件是( )s k k k a ,,,)(21 存在一组不全为零的数使得02211≠++s s k k k ααα s b ααα,,,)(21 中任意两个向量都线性无关s c ααα,,,)(21 中存在一个向量,它不能被其余向量线性表示 s d ααα,,,)(21 中任一部分组线性无关8. 设向量组s ααα,,,21 的秩为r ,则( )s a ααα,,,)(21 中至少有一个由r 个向量组成的部分组线性无关 s b ααα,,,)(21 中存在由1+r 个向量组成的部分组线性无关 s c ααα,,,)(21 中由r 个向量组成的部分组都线性无关 s d ααα,,,)(21 中个数小于r 的任意部分组都线性无关9. 设s ααα,,,21 均为n 维向量,那么下列结论正确的是( ))(a 若02211=++s s k k k ααα ,则s ααα,,,21 线性相关 )(b 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠++s s k k k ααα ,则s ααα,,,21 线性无关)(c 若s ααα,,,21 线性相关,则对任意不全为零的数s k k k ,,,21 ,都有02211=++s s k k k ααα)(d 若000021=++s ααα ,则s ααα,,,21 线性无关10. 已知向量组4321,,,αααα线性无关,则向量组( )14433221,,,)(αααααααα++++a 线性无关 14433221,,,)(αααααααα----b 线性无关 14433221,,,)(αααααααα-+++c 线性无关 14433221,,,)(αααααααα--++d 线性无关11. 若向量β可被向量组s ααα,,,21 线性表示,则( ))(a 存在一组不全为零的数s k k k ,,,21 使得s s k k k αααβ ++=2211 )(b 存在一组全为零的数s k k k ,,,21 使得s s k k k αααβ ++=2211 )(c 存在一组数s k k k ,,,21 使得s s k k k αααβ ++=2211 )(d 对β的表达式唯一12. 下列说法正确的是( ))(a 若有不全为零的数s k k k ,,,21 ,使得02211=++s s k k k ααα ,则s ααα,,,21 线性无关)(b 若有不全为零的数s k k k ,,,21 ,使得02211≠++s s k k k ααα ,则s ααα,,,21 线性无关)(c 若s ααα,,,21 线性相关,则其中每个向量均可由其余向量线性表示 )(d 任何1+n 个n 维向量必线性相关13. 设β是向量组T )0,0,1(1=α,T )0,1,0(2=α的线性组合,则β=( )T a )0,3,0)(( T b )1,0,2)(( T c )1,0,0)(( T d )1,2,0)((14. 设有向量组()T4,2,1,11-=α,()T2,1,3,02=α,()T 14,7,0,33=α,()T0,2,2,14-=α,()T 10,5,1,25=α,则该向量组的极大线性无关组为( )321,,)(αααa 421,,)(αααb 521,,)(αααc 5421,,,)(ααααd15. 设T a a a ),,(321=α,T b b b ),,(321=β,T a a ),(211=α,T b b ),(211=β,下列正确的是( );,,)(11也线性相关线性相关,则若βαβαa 也线性无关;线性无关,则若11,,)(βαβαb 也线性相关;线性相关,则若βαβα,,)(11c 以上都不对)(d二、填空题1. 若T )1,1,1(1=α,T )3,2,1(2=α,T t ),3,1(3=α线性相关,则t=▁▁▁▁。

线性代数复习题3

线性代数复习题3

第三章 向量【基本要求】1.理解n 维向量的概念。

2.理解向量组线性相关与线性无关的定义,并了解有关的重要结论。

3.理解向量组的极大线性无关组与向量组的秩的概念.4.知道矩阵的秩与向量组的秩的关系。

5.知道n 维向量空间、基、维数、坐标、基变换与坐标变换、过渡矩阵等概念。

6.掌握线性无关的向量组正交单位化的方法。

了解正交矩阵的概念与性质。

【主要内容】一、n 维向量的概念与运算:),,,(,),,(2121n n b b b a a a ==βα由加法及数乘运算可引出线性组合、线性相关等概念,由内积可引出单位化、正交化等问题。

二、极大线性无关组与等价:① 等价是向量组之间的一种关系,具有传递性、对称性及反身性; ② 任一向量组和它的极大无关组等价。

③ 同一向量组的任意两个极大无关组等价。

④ 两个等价的线性无关的向量组所含向量的个数相同。

⑤ 向量组s ααα,,,21 的任意两个极大无关组所含向量的个数相同。

三、极大线性无关组与等价:① n 个n 维向量线性相关⇔以这n 个n 维向量以行或列构成的n 阶行列式等于零;1+n 个n 维向量一定线性相关。

②s ααα,,,21 线性无关⇔向量方程0x x x s s 2211=α++α+α 只有零解⇔向量组的秩s r s =),,,(21ααα ⇔每一个向量i a 都不能用其余1-s 个向量线性表出。

③ 设A 为n 阶矩阵,则⇔≠0A A 的行(列)向量线性无关n )A (R =⇔,⇔=0A A 的行(列)向量相关.四、向量组线性相关性的一系列结论:① 如果向量组(Ⅰ)可由向量组(Ⅱ)线性表出,则r(Ⅰ)≤r(Ⅱ);特别的,等价的向量 组有相同的秩。

② 秩相同的向量组不一定等价。

如)2,0(),1,0()0,2(),1,0(2121====ββαα与有相同的秩,但是这两个向量组并不等价。

但如果)I (可以由)II (线性表示,且)II (R )I (R =,则)I (与)II (等价。

线性代数第三章课后习题

线性代数第三章课后习题

习题三(A )1. 用矩阵的初等变换把下列矩阵A 化为行阶梯形矩阵、行最简形矩阵及标准形矩阵:(1) 112332141022-⎛⎫ ⎪= ⎪ ⎪⎝⎭(2)1111131320461135-⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭(3)24512122111212136363--⎛⎫⎪-- ⎪=⎪-- ⎪---⎝⎭2.设A 123012425⎛⎫⎪=- ⎪ ⎪⎝⎭,010(1,2)100001⎛⎫⎪= ⎪ ⎪⎝⎭E ,100(3,2(5))010051⎛⎫ ⎪= ⎪ ⎪⎝⎭E .试求(1,2)E A ;(1,2)AE ;(3,2(5))E A .3.用初等变换求下列方阵的逆矩阵:(1) A 101110012⎛⎫ ⎪=- ⎪ ⎪⎝⎭ (2)A 211124347--⎛⎫ ⎪=- ⎪ ⎪-⎝⎭(3)A1111022200330004⎛⎫⎪⎪= ⎪ ⎪⎝⎭4.用初等变换解下列矩阵方程:(1) 设A 101110120⎛⎫ ⎪= ⎪ ⎪⎝⎭,102102-⎛⎫⎪= ⎪ ⎪⎝⎭B ,且AX =B ,求X .(2)设A 220213010⎛⎫⎪= ⎪ ⎪⎝⎭,且+AX =A X ,求X .5.设矩阵A 122324111222-⎛⎫⎪=-- ⎪ ⎪-⎝⎭,计算A 的全部三阶子式,并求()R A .6.在秩为r 的矩阵中,有没有等于0的1r -阶子式?有没有等于0的r 阶子式?请举例说明.7.从矩阵A 中划掉一行得到矩阵B ,问A ,B 的秩的大小关系怎样? 请举例说明.8.求下列矩阵A 的秩:(1) 310211311344⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭(2)1121224230610304-⎛⎫ ⎪- ⎪=⎪- ⎪-⎝⎭(3)12211248022423336064--⎛⎫⎪-⎪= ⎪-- ⎪--⎝⎭(4) 112205123λλλ-⎛⎫ ⎪= ⎪ ⎪-⎝⎭ (5)111111λλλ⎛⎫⎪= ⎪ ⎪⎝⎭9. 设有矩阵A101110112111022264μμ-⎛⎫⎪⎪=⎪⎪⎝⎭,若()3R=A,求μ的值.10.判断下列命题是否正确.(1) 如果线性方程组AX=0只有零解,那么线性方程组AX=B有唯一解;(2) 如果线性方程组AX=B有唯一解,那么线性方程组AX=0只有零解.11. 解下列齐次线性方程组:(1)12312312325502303570x x xx x xx x x+-=⎧⎪+-=⎨⎪+-=⎩(2)1234123412342202220430x x x xx x x xx x x x+++=⎧⎪+--=⎨⎪---=⎩(3)31243124312431242530420476023950xx x xxx x xxx x xxx x x-+-=⎧⎪-+-=⎪⎨-+-+=⎪⎪-+-=⎩(4)3124312412431242350240347045530xx x xxx x xx x xxx x x-+-+=⎧⎪-+-=⎪⎨--=⎪⎪-+-=⎩12. 解下列非齐次线性方程组:(1)123123123343322323x x xx x xx x x-+=⎧⎪+-=-⎨⎪-+-=-⎩(2)12341234123443222333244x x x xx x x xx x x x+-+=⎧⎪++-=-⎨⎪---+=⎩(3)3124312431243124235324434733749xx x xxx x xxx x xxx x x+++=⎧⎪++-=⎪⎨+++=⎪⎪++-=⎩(4)31231231231224523438214496xx xxx xxx xxx x-+=-⎧⎪++=⎪⎨+-=⎪⎪-+=-⎩13. 确定λ的值,使下列齐次线性方程组有非零解,并求其一般解.(1)123123123x x xx x xx x xλλλ++=⎧⎪++=⎨⎪++=⎩(2)123123123240356020x x xx x xx x x-+=⎧⎪-+=⎨⎪-+=⎩λ14.讨论下列非齐次线性方程组,当λ取何值时,方程组无解、有唯一解、有无穷多解?并在有无穷多解时求出一般解:(1)12312321231x x xx x xx x xλλλλλ++=⎧⎪++=⎨⎪++=⎩(2)212312312313422321x x xx x xx x x++=⎧⎪++=⎨⎪+-=⎩λλ15. 设有方程组112223334445551x axx axx axx axx ax-=⎧⎪-=⎪⎪-=⎨⎪-=⎪-=⎪⎩,证明方程组有解的充分必要条件是51iia==∑.(B )1.设A 是n 阶可逆阵,互换A 的第i 行与第j 行(i j ≠)得到矩阵B ,求1-AB .2. (研2007数一、二、三)设矩阵0100001000010000⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭A ,则3A 的秩为___ ____. 3. (研2010数一)设A 为m n ⨯型矩阵,B 为n m ⨯型矩阵,若AB =E ,则正确的是( )(A) ()R m =A ,()R m =B (B) ()R m =A ,()R n =B(C) ()R n =A ,()R m =B (D) ()R n =A ,()R n =B4. (研2015数一、二、三)设矩阵A 21111214a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,21d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭b .若集合={1,2}Ω,则线性方程组Ax =b 有无穷多解的充分必要条件是( )(A) a ∉Ω,d ∉Ω (B) a ∉Ω,d ∈Ω (C) a ∈Ω,d ∉Ω (D) a ∈Ω,d ∈Ω5. (研2016数二、三)设矩阵111111a a a --⎛⎫ ⎪-- ⎪ ⎪--⎝⎭与110011101⎛⎫ ⎪- ⎪ ⎪⎝⎭等价,则a =____ ____.6.证明:()()R R R ⎛⎫=+ ⎪⎝⎭A O AB O B . 7.设A ,B 是n 阶非零矩阵,证明:若=AB O ,则()R n <A 及()R n <B .8.设A 是m n ⨯矩阵,B 是n m ⨯矩阵,且n m <.证明:||0=AB .。

线性代数课本第三章习题详细答案

线性代数课本第三章习题详细答案

第三章 课后习题及解答将1,2题中的向量α表示成4321,,,αααα的线性组合:1.()()()()().1,1,1,1,1,1,1,1,1,1,1,1,,1,1,11,,1,12,1T4T3T21T--=--=--===αααααT2.()()()()().1,1,1,0,0,0,1,1,1,3,1,2,1,0,1,1,1,0,0,04321--=====ααααα解:设存在4321,,,k k k k 使得44332211αααααk k k k +++=,整理得14321=+++k k k k24321=--+k k k k14321=-+-k k k k14321=+--k k k k解得.41,41,41,454321-=-===k k k k 所以432141414145ααααα--+=. 设存在 4321,,,k k k k 使得44332211αααααk k k k +++=,整理得02321=++k k k ,04321=+++k k k k ,0342=-k k ,1421=-+k k k .解得 .0,1,0,14321=-===k k k k 所以31ααα-=.判断3,4题中的向量组的线性相关性: 3. ()()().6,3,1,5,2,0,1,1,1T3T2T1===ααα4. ()().3,0,7,142,1,3,0,)4,2,1,1(T3T2T 1==-=βββ,解:3.设存在 321,,k k k 使得0332211=++αααk k k ,即⎪⎩⎪⎨⎧=++=++=+065032032132131k k k k k k k k ,由0651321101=,解得321,,k k k 不全为零, 故321,,ααα线性相关.4.设存在 321,,k k k 使得0332211=++βββk k k ,即⎪⎪⎩⎪⎪⎨⎧=++=++=+-=+0142407203033213212131k k k k k k k k k k 可解得321,,k k k 不全为零,故321,,βββ线性相关. 5.论述单个向量)(n a a a ,,,21 =α线性相关和线性无关的条件.解:设存在k 使得0=αk ,若0≠α,要使0=αk ,当且仅当0=k ,故,单个向量线性无关的充要条件是0≠α;相反,单个向量)(n a a a ,,,21 =α线性相关的充要条件是0=α.6.证明:如果向量组线性无关,则向量组的任一部分组都线性无关. 证:设向量组n n αααα,,,,121- 线性无关,利用反证法,假设存在该向量组的某一部分组)(,,,21n i r i i i r ≤ααα 线性相关,则向量组n n αααα,,,,121- 线性相关,与向量组n n αααα,,,,121- 线性无关矛盾, 所以该命题成立.7.证明:若21,αα线性无关,则2121,αααα-+也线性无关.证:方法一,设存在21,k k 使得0)()(212211=-++ααααk k ,整理得,0)()(221121=-++ααk k k k ,因为21,αα线性无关,所以⎩⎨⎧=-=+02121k k k k ,可解得021==k k ,故2121,αααα-+线性无关.方法二,因为=-+)(2121,αααα⎪⎪⎭⎫⎝⎛-1111,21)(αα, 又因为021111≠-=-,且21,αα线性无关,所以向量组2121,αααα-+的秩为2,故2121,αααα-+线性无关.8.设有两个向量组s ααα,,,21 和,,,,21s βββ 其中,13121111⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k a a a a α,3222122⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ks a a a a α ,,321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ks s s s s a a a a αs βββ,,,21 是分别在s ααα,,,21 的k 个分量后任意添加m 个分量mj j j b b b ,,,21),,2,1(s j =所组成的m k +维向量,证明:(1) 若s ααα,,,21 线性无关,则s βββ,,,21 线性无关; (2) 若s βββ,,,21 线性相关,则s ααα,,,21 线性相关.证:证法1,(1)设()s A ααα,,,21 =,()s B βββ,,,21 =,因为s ααα,,,21 线性无关,所以齐次线性方程0=AX 只有零解,即,)(s A r = 且s B r =)(,s βββ,,,21 线性无关.证法2,因为s ααα,,,21 线性无关,所以齐次线性方程0=AX 只有零解,再增加方程的个数,得0=BX ,该方程也只有零解,所以s βββ,,,21 线性无关.(2) 利用反证法可证得,即假设s ααα,,,21 线性无关,再由(1)得s βββ,,,21 线性无关,与s βββ,,,21 线性相关矛盾.9. 证明:133221,,αααααα+++线性无关的充分必要条件是321,,ααα线性无关.证:方法1,(133221,,αααααα+++)=(321,,ααα)⎪⎪⎪⎭⎫ ⎝⎛110011101因为321,,ααα线性无关,且02110011101≠=,可得133221,,αααααα+++的秩为3所以133221,,αααααα+++线性无关.线性无关;反之也成立.方法2,充分性,设321,,ααα线性无关,证明133221,,αααααα+++线性无关.设存在321,,k k k 使得0)()()(133322211=+++++ααααααk k k ,整理得,0)()()(332221131=+++++αααk k k k k k因为321,,ααα线性无关,所以⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k ,可解得0321===k k k ,所以133221,,αααααα+++线性无关. 必要性,(方法1)设133221,,αααααα+++线性无关,证明321,,ααα线性无关,假设321,,ααα线性相关,则321,,ααα中至少有一向量可由其余两个向量线性表示,不妨设321,ααα可由线性表示,则向量组133221,,αααααα+++可由32,αα线性表示,且23>,所以133221,,αααααα+++线性相关,与133221,,αααααα+++线性无关矛盾,故321,,ααα线性无关.方法2,令133322211,,ααβααβααβ+=+=+=,设存在321,,k k k 使得0332211=++αααk k k ,由133322211,,ααβααβααβ+=+=+=得)()()(32133212321121,21,21βββαβββαβββα---=-+=+-=,代入 0332211=++αααk k k 得,0212121321332123211=++-+-+++-)()()(βββββββββk k k ,即 0)()()(332123211321=+-+++-+-+βββk k k k k k k k k因为321,,βββ线性无关,所以⎪⎩⎪⎨⎧=+-=++-=-+000321321321k k k k k k k k k可解得0321===k k k ,所以321,,ααα线性无关.10.下列说法是否正确?如正确,证明之;如不正确,举反例:(1)m ααα,,,21 )(2>m 线性无关的充分必要条件是任意两个向量线性无关; 解:不正确,必要条件成立,充分条件不成立,例:2维向量空间不在一条直线的3个向量,虽然两两线性无关,但这3个向量线性相关。

线性代数第三章测验题(含答案)

线性代数第三章测验题(含答案)

测试题答案
3 一、1. ; 2. 任意实数; 3. 2; 4. n s; 15 5. 5; 6. 2 1 1; 7. 1; 8. 1 , 2 .
二、1. 0,1,2 2;
2. 当t 2,3时, 1 , 2 , 3线性无关; 当t 2,3时, 1 , 2 , 3线性相关. 3. a b 0.
线性无关?
3 0,0,1,1与向量组 1 1, a, b,1, 2 2,1,1,2, 3 0,1,2,1可以互相线性表示 .
3. 求实数 和b, 使向量 (每小题8分,共24分).
四、 lm 1.
第三章
测试题
一、填空题(每小题5分,共40分).
4 1,0,2,1, 则k
4 1,3, t ,0, 则t
1. 设 1 2,1,0,5, 2 4,2,3,0 3 1,0,1, k , 时, 线性相关. 2. 设 1 2,1,3,0, 2 1,2,0,2, 3 0,5,3,4, 时, 线性无关.
3. 已知向量组 1 1,2,3,4, 2 2,3,4,5, 3
3,4,5,6, 4 4,5,6,7 , 则该向量组的秩是
4. n维单位向量组 1 , 2 , , n均可由向量组 1 , 2 , , s 线性表出 则向量个数 ,
1 0 1 0 0 1 1 0 0 0 5. 已 知A 0 1 1 0 0 , 则 秩r A 0 0 1 1 0 0 1 0 1 1
6. 方 程 组 0以1 1,0,2,2 0,1,1为 其 基 AX 础 解 系 则该方 程组的同解 方程 , 为
1 7. 设 2 , 1,2,3, A , 则 秩r A 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 向量组的线性相关性与线性方程组 复习题
一、填空题:
1. 矩阵1
23235471A ⎛⎫
⎪=- ⎪ ⎪⎝⎭
的秩为______.
2.若n 阶方阵A 满足0,0*≠=A A ,则()____R A =.
3.设A 是n 阶方阵,且秩()A r n =<,则齐次线性方程组0Ax =的基础解系中含 个解向量.
4. 非齐次线性方程组b AX =有解的充分必要条件是 .
5.设12,αα是(3)n n ≥元齐次线性方程组0Ax =的基础解系,则秩(A )= .
6.设A 是34⨯矩阵,2)(=A R ,又⎪⎪⎪⎭

⎝⎛
=301020201B ,则=)(AB R .
7. 设n 阶方阵A 满足A A =2,E 为n 阶单位阵,则=-+)()(E A R A R .
8. 1(1,3,5)T α=, 2(1,1,3)T α=, 3(1,,6)T
a α=线性相关 ,则a 应满足__________.
9. 已知向量组()()()1231,4,3,2,,1,2,3,1T T T
t ααα==-=-线性相关,则t 应满足 .
10 设向量组1(1,2,3)T α=,2(2,1,3)T α=,3(1,1,0)T
α=-,则向量组123,,ααα的秩是 .
11. 已知向量组222(1,,),(1,,),(1,,),a a b b c c αβγ=== 则当常数,,a b c 满足_________时该向量组线性无关.
12.设向量组 I:αα1,, s 线性无关,而ββ12, 都能由向量组I 线性表出,则秩(ααββ112,,,, s )= ____.
13. 设向量组321,,ααα线性相关,则向量组133221,,αααααα+++线性 .
14. 设向量(3,5,7,9)α=,()1,5,2,0β=-,向量γ满足325αγβ-=,则向量γ=__________.
二、判别说理题:
1. 若,αβ是线性方程组Ax b =的两个解向量, 则αβ-是方程组0Ax =的解. ( )
2. 设4阶方阵A 的秩为2,则其伴随矩阵*A 的秩为零. ( )
3.若线性方程组b AX =有解,则A 的秩一定为零. ( )
4.设向量12,ηη是n 元线性方程组Ax b =的解向量,那么121
2
33ηη+也是这个方程组的一个解向量. (

5. 若ξ是0AX =的解,若η是(0)AX b b =≠的解,则ξη+是b AX =的解. ( )
6. n 元线性方程组(0)Ax b b =≠当()R A n <时有无穷多解. ( )
7. 设A 是n 阶方阵,若方程组b AX =满足),()(b A R A R =,则b AX =有唯一解. ( )
8. 对于线性方程组Ax b = (这里A 为n 阶方阵), 如果该方程组有解,则必有 ()R A n = . ( )
9. 设矩阵A 的秩为)1(>r r ,则A 中必有一个1-r 级子式不为零. ( )
10. 方程组 1234123412
3423135322223x x x x x x x x x x x x -+-=⎧⎪-+-=⎨⎪++-=⎩ 中,方程个数少于未知量个数,因而方程组有无限多解. ( )
11. 对于n 阶矩阵A ,如果齐次方程组0Ax =存在无穷多组解,则对于任何一个非零n 维列向量b ,对应的非齐次线性方程组Ax b =至少存在一个解. ( )
12.若12,ηη是(0)AX b b =≠的解,则12ηη+也是b AX =的解. ( )
13.1,a 2a 线性相关,1,b 2b 也线性相关,则11,a b + 22a b +一定线性相关. ( )
14. 3维向量组1234,,,αααα必线性相关。

( )
15. 包含零向量的向量组是线性相关的. ( )
16. 如果向量组12,,,s ααα线性相关,那么这个向量组中一定有两个向量成比例. ( )
17. 若向量组12,,,r a a a 线性相关,则组中任一向量都可由其余向量线性表示. ( )
18. 向量组12,,,m ααα中任意两个向量都线性无关,则向量组线性无关. ( )
19. 设向量组I :12,,,s k k k ααα 是向量组II :12,,,p ααα的部分组,如果向量组I 线性相关,则向量组 II 也线性相关. ( )
20. 设向量组I :12,,,s k k k ααα是向量组II :12,,,p ααα的部分组,如果向量组I 线性无关,则向量组II 也线性无关. ( )
21.如果向量组ααββ112,,,, s 线性无关,则向量组 1,,s αα 也线性无关. ( )
22. 若有不全为零的数n k k k ,,21使02211≠+++n n k k k ααα ,则n ααα ,,21线性无关. ( )
23. 设向量组321,,ααα线性无关,于是向量组133221,,αααααα+++也线性无关. ( )
24. 设n 维向量组s ααα,,,21 线性相关,于是向量组s αααβ,,,,21 也线性相关,其中β为一n 维向量. (

25. 设向量组(Ⅰ)与向量组(Ⅱ)可互相线性表示,则秩(Ⅰ)= 秩(Ⅱ). ( )
26. 设向量组s ααα,,,21 线性相关,则该向量组中一定含有零向量. ( )
三、计算题:
1. 设2111211214462243697
9A --⎛⎫ ⎪- ⎪= ⎪-- ⎪-⎝⎭
,求A 的秩及列向量组的一个最大无关组,并把其余列向量用该最大无关组线性表示. 2. 已知(1,2,0)T β=-可由1(1,1,2)T α=-,2(0,1,1)T α=-,3(2,3,)T αλ=-唯一地线性表示,求λ.
3. 已知一个向量组为⎥⎥⎥⎥
⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1311,4152,2312,1021,120154321ααααα,求该向量组的秩及该向量组的一个最大线性无关组, 并把其余列向量用该最大无关组线性表示..
4.判别向量组 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=01211a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=20142a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=63113a ,⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛--=31304a 是否线性相关?并求该向量组的最大无关组及该向量组的秩.
5.设123(6,1,3),(,2,2),(,1,0)T T T a a a ααα=+=-=,求a 为何值时,(1)321,,ααα线性相关?(2)321,,ααα线性无关?
6. 方程组⎪⎩⎪⎨⎧=+-+=++=+-+2)1(2221)1(321
321321kx x k kx x kx kx x x k kx ,当k 取何值时(1)无解?(2)有唯一解?(3)有无穷多解?并求出通解. 7. 当λ取何值时,非齐次线性方程组12312321231x x x x x x x x x λλλλλ
⎧++=⎪++=⎨⎪++=⎩(1) 有唯一解;(2)无解;(3)有无穷多解,并求通解. 8. 求方程组⎪⎩⎪⎨⎧=+--=-+-=+--0320304321
43214321x x x x x x x x x x x x 的基础解系及通解.
9. 用初等变换求120111002A ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭
的逆矩阵1-A .
10. 当,a b 取何值时,方程组12356x y z x y z a x y bz ++=⎧⎪-+=⎨⎪++=⎩
,(1)无解?(2)有唯一解?(3)有无穷解?并求出通解.
11. 试问λ为何值时,非齐次线性方程组 1231231231+x 0131x x x x x x x x λλλλ++=⎧⎪+
++=⎨⎪+++=⎩()()(
) 无解?有惟一解?无数个解?并写出通解. 12. 对于线性方程组123412341
234212125x x x x x x x x x x x x a -++=⎧⎪--+=-⎨⎪-++=⎩,设确定常数a ,使得该线性方程组有解,并写出方程组的通解. 13. λ取何值时,方程组⎪⎩⎪⎨⎧-=++-=++-=++223321321321x x x x x x x x x λλλλ有唯一解,无解或有无穷多解?当方程组有无穷多解时求其通解.。

相关文档
最新文档