《等差数列》教案优秀3篇
高三数学数列教案5篇

高三数学数列教案5篇高三数学数列教案1等差数列(一)教学目标:明确等差数列的定义,掌握等差数列的通项公式,会解决知道an,a1,d,n中的三个,求另外一个的问题;培养学生观察能力,进一步提高学生推理、归纳能力,培养学生的'应用意识.教学重点: 1.等差数列的概念的理解与掌握. 2.等差数列的通项公式的推导及应用. 教学难点:等差数列“等差”特点的理解、把握和应用. 教学过程:Ⅰ.复习回顾上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式.这两个公式从不同的角度反映数列的特点,下面我们看这样一些例子Ⅱ.讲授新课 10,8,6,4,2,; 21,21,22,22,23,23,24,24,25 2,2,2,2,2,首先,请同学们仔细观察这些数列有什么共同的特点?是否可以写出这些数列的通项公式?(引导学生积极思考,努力寻求各数列通项公式,并找出其共同特点) 它们的共同特点是:从第2项起,每一项与它的前一项的“差”都等于同一个常数. 也就是说,这些数列均具有相邻两项之差“相等”的特点.具有这种特点的数列,我们把它叫做等差数列.1.定义等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式等差数列定义是由一数列相邻两项之间关系而得.若一等差数列{an}的首项是a1,公差是d,则据其定义可得: (n-1)个等式若将这n-1个等式左右两边分别相加,则可得:an-a1=(n-1)d 即:an=a1+(n-1)d 当n=1时,等式两边均为a1,即上述等式均成立,则对于一切n∈N-时上述公式都成立,所以它可作为数列{an}的通项公式. 看来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项. 由通项公式可类推得:am=a1+(m-1)d,即:a1=am-(m-1)d,则: an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d. 如:a5=a4+d=a3+2d=a2+3d=a1+4d请同学们来思考这样一个问题. 如果在a与b中间插入一个数A,使a、A、b 成等差数列,那么A应满足什么条件? 由等差数列定义及a、A、b成等差数列可得:A-a=b-A,即:a=. 反之,若A=,则2A=a+b,A-a=b-A,即a、A、b成等差数列. 总之,A= a,A,b成等差数列. 如果a、A、b成等差数列,那么a叫做a与b 的等差中项. 例题讲解 [例1]在等差数列{an}中,已知a5=10,a15=25,求a25.思路一:根据等差数列的已知两项,可求出a1和d,然后可得出该数列的通项公式,便可求出a25.思路二:若注意到已知项为a5与a15,所求项为a25,则可直接利用关系式an=am+(n-m)d.这样可简化运算. 思路三:若注意到在等差数列{an}中,a5,a15,a25也成等差数列,则利用等差中项关系式,便可直接求出a25的值.[例2](1)求等差数列8,5,2的第20项. 分析:由给出的三项先找到首项a1,求出公差d,写出通项公式,然后求出所要项答案:这个数列的第20项为-49. (2)-401是不是等差数列-5,-9,-13的项?如果是,是第几项? 分析:要想判断-401是否为这数列的一项,关键要求出通项公式,看是否存在正整数n,可使得an=-401. ∴-401是这个数列的第100项.Ⅲ.课堂练习1.(1)求等差数列3,7,11,的'第4项与第10项.(2)求等差数列10,8,6,的第20项. (3)100是不是等差数列2,9,16,的项?如果是,是第几项?如果不是,说明理由. 2.在等差数列{an}中,(1)已知a4=10,a7=19,求a1与d;(2)已知a3=9,a9=3,求a12.Ⅳ.课时小结通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:an-an-1=d(n≥2).其次,要会推导等差数列的通项公式:an=a1+(n-1)d(n≥1),并掌握其基本应用.最后,还要注意一重要关系式:an=am+(n-m)d的理解与应用以及等差中项。
等差数列教案范文

等差数列教案范文以往的教师在把握教材是,大都是有什么教什么,不能够灵活的使用教材。
而今的数学教学要求把学生的生活经验带到课堂,要求在简单的知识框架和结构上创造性的使用教材,让课堂变得有血有肉。
接下来是小编为大家整理的等差数列教案范文,希望大家喜欢!等差数列教案范文一教学目标知识与技能目标:理解等差数列的定义;会根据等差数列的通项公式求某一项的值;会根据等差数列的前几项求数列的通项公式。
过程与方法目标:通过启发、讨论、引导、边教边练边反馈的方法提高学生思考问题、解决问题的能力。
情感、态度、价值观目标:培养学生的逻辑推理能力;培养学生在探索中学习知识的精神,增强学生相互合作交流的意识。
教学重点:会求等差数列的通项公式。
教学难点:等差数列的通项公式的推导。
教学准备:课件教学过程:一、创设情境,引入课题如图1所示:一个堆放铅笔的V形架的最下面一层放1支铅笔,往上每一层都比它下面一层多放1支,这个V形架的铅笔从最下面一层往上面排起的铅笔支数组成数列:1,2,3,4,……②某个电影院设置了20排座位,这个电影院从第1排起各排的座位数组成数列:38,40,42,44,46,……③全国统一鞋号中,成年女鞋的各种尺码(表示以cm为单位的鞋底的长度)由大到小可排列为:25,24.5,24,23.5,23,22.5,22,21.5.师生互动,探索新知教师:请同学们仔细观察,你发现这三组数列有什么变化规律?生:数列①从第2项起,每一项与它的前一项的差都等于 ;数列②从第2项起,每一项与它的前一项的差都等于 ;数列③从第2项起,每一项与它的前一项的差都等于 ;[设计说明:采用边教学边反馈的方式,有利于教师及时了解学生理解新知识的程度,增强学生学好数学的信心]教师引导学生观察上面的数列①、②、③的特点。
提出问题1:上面三个数列的共同特点是什么?学生:从第2项起,每一项与它的前一项的差都等于同一个常数。
教师:这样我们就得到了等差数列的定义。
等差数列教案(多篇)

一、教学目标1. 知识与技能:(1)理解等差数列的概念及其特点;(2)掌握等差数列的通项公式、求和公式;(3)能够运用等差数列解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳等差数列的性质;(2)培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:(2)引导学生运用数学知识解决实际问题,感受数学的应用价值。
二、教学重点与难点1. 教学重点:(1)等差数列的概念及其特点;(2)等差数列的通项公式、求和公式。
2. 教学难点:(1)等差数列的通项公式的推导;(2)等差数列求和公式的应用。
三、教学过程1. 导入新课:(1)回顾等差数列的定义;(2)引导学生思考等差数列的特点。
2. 知识讲解:(1)讲解等差数列的通项公式;(2)讲解等差数列的求和公式。
3. 例题解析:(1)分析等差数列的例题,引导学生运用通项公式和求和公式;(2)讲解解题思路和方法。
4. 课堂练习:(1)布置练习题,让学生巩固所学知识;(2)引导学生互相讨论,共同解决问题。
四、课后作业1. 巩固等差数列的概念和性质;2. 练习运用通项公式和求和公式解决实际问题。
五、教学反思1. 总结本节课的收获:(1)学生掌握了等差数列的概念和性质;(2)学生能够运用通项公式和求和公式解决实际问题。
2. 反思教学过程:(1)是否充分讲解等差数列的性质和公式;(2)是否注重学生的参与和思考;(3)是否及时给予学生反馈和指导。
3. 改进措施:(1)针对学生的薄弱环节,加强讲解和练习;(2)鼓励学生积极参与,提高课堂氛围;(3)关注学生的学习进度,及时调整教学节奏。
六、教学评价1. 评价内容:(1)等差数列的概念及其特点;(2)等差数列的通项公式、求和公式;(3)运用等差数列解决实际问题的能力。
2. 评价方式:(1)课堂问答;(2)练习题;(3)课后作业;(4)小组讨论。
七、教学资源1. 教学课件:(1)展示等差数列的定义、性质;(2)呈现通项公式、求和公式的推导过程;(3)提供丰富的例题和练习题。
等差数列前n项和教案(共5篇)

等差数列前n项和教案(共5篇)第一篇:等差数列前n项和教案等差数列前n项和(第一课时)教案【课题】等差数列前n项和第一课时【教学内容】等差数列前n项和的公式推导和练习【教学目的】(1)探索等差数列的前项和公式的推导方法;(2)掌握等差数列的前项和公式;(3)能运用公式解决一些简单问题【教学方法】启发引导法,结合所学知识,引导学生在解决实际问题的过程中发现新知识,从而理解并掌握.【重点】等差数列前项和公式及其应用。
【难点】等差数列前项和公式的推导思路的获得【教具】实物投影仪,多媒体软件,电脑【教学过程】1.复习回顾 a1 + a2 + a3 +......+ an=sna1 + an=a2 + an-1 =a3 + an-2 2.情景自学问题一:一个堆放铅笔的V形架的最下面一层放1 支铅笔,往上每一层都比它下面一层多放一支,最上面一层放 100支,这个V 形架上共放着多少支铅笔?思考:(1)问题转化求什么能用最短时间算出来吗?(2)阅读课本后回答,高斯是如何快速求和的?他抓住了问题的什么特征?(3)如果换成1+2+3+…+200=?我们能否快速求和?,(4)根据高斯的启示,如何计算18+21+24+27+…+624=?3..合作互学(小组讨论,总结方法)问题二:Sn = 1 + 2 + 3 + … + n = ?倒序相加法探究:能把以上问题的解法推广到求一般等差数列的前n 项和吗?问题三:已知等差数列{an }中,首项a1,公差为d,第n项为an , 如何求前n项和Sn ?等差数列前项和公式: n(a1 + an)=2Sn问题四:比较以上两个公式的结构特征,类比于问题一,你能给出它们的几何解释吗?n(a1 + a n)=2Sn公式记忆——类比梯形面积公式记忆n(a1 + a n)=2S 问题五:两个求和公式有何异同点?能够解决什么问题?展示激学应用公式例1.等差数列-10,-6,-2,2的前多少项的和为-16 例2.已知一个等差数列的前10项和是310,前20项的和是1220,由这些条件能确定这个等差数列的前n项和的公式吗?【思考问题】如果一个数列{an }的前n项和Sn = pn2 + qn + r,(其中p,q,r为常数,且p ≠ 0),那么这个数列一定是等差数列吗?若是,说明理由,若不是,说明Sn必须满足的条件。
等差数列的教学设计(合集5篇)

等差数列的教学设计(合集5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!等差数列的教学设计(合集5篇)等差数列的教学设计(1)一、知识与技能1.了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;2.正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项.二、过程与方法1.通过对等差数列通项公式的推导培养学生:的观察力及归纳推理能力;2.通过等差数列变形公式的教学培养学生:思维的深刻性和灵活性.三、情感态度与价值观通过等差数列概念的归纳概括,培养学生:的观察、分析资料的能力,积极思维,追求新知的创新意识.教学过程导入新课师:上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子:(课本P41页的4个例子)(1)0,5.10,15.20,25.…;(2)48,53.58,63.…;(3)18,15.5.13.10.5.8,5.5…;(4)10 072.10 144.10 216,10 288,10 366,….请你们来写出上述四个数列的第7项.生:第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3.第四个数列的第7项为10 510.师:我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说.生:这是由第二个数列的后一项总比前一项多 5.依据这个规律性我得到了这个数列的第7项为78.师:说得很有道理!我再请同学们仔细观察一下,看看以上四个数列有什么共同特征?我说的是共同特征.生:1每相邻两项的差相等,都等于同一个常数.师:作差是否有顺序,谁与谁相减?生:1作差的顺序是后项减前项,不能颠倒.师:以上四个数列的共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);我们给具有这种特征的数列起一个名字叫——等差数列.这就是我们这节课要研究的内容.推进新课等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)(1)公差d一定是由后项减前项所得,而不能用前项减后项来求;(2)对于数列{an},若an-a n-1=d(与n无关的数或字母),n ≥2.n∈NX,则此数列是等差数列,d叫做公差.师:定义中的关键字是什么?(学生:在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确地、深入的理解和掌握概念的重要条件,更是学好数学及其他学科的重要一环.因此教师:应该教会学生:如何深入理解一个概念,以培养学生:分析问题、认识问题的能力)生:从“第二项起”和“同一个常数”.师::很好!师:请同学们思考:数列(1)(2)(3)(4)的通项公式存在吗?如果存在,分别是什么?生:数列(1)通项公式为5n-5.数列(2)通项公式为5n+43.数列(3)通项公式为2.5n-15.5.….师:好,这位同学用上节课学到的知识求出了这几个数列的通项公式,实质上这几个通项公式有共同的特点,无论是在求解方法上,还是在所求的结果方面都存在许多共性,下面我们来共同思考.[合作探究]等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得到的,若一个等差数列{an}的首项是a1.公差是d,则据其定义可得什么?生:a2-a1=d,即a2=a1+d.师:对,继续说下去!生:a3-a2=d,即a3=a2+d=a1+2d;a4-a3=d,即a4=a3+d=a1+3d;师:好!规律性·的东西让你找出来了,你能由此归纳出等差数列的通项公式吗?生:由上述各式可以归纳出等差数列的通项公式是an=a1+(n-(1)d.师:很好!这样说来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项an了.需要说明的是:此公式只是等差数列通项公式的猜想,你能证明它吗?生:前面已学过一种方法叫迭加法,我认为可以用.证明过程是这样的:因为a2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d.将它们相加便可以得到:an=a1+(n-(1)d.师:太好了!真是活学活用啊!这样一来我们通过证明就可以放心使用这个通项公式了.[教师:精讲]由上述关系还可得:am=a1+(m-(1)d,即a1=am-(m-(1)d.则an=a1+(n-(1)d=am-(m-(1)d+(n-(1)d=am+(n-m)d,即等差数列的第二通项公式an=am+(n-m)d.(这是变通的通项公式) 由此我们还可以得到.[例题剖析]【例1】(1)求等差数列8,5.2,…的第20项;(2)-401是不是等差数列-5.-9,-13…的项?如果是,是第几项?师:这个等差数列的首项和公差分别是什么?你能求出它的第20项吗?生:1这题太简单了!首项和公差分别是a1=8,d=5-8=2-5=-3.又因为n=20,所以由等差数列的通项公式,得a20=8+(20-(1)X(-(3)=-49.师:好!下面我们来看看第(2)小题怎么做.生:2由a1=-5,d=-9-(-(5)=-4得数列通项公式为an=-5-4(n-(1)由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-(1)成立,解之,得n=100,即-401是这个数列的第100项.师:刚才两个同学将问题解决得很好,我们做本例的目的是为了熟悉公式,实质上通项公式就是an,a1,d,n组成的方程(独立的量有三个)说明:(1)强调当数列{an}的项数n已知时,下标应是确切的数字;(2)实际上是求一个方程的正整数解的问题.这类问题学生:以前见得较少,可向学生:着重点出本问题的实质:要判断-401是不是数列的项,关键是求出数列的通项公式an,判断是否存在正整数n,使得an=-401成立.【例2】已知数列{an}的通项公式an=pn+q,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?例题分析:师:由等差数列的定义,要判定{an}是不是等差数列,只要根据什么?生:只要看差an-an-1(n≥(2)是不是一个与n无关的常数.师:说得对,请你来求解.生:当n≥2时,〔取数列{an}中的任意相邻两项an-1与an(n ≥(2)〕an-an-1=(pn+(1)-[p(n-(1)+q]=pn+q-(pn-p+q)=p为常数,所以我们说{an}是等差数列,首项a1=p+q,公差为p.师:这里要重点说明的是:(1)若p=0,则{an}是公差为0的等差数列,即为常数列q,q,q,….(2)若p≠0,则an是关于n的一次式,从图象上看,表示数列的各点(n,an)均在一次函数y=pX+q的图象上,一次项的系数是公差p,直线在y轴上的截距为q.(3)数列{an}为等差数列的充要条件是其通项an=pn+q(p、q是常数),称其为第3通项公式.课堂练习(1)求等差数列3.7,11.…的第4项与第10项.分析:根据所给数列的前3项求得首项和公差,写出该数列的通项公式,从而求出所┣笙.解:根据题意可知a1=3.d=7-3=4.∴该数列的通项公式为an=3+(n-(1)X4.即an=4n-1(n≥1.n∈NX)∴a4=4X4-1=15.a 10=4X10-1=39.评述:关键是求出通项公式.(2)求等差数列10,8,6,…的第20项.解:根据题意可知a1=10,d=8-10=-2.所以该数列的通项公式为an=10+(n-(1)X(-(2)即an=-2n+12.所以a20=-2X20+12=-28.评述:要求学生:注意解题步骤的规范性与准确性.(3)100是不是等差数列2.9,16,…的项?如果是,是第几项?如果不是,请说明理由.分析:要想判断一个数是否为某一个数列的其中一项,其关键是要看是否存在一个正整数n值,使得an等于这个数.解:根据题意可得a1=2.d=9-2=7.因而此数列通项公式为an=2+(n-(1)X7=7n-5.令7n-5=100,解得n=15.所以100是这个数列的第15项.(4)-20是不是等差数列0,-7,…的项?如果是,是第几项?如果不是,请说明理由.解:由题意可知a1=0,因而此数列的通项公式为.令,解得.因为没有正整数解,所以-20不是这个数列的项.课堂小结师:(1)本节课你们学了什么?(2)要注意什么?(3)在生:活中能否运用?(让学生:反思、归纳、总结,这样来培养学生:的概括能力、表达能力)生:通过本课时的学习,首先要理解和掌握等差数列的定义及数学表达式a n-a n-1=d(n≥(2);其次要会推导等差数列的通项公式an=a1+(n-(1)d(n≥(1)等差数列的教学设计(2)【教学目标】一、知识与技能1.掌握等差数列前n项和公式;2.体会等差数列前n项和公式的推导过程;3.会简单运用等差数列前n项和公式。
等差数列教案(精选多篇)

等差数列教案(精选多篇)第一篇:等差数列教案4等差数列(1)教学内容与教学目标1.使学生理解等差数列的定义,掌握通项公式及其简单应用,初步领会“迭加”的方法;2.通过通项公式的探求,引导学生学习归纳、猜测、证明等合情推理与逻辑推理方法,提高学生分析^p 、综合、抽象、概括等逻辑思维能力;3.通过证明的教学过程,培养学生实事求是的科学态度和勇于探索的精神.设计思想1.根据本节内容,我们选用“探究发现式”教学法,并按如下顺序逐步展开:d即的第二通项公式anamd∴ d=amanmn如:a5a4da32da23da14d三、例题讲解例1 ⑴求等差数列8,5,2的第20项⑵ -401是不是等差数列-5,-9,-13的项?如果是,是第几项?解:⑴由a18,d58253n=20,得a208d例3将一个等差数列的通项公式输入计算器数列un中,设数列的第s项和第t项分别为us和ut,计算usut st解:通过计算发现usut的值恒等于公差st证明:设等差数列{un}的首项为u1,末项为un,公差为d,usu1d和an=p n+q (p、q是常数)的理解与应用.第五篇:高中数学等差数列教案(二)课题:3.3 等差数列的前n项和(二)6161,又∵n∈n*∴满足不等式n<的正整数一共有30个. 22二、例题讲解例1 .求集合m={m|m=2n-1,n∈n*,且m<60}的元素个数及这些元素的和. 解:由2n-1<60,得n<即集合m中一共有30个元素,可列为:1,3,5,7,9,…,59,组成一个以a1=1, an(a1an)30=59,n=30的等差数列.∵sn=2,∴s30(159)30=2=900.答案:集合m中一共有30个元素,其和为900.例2.在小于100的正整数中共有多少个数能被3除余2分析^p :满足条件的数属于集合,m={m|m=3n+2,m<100,m∈n*}解:分析^p 题意可得满足条件的数属于集合,m={m|m=3n+2,m<100,n∈n*} 由3n+2<100,得n<322 3,且m∈n*,∴n可取0,1,2,3, (32)即在小于100的正整数中共有33个数能被3除余2.把这些数从小到大排列出来就是:2,5,8, (98)它们可组成一个以a1=2,d=3, a33=98,n=33的等差数列.由sn(a1an)n=2,得s33(298)33=2=1650.答:在小于100的正整数中共有33个数能被3除余2,这些数的和是1650. 例3已知数列an,是等差数列,sn是其前n项和,求证:⑴s6,s12-s6,s18-s12成等差数列;⑵设sk,s2ksk,s3ks2k (kn)成等差数列证明:设an,首项是a1,公差为d则s6a1a2a3a4a5a6∵s12s6a7a8a9a10a11a12(a16d)(a26d)(a36d)(a46d)(a56d)(a66d)(a1a2a3a4a5a6) 36ds636d∵s18s12a13a14a15a16a17a18(a76d)(a86d)(a96d)(a106d)(a116d)(a126d)(a7a8a9a10a11a12)36d(s12s6)36d∴s6,s12s6,s18s12是以36d同理可得sk,s2ksk,s3ks2k是以kd为公差的等差数列.三、练习:1.一个等差数列前4项的和是24,前5项的和与前2项的和的差是27,求这个等差数列的通项公式.分析^p :将已知条件转化为数学语言,然后再解.解:根据题意,得s4=24, s5-s2=27则设等差数列首项为a1,公差为d, 24(41)d4a2412则(5a5(51)d)(2a2(21)d)271122a13解之得:∴an=3+2(n-1)=2n+1. d22.两个数列1, x1, x2, ……,x7, 5和1, y1,y2, ……,y6, 5均成等差数列公差分别是d1, d2, 求xx2x7d1与1y1y2y6d2解:5=1+8d1, d1=d147, 又5=1+7d2, d2=, ∴1=; d2278x1+x2+……+x7=7x4=7×15=21,2y1+y2+ ……+y6=3×(1+5)=18,∴x1x2x77=. y1y2y663.在等差数列{an}中, a4=-15, 公差d=3, 求数列{an}的前n项和snsn解法1:∵a4=a1+3d, ∴ -15=a1+9, a1=-24,3n(n1)3512512∴ sn=-24n+=[(n-)-],36226∴ 当|n-51|最小时,sn最小, 6即当n=8或n=9时,s8=s9=-108最小.解法2:由已知解得a1=-24, d=3, an=-24+3(n-1),由an≤0得n≤9且a9=0,∴当n=8或n=9时,s8=s9=-108最小.四、小结本节课学习了以下内容:an是等差数列,sn是其前n项和,则sk,s2ksk,s3ks2k (kn五、课后作业:1.一凸n边形各内角的度数成等差数列,公差是10°,最小内角为100°,求边数n.解:由(n-2)·180=100n+n(n1)×10, 2求得n2-17n+72=0,n=8或n=9,当n=9时, 最大内角100+(9-1)×10=180°不合题意,舍去,∴ n=8.2.已知非常数等差数列{an}的前n项和sn满足10snm23n2(m1)nmn解:由题设知2n2(n∈n, m∈r), 求数列{a5n3}的前n项和. sn=lg(m32即 sn=[(m1)n2mn(m1)n2mn)=lgm+nlg3+lg2,52(m1)mlg2]n2+(lg3+lg2)n+lgm2,55∵ {an}是非常数等差数列,当d≠0,是一个常数项为零的二次式(m1)lg2≠0且lgm2=0, ∴ m=-1, 5212 ∴ sn=(-lg2)n+(lg3-lg2)n,55(请您支持.aoo.) 3 则当n=1时,a1=lg3lg2 521当n≥2时,an=sn-sn1=(-lg2)(2n-1)+(lg3-lg2) 5541=nlg2lg3lg2 55∴41nlg2lg3lg2 554 d=an1an=lg2 541a5n3=(5n3)lg2lg3lg2 5511=4nlg2lg3lg2 531数列{a5n3}是以a8=lg3lg2为首项,5d=4lg2为公差的等差数列,∴数列5∴an={a5n3}的前n项和为n·(lg331211lg2)+n(n-1)·(4lg2)=2n2lg2(lg3lg2)n 2553.一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和之比为32:27,求公差d.解:设这个数列的首项为a1, 公差为d,则偶数项与奇数项分别都是公差为2d的等12a166d35432, 解得d=5. 差数列,由已知得6a230d6a130d27解法2:设偶数项和与奇数项和分别为s偶,s奇,则由已知得s偶s奇354s32,求得s偶=192,s奇=162,s偶-s奇=6d, ∴ d=5. 偶s27奇4.两个等差数列,它们的前n项和之比为5n3, 2n1解:a9a1a17b9b1b1717(a1a17)s8. 17"17s173(b1b17)2 5.一个等差数列的前10项和为100,前100项和为10,求它的前110 解:在等差数列中,s10, s20-s10, s30-s20, ……, s100-s90, s110-s100, 成等差数列,∴ 新数列的前10项和=原数列的前100项和,10s10+109·d=s100=10, 解得d=-22 2∴ s110-s100=s10+10×d=-120, ∴ s110=-110.6.设等差数列{an}的前n项和为sn,已知a3=12,s12>0,s13<0,(1) 求公差d的取值围;(2) 指出s1, s2, s3, ……,s121211s12ad01122a111d02解:(1) ,1312a6d01s1313a1d02 ∵ a3=a1+2d=12, 代入得247d024, ∴ -<d<-3, 73d0(2) s13=13a7<0, ∴ a7<0, 由s12=6(a6+a7)>0, ∴ a6+a7>0, ∴a6>0,s6最大.六、板书设计(略)七、课后记:。
数学等差数列教案

数学等差数列教案数学等差数列教案「篇一」一、等差数列1、定义注:“从第二项起”及“同一常数”用红色粉笔标注二、等差数列的通项公式(一)例题与练习通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。
由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。
(二)新课探究1、由引入自然的给出等差数列的概念:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。
强调:① “从第二项起”满足条件; f②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:an+1—an=d (n≥1) ;h4z+0"6vG同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。
1、 9 ,8,7,6,5,4,√ d=—12、2、2、2、2、2、2、2、2、2、74√ d=0。
013、3、3、3、3、3、3、√ d=04、4、4、4、4、4、4、×5、5、5、5、5、5、×其中第一个数列公差<0,>0,第三个数列公差=0由此强调:公差可以是正数、负数,也可以是02、第二个重点部分为等差数列的通项公式在归纳等差数列通项公式中,我采用讨论式的教学方法。
给出等差数列的首项,公差d,由学生研究分组讨论a4 的通项公式。
通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。
整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。
若一等差数列{an }的首项是a1,公差是d。
则据其定义可得:a2 — a1 =d 即: a2 =a1 +da3 – a2 =d 即: a3 =a2 +d = a1 +2da4 – a3 =d 即: a4 =a3 +d = a1 +3d猜想: a40 = a1 +39d进而归纳出等差数列的通项公式:an=a1+(n—1)d此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——————迭加法:a2 – a1 =da3 – a2 =da4 – a3 =dan+1 – an=d将这(n—1)个等式左右两边分别相加,就可以得到 an– a1= (n—1) d 即 an= a1+(n—1) d (1)当n=1时,(1)也成立。
高中数学数列教案:等差数列精选4篇

高中数学数列教案:等差数列精选4篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!高中数学数列教案:等差数列精选4篇教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《等差数列》教案优秀3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!《等差数列》教案优秀3篇以往的教师在把握教材是,大都是有什么教什么,不能够灵活的使用教材。
而今的数学教学要求把学生的生活经验带到课堂,要求在简单的知识框架和结构上创造性的使用教材,让课堂变得有血有肉。
以下内容是本店铺为您带来的3篇《《等差数列》教案》,如果能帮助到您,本店铺将不胜荣幸。
高中等差数列的教学设计篇一教学目的:1.明确等差数列的定义,掌握等差数列的通项公式。
2.会解决知道中的三个,求另外一个的问题。
教学重点:等差数列的概念,等差数列的通项公式。
教学难点:等差数列的性质教学过程:一、复习引入:(课件第一页)二、讲解新课:1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。
(课件第二页)⑴.公差d一定是由后项减前项所得,而不能用前项减后项来求;⑵.对于数列{ },若- =d(与n无关的数或字母)n≥2.n∈n ,则此数列是等差数列,d 为公差。
2.等差数列的通项公式:【或】等差数列定义是由一数列相邻两项之间关系而得。
若一等差数列的首项是,公差是d,则据其定义可得:即:即:即:……由此归纳等差数列的通项公式可得:(课件第二页)第二通项公式(课件第二页)三、例题讲解例1 ⑴求等差数列8,5.2…的第20项(课本p1(11)⑵ -401是不是等差数列-5.-9,-13…的项?如果是,是第几项?例2 在等差数列中,已知,,求,,例3将一个等差数列的通项公式输入计算器数列中,设数列的第s项和第t项分别为和,计算的值,你能发现什么结论?并证明你的结论。
小结:①这就是第二通项公式的变形,②几何特征,直线的斜率例4 梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度。
(课本p112例(3)例5 已知数列{ }的通项公式,其中、是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?(课本p113例(4)分析:由等差数列的定义,要判定是不是等差数列,只要看(n≥(2)是不是一个与n无关的常数。
注:①若p=0,则{ }是公差为0的等差数列,即为常数列q,q,q,…②若p≠0,则{ }是关于n的一次式,从图象上看,表示数列的各点均在一次函数y=pX+q的图象上,一次项的系数是公差,直线在y轴上的截距为q.③数列{ }为等差数列的充要条件是其通项 =pn+q(p、q是常数)。
称其为第3通项公式④判断数列是否是等差数列的方法是否满足3个通项公式中的一个。
例6.成等差数列的四个数的和为26,第二项与第三项之积为40,求这四个数。
四、练习:1、(1)求等差数列3.7,11.……的第4项与第10项。
(2)求等差数列10,8,6,……的第20项。
(3)100是不是等差数列2.9,16,……的项?如果是,是第几项?如果不是,说明理由。
(4)-20是不是等差数列0,-3 ,-7,……的项?如果是,是第几项?如果不是,说明理由。
2、在等差数列{ }中,(1)已知 =10, =19,求与d;五、课后作业:习题3.2 (12)(4) 2.(2) 3.4.5.6 。
8.9.数学等差数列教案篇二教学目标:1、知识与技能目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握并会用等差数列的通项公式,初步引入“数学建模”的思想方法并能运用。
2、过程与方法目标:培养学生观察分析、猜想归纳、应用公式的能力;在领会函数与数列关系的前提下,渗透函数、方程的思想。
3、情感态度与价值观目标:通过对等差数列的研究培养学生主动探索、勇于发现的求知的精神;养成细心观察、认真分析、善于总结的良好思维习惯。
教学重点:等差数列的概念及通项公式。
教学难点:(1)理解等差数列“等差”的特点及通项公式的含义。
(2)等差数列的通项公式的推导过程及应用。
教具:多媒体、实物投影仪教学过程:一、复习引入:1、回忆上一节课学习数列的定义,请举出一个具体的例子。
表示数列有哪几种方法——列举法、通项公式、递推公式。
我们这节课接着学习一类特殊的数列——等差数列。
2、由生活中具体的数列实例引入(1)。
国际奥运会早期,撑杆跳高的记录近似的由下表给出:你能看出这4次撑杆条跳世界记录组成的数列,它的各项之间有什么关系吗?(2)某剧场前10排的座位数分别是:48、46、44、42、40、38、36、34、32、30引导学生观察:数列①、②有何规律?引导学生·发现这些数字相邻两个数字的差总是一个常数,数列①先左到右相差0.2.数列②从左到右相差-2、二。
新课探究,推导公式1.等差数列的概念如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。
强调以下几点:①“从第二项起”满足条件;②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数”);所以上面的2、3都是等差数列,他们的公差分别为0.20,-2、在学生对等差数列有了直观认识的基础上,我将给出练习题,以巩固知识的学习。
[练习一]判断下列各组数列中哪些是等差数列,哪些不是?如果是,写出首项a1和公差d,如果不是,说明理由。
1.3.5.7,……√ d=22.9,6,3.0,-3.……√ d=-33、0,0,0,0,0,0,……。
;√ d=04、1.2.3.2.3.4.……;X5、1.0,1.0,1 (X)在这个过程中我将采用边引导边提问的方法,以充分调动学生学习的积极性。
2.等差数列通项公式如果等差数列{an}首项是a1.公差是d,那么根据等差数列的定义可得:a2 - a1 =d即:a2 =a1 +da3 – a2 =d即:a3 =a2 +d = a1 +2da4 – a3 =d即:a4 =a3 +d = a1 +3d……猜想: a40 = a1 +39d进而归纳出等差数列的通项公式:an=a1+(n-(1)d此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:n=a1+(n-(1)da2-a1=da3-a2=da4-a3 =d……an –a(n-(1)=d将这(n-(1)个等式左右两边分别相加,就可以得到an-a1=(n-(1)d即an=a1+(n-(1)d (Ⅰ)当n=1时,(Ⅰ)也成立,所以对一切n∈N﹡,上面的公式(Ⅰ)都成立,因此它就是等差数列{an}的通项公式。
三。
应用举例例1求等差数列,12.8,4.0,…的第10项;20项;第30项;例2 -401是不是等差数列-5.-9,-13.…的项?如果是,是第几项?四。
反馈练习1.P293练习A组第1题和第2题(要求学生在规定时间内做完上述题目,教师提问)。
目的:使学生熟悉通项公式对学生进行基本技能训练。
五。
归纳小结提炼精华(由学生总结这节课的收获)1、等差数列的概念及数学表达式。
强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数2、等差数列的通项公式an= a1+(n-(1)d会知三求一六。
课后作业运用巩固必做题:课本P284习题A组第3.4.5题高中等差数列的教学设计篇三教学目标1、通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;2、利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;3、通过参与编题解题,激发学生学习的兴趣。
教学重点,难点教学重点是通项公式的认识;教学难点是对公式的灵活运用.教学用具实物投影仪,多媒体软件,电脑。
教学方法研探式。
教学过程()一。
复习提问前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用。
二。
主体设计通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求)。
找学生试举一例如:“已知等差数列中,首项,公差,求。
”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上。
1、方程思想的运用(1)已知等差数列中,首项,公差,则-397是该数列的第项。