三角函数求范围典型例题

合集下载

高考数学三角函数典型例题

高考数学三角函数典型例题

三角函数典型例题1 .设锐角ABC ∆的内角A B C ,,的对边分别为a b c ,,,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 【解析】:(Ⅰ)由2sin ab A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC ∆为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A CA A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 22A A A =++3A π⎛⎫=+ ⎪⎝⎭.2 .在ABC ∆中,角A . B .C 的对边分别为a 、b 、c,且满足(2a-c)cosB=bcos C .(Ⅰ)求角B 的大小; (Ⅱ)设()()()2411m sin A,cos A ,n k,k ,==>且m n ⋅的最大值是5,求k 的值.【解析】:(I)∵(2a -c )cos B =b cos C , ∴(2sin A -sin C )cos B =sin B cos C . 即2sin A cos B =sin B cos C +sin C cos B =sin(B +C )∵A +B +C =π,∴2sin A cos B =sinA . ∵0<A <π,∴sin A ≠0. ∴cos B =21.∵0<B <π,∴B =3π. (II)m n ⋅=4k sin A +cos2A . =-2sin 2A +4k sin A +1,A ∈(0,32π)设sin A =t ,则t ∈]1,0(.则m n ⋅=-2t 2+4kt +1=-2(t -k )2+1+2k 2,t ∈]1,0(. ∵k >1,∴t =1时,m n ⋅取最大值. 依题意得,-2+4k +1=5,∴k =23.3 .在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,22sin 2sin=++CB A .I.试判断△ABC 的形状;II.若△ABC 的周长为16,求面积的最大值.【解析】:I.)42sin(22sin 2cos 2sin 2sin ππ+=+=+-C C C C C 2242πππ==+∴C C 即,所以此三角形为直角三角形.II.ab ab b a b a 221622+≥+++=,2)22(64-≤∴ab 当且仅当b a =时取等号,此时面积的最大值为()24632-.4 .在ABC ∆中,a 、b 、c 分别是角A . B .C 的对边,C =2A ,43cos=A , (1)求BC cos ,cos 的值; (2)若227=⋅BCBA ,求边AC 的长。【解析】:(1)81116921cos 22cos cos 2=-⨯=-==A A C47sin ,43cos ;873sin ,81cos ====A A C C 得由得由()169814387347cos cos sin sin cos cos =⨯-⨯=-=+-=∴C A C A C A B (2)24,227cos ,227=∴=∴=⋅ac B ac BCBA ① 又a A a c A C C c A a 23cos 2,2,sin sin ==∴== ② 由①②解得a=4,c=625169483616cos 2222=⨯-+=-+=∴B ac c a b 5=∴b ,即AC 边的长为5.5 .已知在ABC ∆中,A B >,且A tan 与B tan 是方程0652=+-x x 的两个根.(Ⅰ)求)tan(B A +的值;(Ⅱ)若AB 5=,求BC 的长.【解析】:(Ⅰ)由所给条件,方程0652=+-x x 的两根tan 3,tan 2A B ==.∴tan tan tan()1tan tan A B A B A B ++=-231123+==--⨯(Ⅱ)∵180=++C B A ,∴)(180B A C +-= .由(Ⅰ)知,1)tan(tan =+-=B A C,∵C 为三角形的内角,∴sin C =∵tan3A =,A 为三角形的内角,∴sin A =, 由正弦定理得:sin sin AB BCC A=∴BC ==6 .在ABC∆中,已知内角A .B .C所对的边分别为a 、b 、c ,向量(2sin ,m B =,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。(I)求锐角B 的大小; (II)如果2b=,求ABC ∆的面积ABC S ∆的最大值。【解析】:(1)//m n ⇒ 2sinB(2cos 2B2-1)=-3cos2B⇒2sinBcosB=-3cos2B ⇒ tan2B=- 3 ∵0<2B<π,∴2B=2π3,∴锐角B=π3(2)由tan2B =- 3 ⇒ B=π3或5π6①当B=π3时,已知b=2,由余弦定理,得:4=a 2+c 2-ac≥2a c-ac=ac(当且仅当a=c=2时等号成立) ∵△ABC 的面积S △ABC =12 acsinB=34ac ≤ 3∴△ABC 的面积最大值为 3②当B=5π6时,已知b=2,由余弦定理,得:4=a 2+c 2+3ac≥2ac +3ac=(2+3)ac (当且仅当a=c =6-2时等号成立) ∴ac≤4(2-3)∵△ABC 的面积S △ABC =12 acsinB=14ac≤ 2- 3∴△ABC 的面积最大值为2- 37 .在ABC ∆中,角A . B .C 所对的边分别是a ,b ,c ,且.21222ac b c a=-+ (1)求B CA 2cos 2sin2++的值; (2)若b =2,求△ABC 面积的最大值. 【解析】:(1) 由余弦定理:cosB=142sin 2A C++cos2B= 41-(2)由.415sin ,41cos ==B B 得 ∵b =2, a2+c 2=12ac +4≥2ac ,得ac ≤38, S △ABC =12ac si nB ≤315(a =c 时取等号) 故S △ABC 的最大值为3158 .已知)1(,tan >=a a α,求θθπθπ2tan )2sin()4sin(⋅-+的值。 【解析】aa -12;9 .已知()()()()3sin 5cos cos 23sin cos tan 322f ππααπααππαααπ⎛⎫-⋅+⋅+ ⎪⎝⎭=⎛⎫⎛⎫-⋅+⋅- ⎪ ⎪⎝⎭⎝⎭(I)化简()f α(II)若α是第三象限角,且31cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值。 【解析】10.已知函数f(x)=sin 2x+3sinxcosx+2cos 2x,x ∈R.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x ∈R)的图象经过怎样的变换得到?【解析】:(1)1cos 23()2(1cos 2)2x f x x x -=++3132cos 2223sin(2).62x x x π=++=++()f x ∴的最小正周期2.2T ππ== 由题意得222,,262k x k k Z πππππ-≤+≤+∈即,.36k x k k Z ππππ-≤≤+∈()f x ∴的单调增区间为,,.36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)先把sin 2y x =图象上所有点向左平移12π个单位长度, 得到sin(2)6y x π=+的图象,再把所得图象上所有的点向上平移32个单位长度,就得到3sin(2)62y x π=++的图象。 11.已知⎪⎪⎭⎫ ⎝⎛-=23,23a ,)4cos ,4(sin xx b ππ=,b a x f ⋅=)(。 (1)求)(x f 的单调递减区间。(2)若函数)(x g y =与)(x f y =关于直线1=x 对称,求当]34,0[∈x 时,)(x g y =的最大值。【解析】:(1))34sin(34cos 234sin 23)(ππππ-=-=x x x x f ∴当]223,22[34ππππππk k x++∈-时,)(x f 单调递减 解得:]8322,8310[k k x ++∈时,)(x f 单调递减。 (2)∵函数)(x g y =与)(x f y =关于直线1=x 对称∴⎥⎦⎤⎢⎣⎡--=-=34)2(sin 3)2()(ππx x f x g⎪⎭⎫⎝⎛+=⎥⎦⎤⎢⎣⎡--=34cos 3342sin 3πππππx x∵]34,0[∈x ∴⎥⎦⎤⎢⎣⎡∈+32,334ππππx ∴]21,21[34cos -∈⎪⎭⎫⎝⎛+ππx ∴0=x时,23)(max =x g 12.已知cos 2sin αα=-,求下列各式的值;(1)2sin cos sin 3cos αααα-+; (2)2sin2sin cos ααα+【解析】:1cos 2sin ,tan 2ααα=-∴=-(1)1212sin cos 2tan 1421sin 3cos tan 3532αααααα⎛⎫⨯-- ⎪--⎝⎭===-++-+ (2)2222sin 2sin cos sin 2sin cos sin cos αααααααα++=+ 2222112tan 2tan 322tan 15112ααα⎛⎫⎛⎫-+⨯- ⎪ ⎪+⎝⎭⎝⎭===-+⎛⎫-+ ⎪⎝⎭13.设向量(sin ,cos ),(cos ,cos ),a x x b x x x R ==∈,函数()()f x a a b =⋅+(I)求函数()f x 的最大值与最小正周期;(II)求使不等式3()2f x ≥成立的x 的取值集合。 【解析】14.已知向量)1,32(cos --=αm,)1,(sin α=n ,m 与n 为共线向量,且]0,2[πα-∈(Ⅰ)求ααcos sin +的值;(Ⅱ)求αααcos sin 2sin -的值.。【解析】:(Ⅰ) m 与n 为共线向量, 0sin )1(1)32(cos =⨯--⨯-∴αα, 即32cos sin =+αα(Ⅱ) 92)cos (sin 2sin 12=+=+ααα ,972sin -=∴α2)cos (sin )cos (sin 22=-++αααα ,916)32(2)cos (sin 22=-=-∴αα 又]0,2[πα-∈ ,0cos sin <-∴αα,34cos sin -=-αα 因此,127cos sin 2sin =-ααα15.如图,A,B,C,D 都在同一个与水平面垂直的平面内,B,D 为两岛上的两座灯塔的塔顶。测量船于水面A 处测得B 点和D 点的仰角分别为075,030,于水面C 处测得B 点和D 点的仰角均为060,AC=0.1km 。试探究图中B,D 间距离与另外哪两点距离相等,然后求B,D 的距离(计算结果精确到0.01km,2≈1.414,6≈2.449)【解析】:在ACD ∆中,DAC ∠=30°,ADC ∠=60°-DAC ∠=30°, 所以CD=AC=0.1又BCD ∠=180°-60°-60°=60°,故CB 是CAD ∆底边AD 的中垂线,所以BD=BA 在ABC ∆中,ABCACBCA AB ∠=∠sin sin ,即AB=2062351sin 60sin +=︒︒AC因此,km 33.020623≈+=BD故 B .D 的距离约为0.33km 。 16.已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象与x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2(,2)3M π-. (Ⅰ)求()f x 的解析式;(Ⅱ)当[,]122x ππ∈,求()f x 的值域. 【解析】: (1)由最低点为2(,2)3M π-得A=2. 由x 轴上相邻的两个交点之间的距离为2π得2T =2π,即T π=,222T ππωπ=== 由点2(,2)3M π-在图像上的242sin(2)2,)133ππϕϕ⨯+=-+=-即sin( 故42,32k k Z ππϕπ+=-∈ 1126k πϕπ∴=- 又(0,),,()2sin(2)266f x x πππϕϕ∈∴==+故(2)7[,],2[,]122636x x πππππ∈∴+∈ 当26x π+=2π,即6x π=时,()f x 取得最大值2;当7266x ππ+=即2x π=时,()f x 取得最小值-1,故()f x 的值域为[-1,2]17.如图,为了解某海域海底构造,在海平面内一条直线上的A,B,C 三点进行测量,已知50AB m =,120BC m =,于A 处测得水深80AD m =,于B 处测得水深200BE m =,于C 处测得水深110CF m=,求∠DEF 的余弦值。【解析】:作//DMAC 交BE 于N ,交CF 于M .22223017010198DF MF DM =+=+=, 222250120130DE DN EN =+=+=,2222()90120150EF BE FC BC =-+=+=在DEF ∆中,由余弦定理,2222221301501029816cos 2213015065DE EF DF DEF DE EF +-+-⨯∠===⨯⨯⨯ 18.已知51cos sin =+θθ,),2(ππθ∈, 求(1)sin cos θθ-(2)33sin cos θθ-(3)44sin cos θθ+【解析】:(1)3344791337sin cos (2)sin cos (3)sin cos 5125625θθθθθθ-=-=+= 19.已知函数)sin(ϕω+=x A y (0>A , 0ω>,πϕ<||)的一段图象如图所示,(1)求函数的解析式;(2)求这个函数的单调递增区间。

七种方法确定角的范围

七种方法确定角的范围

七种方法确定角的范围三角函数的求值问题是高考考查的热点,而求值问题的关键是确定角的范围,也只有确定了角的范围,才能判断三角函数值的符号,进而正确求值,本文给出确定角的范围的七种方法,供大家参考.一、根据所给角的范围确定 例1 已知βαπβαππβαπ--<-<-<+<2334,求,的范围. 解:设)(n )(m 2βαβαβα-++=-,则βαβα)n m ()n m (2-++=-.比较两边系数得⎩⎨⎧-=-=+1n m 2n m ,解得⎪⎪⎩⎪⎪⎨⎧==23n 21m .所以)(23)(212βαβαβα-++=-.而62334πβαππβαππβαπ<-<--<-<-<+<,可得,且. 评析:本题通过待定系数,结合整体思想,用βαβα-+与整体表示βα-2,根据不等式性质,正确求出βα-2的范围.若通过已知条件分别求α、β的范围,然后再求βα-2的范围,这样所求得的βα-2范围比实际范围要大,则产生错解.二、根据三角函数值确定例2 已知),(πα0∈,且21cos sin =+αα,求α2cos 的值. 解:由21cos sin =+αα,可得432sin -=α,可知α不能是锐角或直角,所以παπ<<2.由条件易得472cos 232432|cos |sin -=<<<<>απαππαπαα,故,即,可知. 评析:如图所示,若20πα≤≤,则2cos sin 1≤+≤αα;若432παπ≤≤,则0≤1cos sin ≤+αα;若παπ≤≤43,则0cos sin 1≤+≤-αα;若23παπ≤≤,则≤-2sinα+cosα≤-1;若4723παπ≤≤,则0cos sin 1≤+≤-αα;若παπ247≤≤,则+≤αsin 0cosα≤1.利用上述结论可快速断定本题中α的范围.三、根据三角函数的单调性确定例3 已知),(,20πβα∈,且23cos cos 21sin sin =--=-βαβα,,求α-β的值. 解:由条件知⎪⎪⎩⎪⎪⎨⎧=--=-23cos cos 21sin sin βαβα两式平方相加得1)cos(211=--+βα,所以)cos(βα-21=.因),(20,πβα∈,所以22πβαπ<-<-.又021sin sin <-=-βα,知βαsin sin <,所以βα<,即02<-<-βαπ.由上可得3πβα-=-.评析:本题根据已知条件,得22πβαπ<-<-.若到此为止,则产生错解3πβα±=-.因此应进一步利用正弦函数在区间上的单调性得βα<,从而将α-β的范围缩小为<-2πα-β<0,问题就迎刃而解了.四、结合三角形中角的范围确定例4 在锐角△ABC 中,a 、b 、c 分别是内角A 、B 、C 所对应的边,若C=2B ,则bc的范围是( ) A. (0,2)B. (2,2)C. (2,3)D. (1,3)解:因C=2B ,由正弦定理知B cos 2B sin B 2sin B sin C sin b c ===,所以把求bc 的范围转化为求2cosB 的范围,进而转化为求B 的范围.由△ABC 为锐角三角形,知2B 0π<<,而2B 2C 0π<=<,且0<A 2B 3ππ<-=.解得4B 6ππ<<.故选C.评析:本题若仅考虑2B 0π<<,则错选A.因而应根据条件全面考虑A 、B 、C 均为锐角,从而确定B 的范围.五、利用角的相互制约进行确定例5 已知△ABC 中,33B sin 2A cos 41B cos 2A sin 4=+=+,,求C 的大小. 解:由已知33B sin 2A cos 41B cos 2A sin 4=+=+,,平方相加得21C sin =,所以C=30°或C=150°.由,可知,得21B cos 0B cos 21A sin 4<>-=B>60°在△ABC 中,0°<C<120°,故C=30°.评析:本题由21C sin =,知C 的值不唯一,因此判断C 的范围就成了解决问题的关键.而已知条件中仅含有A 、B ,因此可判断其中某一个角(例如B )的范围,从而间接求得C的范围.六、利用方程解的情况确定例6 已知方程01a 3ax 4x 2=+++(a>1)的两根为tanα,tanβ,且α,β),(22ππ-∈,求2tanβα+的值.解:由韦达定理可得1a 3tan tan a 4tan tan +=-=+βαβα, ∴34)1a 3(1a 4tan tan 1tan tan )tan(=+--=-+=+βαβαβα∴212tan 22tan 342tan 12tan22=+-=+=+-+βαβαβαβα或,解得 又a >1,故tanα,tanβ同为负值,可知)02(,,πβα-∈∴),(),即,(0220πβαπβα-∈+-∈+ 可得22tan02tan-=+<+βαβα,故评析:本题根据a >1,结合韦达定理判断两根tanα,tanβ的符号,从而得到α,β的准确范围.若不注意对角的范围挖掘,易得出两个答案,从而造成错解.七、利用数形结合确定角的范围 例7 若∈<<=+απαααα),则(20tan cos sin ( )A. ),(60πB. ),(46ππC. ),(34ππD. ),(23ππ分析:α的范围是由已知三角方程确定,但解这个方程又超出了高中数学的范围.因此可利用α所在的范围内,有这样的α值使得方程成立的这一原理,通过估值选出正确答案,或利用数形结合的方法解决.解:设x tan )x (g )4x sin(2x cos x sin )x (f =+=+=,π,在(0,2π)内画出它们的图象,如图所示.显然交点P 的横坐标3x 4x P ππ=>。

高一必修一数学三角函数中含参取值范围专项练习(含解析)

高一必修一数学三角函数中含参取值范围专项练习(含解析)

高一必修一数学三角函数中含参取值范围专项练习(含解析)一、填空题1. 若0 ≤ x ≤ 2π,求满足 sin(2x) = sin(x) 的 x 的取值范围。

解析:由于 sin(2x) = sin(x),可以得到以下等式。

sin(2x) = sin(x)2sin(x)cos(x) = sin(x)sin(x)(2cos(x) - 1) = 0因此,满足 sin(2x) = sin(x) 的 x 的取值范围为:x = 0, π, 2π。

2. 若 -π ≤ x ≤ 3π,求满足 sin(3x) = cos(2x) 的 x 的取值范围。

解析:由于 sin(3x) = cos(2x),可以得到以下等式。

sin(3x) = cos(2x)sin(3x) = cos(π/2 - 2x)因此,满足 sin(3x) = cos(2x) 的 x 的取值范围为:x = -3π/2, -π/2, π/2。

二、选择题1. 若0 ≤ x ≤ 2π,下列等式中含参的取值范围正确的是:A. sin(x) = 0,x = 0, π, 2πB. cos(2x) = 1,x = 0, π, 2πC. tan(x) = 1,x = π/4,5π/4D. sin(x)cos(x) = 0,x = 0, π/2, π解析:只有选项 C 正确,因为 tan(x) = 1 的解为x = π/4,5π/4。

2. 若 -π/2 ≤ x ≤ π/2,下列等式中含参的取值范围正确的是:A. sin(2x) = 1,x = π/4,5π/4B. cos(x) = 0,x = π/2, 3π/2C. tan(x) = 0,x = 0D. cos(2x) = 1,x = π/4,5π/4解析:只有选项 B 正确,因为 cos(x) = 0 的解为x = π/2, 3π/2。

三、解答题1. 若0 ≤ x ≤ π/2,求满足 tan(2x) = 1 的 x 的取值范围。

专题二 三角函数中一类求w的范围问题

专题二 三角函数中一类求w的范围问题

专题二 三角函数中一类求w 的最值问题三角函数的性质是高考必考内容,也是高考中的热点内容。

本文筛选了一部分高考题和模考题,就三角函数中一类求w 的取值范围问题做了整理,希望对大家有所帮助。

类型一 已知周期求w 的范围【例1】(2010.辽宁)设>0,函数y=sin(x+)+2的图像向右平移个单位后与原图像重合,则的最小值是(A ) (B) (C) (D)3 【答案】C 【解析】将2)3sin(++=πωx y 的图像向右平移个单位后为 , 所以有=2k ,即, 又因为,所以k ≥1,故≥,所以选C 【题后反思】该题的突破点在于平移后与原图像重合,因此和函数的周期性有关。

借助平移和诱导公式的相关知识点可以解决问题。

类型二 已知值域求w 的范围【例2】已知函数],0[),0)(6sin()(πωπω∈>-=x x x f ,)(x f 的值域为]1,21[-,则ω的最小值为( )A. 32B.43C.34D.23 【答案】A【解析】由于],0[π∈x ,所以666πωππωπ-≤-≤-xωω3π34πω23433234π4sin[()]233y x ππω=-++4sin()233x πωπω=+-+43ωππ32k ω=0ω>32k ω=32又因为)(x f 的值域为]1,21[-,且21)6sin(-=-π,2167sin -=π 结合图象可得6762ππωππ≤-≤,解之得3432≤≤ω,故选A 【题后反思】该题在处理时运用整体的思想,将值域问题转化在基本函数y=sinx 上结合图象处理更为简单明了。

类型三 已知零点情况求w 的范围【例3】(2016.天津)已知函数R x x x x f ∈>-+=),0(21sin 212sin )(2ωωω,若)(x f 在区间)2,(ππ内没有零点,则ω的取值范围是A. ]81,0(B.)1,85[]41,0(⋃C.]85,0(D.)85,41[]81,0(⋃ 【答案】D 【解析】化简得)0)(4sin(22)(>-=ωπωx x f ,由于0),2,(>∈ωππx , 所以4244πωππωπωπ-<-<-x ,)(x f 在区间)2,(ππ内没有零点包含以 下情况: ①ππωπk 24≥-且πππωπ+≤-k 242,其中Z k ∈ 解得Z k k k ∈++∈]85,412[ω,取0=k ,则]85,41[∈ω ②πππωπ+≥-k 24且πππωπ2242+≤-k ,其中Z k ∈ 解得Z k k k ∈++∈]89,452[ω,取1-=k ,则]81,43[-∈ω 综上,结合0>ω得]85,41[]81,0(⋃∈ω,故选D 【相关例题1】已知函数]3,4[),0)(sin()(ππϕωϕω∈>+=x x f ,已知)(x f 在]2,0[π上有且仅有4个零点,则下列ω的值中满足条件的是( )A. 613=ωB.611=ωC.47=ωD.43=ω 【答案】A【相关例题2】已知函数),0)(6sin(cos )(>++=ωπωωx x x f 在],0[π上恰有一个最大值和两个零点,则ω的取值范围是________.【答案】)613,35[ 【题后反思】几个题目类型相同,处理时同样体现整体换元的思想,结合基本函数y=sinx 的图象,更易求解。

三角函数ω的取值范围及解三角形中的范围与最值问题(解析版)

三角函数ω的取值范围及解三角形中的范围与最值问题(解析版)

三角函数ω的取值范围及解三角形中的范围与最值问题命题预测三角函数与解三角形是每年高考常考内容,在选择、填空题中考查较多,有时会出现在选择题、填空题的压轴小题位置,综合考查以解答题为主,中等难度.高频考法(1)ω取值与范围问题(2)面积与周长的最值与范围问题(3)长度的范围与最值问题01ω取值与范围问题1、f (x )=A sin (ωx +φ)在f (x )=A sin (ωx +φ)区间(a ,b )内没有零点⇒b -a ≤T2k π≤aω+ϕ<π+k πk π<bω+ϕ≤π+k π⇒b -a ≤T2a ≥k π-ϕωb ≤π+k π-ϕω同理,f (x )=A sin (ωx +φ)在区间[a ,b ]内没有零点⇒b -a ≤T2k π<aω+ϕ<π+k πk π<bω+ϕ<π+k π ⇒b -a <T2a >k π-ϕωb <π+k π-ϕω2、f (x )=A sin (ωx +φ)在区间(a ,b )内有3个零点⇒T <b -a ≤2T k π≤aω+ϕ<π+k π3π+k π<bω+ϕ≤4π+k π⇒T <b -a ≤2T k π-φω≤a <(k +1)π-φω(k +3)π-φω<b ≤(k +4)π-φω同理f (x )=A sin (ωx +φ)在区间[a ,b ]内有2个零点⇒T2≤b -a <3T2k π<aω+ϕ≤π+k π2π+k π≤bω+ϕ<3π+k π ⇒T 2≤b -a <3T2k π-φω<a ≤k π+π-φω(k +2)π-φω≤b <(k +3)π-φω 3、f (x )=A sin (ωx +φ)在区间(a ,b )内有n 个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω≤a<kπ+π-φω(k+n)π-φω<b≤(k+n+1)π-φω同理f(x)=A sin(ωx+φ)在区间[a,b]内有n个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω<a≤kπ+π-φω(k+n)π-φω≤b<(k+n+1)π-φω4、已知一条对称轴和一个对称中心,由于对称轴和对称中心的水平距离为2n+14T,则2n+14T=(2n+1)π2ω=b-a .5、已知单调区间(a,b),则a-b≤T 2.1(2024·江苏南通·二模)已知函数y=3sinωx+cosωx(ω>0)在区间-π4,2π3上单调递增,则ω的最大值为()A.14B.12C.1211D.83【答案】B【解析】因为y=3sinωx+cosωx=2sinωx+π6,又ω>0,由-π2+2kπ≤ωx+π6≤π2+2kπ,k∈Z,得到-2π3+2kπω≤x≤π3+2kπω,k∈Z,所以函数y=3sinωx+cosωx的单调增区间为-2π3+2kπω,π3+2kπω(k∈Z),依题有-π4,2π3⊆-2π3+2kπω,π3+2kπω(k∈Z),则2π3≤π3ω-2π3ω≤-π4,得到0<ω≤12,故选:B.2(2024·四川泸州·三模)已知函数f x =sinωx-2π3(ω>0)在0,π 有且仅有三个零点,则ω的取值范围是()A.83,11 3B.83,113C.53,83D.53,83【答案】B【解析】因为0≤x≤π,所以-2π3≤ωx-2π3≤ωπ-2π3,因为函数f x =sinωx-2π3(ω>0)在0,π 有且仅有三个零点,结合正弦函数的图象可知2π≤ωπ-2π3<3π,解得83≤ω<113,故选:B.3(2024·四川德阳·二模)已知函数f x =sinωx+φ(ω>0,φ∈R)在区间7π12,5π6上单调,且满足f7π12=-f3π4 .给出下列结论,其中正确结论的个数是()①f2π3=0;②若f5π6-x=f x ,则函数f x 的最小正周期为π;③关于x的方程f x =1在区间0,2π上最多有3个不相等的实数解;④若函数f x 在区间2π3,13π6上恰有5个零点,则ω的取值范围为83,103.A.1B.2C.3D.4【答案】C【解析】①因为f7π12=-f3π4 且7π12+3π42=2π3,所以f2π3=0.①正确.②因为f5π6-x=f(x)所以f(x)的对称轴为x=5π62=5π12,2π3-5π12=π4=T4⇒T=π.②正确.③在一个周期内f x =1只有一个实数解,函数f x 在区间7π12,5π6上单调且f2π3 =0,T≥45π6-2π3=2π3.当T=2π3时,f x =sin3x,f x =1在区间0,2π上实数解最多为π6,5π6,3π2共3个.③正确.④函数f x 在区间2π3,13π6上恰有5个零点,2T<13π6-2π3≤5T2⇒2⋅2πω<13π6-2π3≤52⋅2πω,解得83<ω≤103;又因为函数f x 在区间7π12,5π6上单调且f2π3 =0,T≥45π6-2π3=2π3,即2πω≥2π3⇒ω≤3,所以ω∈83,3.④错误故选:C4(2024·江苏泰州·模拟预测)设函数f x =2sinωx-π6-1ω>0在π,2π上至少有两个不同零点,则实数ω的取值范围是()A.32,+∞ B.32,73 ∪52,+∞ C.136,3 ∪196,+∞ D.12,+∞ 【答案】A【解析】令2sin ωx -π6 -1=0得sin ωx -π6 =12,因为ω>0,所以ωx -π6>-π6,令sin z =12,解得z =π6+2k π,k ∈Z 或z =5π6+2k 1π,k 1∈Z ,从小到大将sin z =12的正根写出如下:π6,5π6,13π6,17π6,25π6,29π6⋯⋯,因为x ∈π,2π ,所以ωx -π6∈ωπ-π6,2ωπ-π6,当ωπ-π6∈0,π6 ,即ω∈16,13 时,2ωπ-π6≥5π6,解得ω≥12,此时无解,当ωπ-π6∈π6,5π6 ,即ω∈13,1 时,2ωπ-π6≥13π6,解得ω≥76,此时无解,当ωπ-π6∈5π6,13π6 ,即ω∈1,73 时,2ωπ-π6≥17π6,解得ω≥32,故ω∈32,73,当ωπ-π6∈13π6,17π6 ,即ω∈73,3 时,2ωπ-π6≥25π6,解得ω≥136,故ω∈73,3,当ω≥3时,2ωπ-π6-ωπ-π6=ωπ≥3π,此时f x 在π,2π 上至少有两个不同零点,综上,ω的取值范围是32,+∞ .故选:A02面积与周长的最值与范围问题正弦定理和余弦定理是求解三角形周长或面积最值问题的杀手锏,要牢牢掌握并灵活运用.利用三角公式化简三角恒等式,并结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等求其最值.1(2024·青海·模拟预测)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2a cos 2B +2b cos A cos B =c .(1)求B ;(2)若b =4,△ABC 的面积为S .周长为L ,求SL的最大值.【解析】(1)由正弦定理可得,2sin A cos 2B +2sin B cos A cos B =sin C ,所以2sin A cos 2B +2sin B cos A cos B =sin A cos B +cos A sin B ,所以sin A cos B (2cos B -1)+cos A sin B (2cos B -1)=0,即(2cos B -1)sin (A +B )=0,由0<A +B <π,可知sin (A +B )≠0,所以2cos B -1=0,即cos B =12,由0<B <π,知B =π3.(2)由余弦定理,得b 2=a 2+c 2-2ac cos B ,即16=a 2+c 2-ac ,所以16=a +c 2-3ac ,即ac =13a +c 2-16 ,因为S =12ac sin B =34ac ,L =a +b +c ,所以S L =3ac 4a +c +4=3a +c 2-1612a +c +4,所以S L=312a +c -4 ,又ac ≤a +c 24(当且仅当a =c 时取等号),所以16=a +c 2-3ac ≥a +c24(当且仅当a =c =4时取等号),所以a +c ≤8(当且仅当a =c =4时取等号),所以S L=312a +c -4 ≤312×8-4 =33(当且仅当a =c =4时取等号),即S L的最大值为33.2(2024·陕西汉中·二模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,请从下列条件中选择一个条件作答:(注:如果选择条件①和条件②分别作答,按第一个解答计分.)①记△ABC 的面积为S ,且3AB ⋅AC =2S ;②已知a sin B =b cos A -π6 .(1)求角A 的大小;(2)若△ABC 为锐角三角形,且a =6,求△ABC 周长的取值范围.【解析】(1)选条件①,由3AB ⋅AC =2S ,得3bc cos A =2×12bc sin A ,整理得tan A =3,而0<A <π,所以A =π3.选条件②,由a sin B =b cos A -π6 及正弦定理,得sin A sin B =sin B cos A -π6,而sin B >0,则sin A =cos A -π6 =32cos A +12sin A ,整理得tan A =3,而0<A <π,所以A =π3.(2)由(1)知A =π3,由正弦定理得b sin B =c sin C =a sin A =6sin π3=22,因此b +c =22sin B +22sin C =22sin B +sin π3+B =2232sin B +32cos B=26sin B +π6由△ABC 为锐角三角形,得0<B <π20<2π3-B <π2 ,解得π6<B <π2,因此π3<B +π6<2π3,则32<sin B +π6≤1,于是32<b +c ≤26,32+6<a +b +c ≤36,所以△ABC 周长的取值范围是(32+6,36].3(2024·宁夏银川·二模)已知平面四边形ABCD 中,∠A +∠C =180°,BC =3.(1)若AB =6,AD =3,CD =4,求BD ;(2)若∠ABC =120°,△ABC 的面积为932,求四边形ABCD 周长的取值范围.【解析】(1)在△ABD 中,由余弦定理得cos ∠A =32+62-BD 22×3×6,在△BCD 中,由余弦定理得cos ∠C =32+42-BD 22×3×4,因为∠A +∠C =180°,所以cos ∠A +cos ∠C =0,即32+62-BD 22×3×6+32+42-BD 22×3×4=0,解得BD =33.(2)由已知S △ABC =12×3×AB ×32=932,得AB =6,在△ABC 中,∠ABC =120°,由余弦定理得AC 2=32+62-2×3×6×cos120°=63,则AC =37,设AD=x,CD=y,(x,>0,y>0),在△ACD中,由余弦定理得372=x2+y2-2xy⋅cos60°=x+y2-3xy,则x+y2=63+3xy≤63+3×x+y22,得x+y24≤63,所以x+y≤67,当且仅当x=y=37时取等号,又x+y>AC=37,所以四边形ABCD周长的取值范围为37+9,67+9.4(2024·四川德阳·二模)△ABC的内角A,B,C的对边分别为a,b,c,已知sin B=23cos2A+C 2.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.【解析】(1)因为△ABC中,sin B=23cos2A+C2,即2sinB2cos B2=23cos2π-B2=23sin2B2,而0<B<π,∴sin B2>0,故cos B2=3sin B2,故tan B2=33,又0<B<π,∴0<B2<π2,则B2=π6,∴B=π3;(2)由(1)以及题设可得S△ABC=12ac sin B=34a;由正弦定理得a=c sin Asin C=c sin2π3-Csin C=c sin2π3cos C-cos2π3sin Csin C=32cos C+12sin Csin C=32tan C+12,因为△ABC为锐角三角形,0<A<π2,0<C<π2,则0<2π3-C<π2,∴π6<C<π2,则tan C>33,∴0<1tan C<3,则12<32tan C+12<2,即12<a<2,则38<S△ABC<32,即△ABC面积的取值范围为38,32 .03长度的范围与最值问题对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.1(2024·贵州遵义·一模)记△ABC的内角A,B,C的对边分别为a,b,c,已知3b-a sin C= 3a cos C.(1)求A;(2)若△ABC为锐角三角形,c=2,求b的取值范围.【解析】(1)在△ABC中,由3b-a sin C=3a cos C及正弦定理,得3sin B-sin A sin C=3sin A cos C,则3sin A cos C+sin A sin C=3sin(A+C)=3sin A cos C+3cos A sin C,即sin A sin C=3cos A sin C,而sin C>0,于是tan A=3,又0<A<π,所以A=π3.(2)由(1)知,A=π3,由正弦定理得b=c sin Bsin C=2sin2π3-Csin C=3cos C+sin Csin C=3tan C+1,由△ABC为锐角三角形,得0<C<π20<2π3-C<π2,解得π6<C<π2,则tan C>13,∴1tan C<3,则1<b<4,所以b的取值范围是1<b<4.2(2024·宁夏固原·一模)在锐角△ABC中,内角A,B,C的对边分别是a,b,c,且2sin B sin C+cos2C= 1+cos2A-cos2B.(1)求证:B+C=2A;(2)求c-ba的取值范围.【解析】(1)因为2sin B sin C+cos2C=1+cos2A-cos2B,所以2sin B sin C+1-2sin2C=1+1-2sin2A-1+2sin2B,则sin B sin C-sin2C=-sin2A+sin2B,由正弦定理可得bc-c2=-a2+b2,即bc=b2+c2-a2,所以cos A=b2+c2-a22bc=bc2bc=12,又A∈0,π2,故A=π3,由A+B+C=π,故B+C=π-A=2π3=2A;(2)由(1)得sin A=32,cos A=12,因为sin B=sin A+C=sin A cos C+cos A sin C=32cos C+12sin C,所以由正弦定理得c-ba=sin C-sin Bsin A=23sin C-32cos C-12sin C=2312sin C-32cos C=23sin C-π3,又锐角△ABC中,有0<C<π20<π-π3-B<π2,解得π6<C<π2,所以-π6<C-π3<π6,则-12<sin C-π3<12,所以-33<23sin C-π3<33,即-33<23sin C-π3<33,故c-ba的取值范围为-33,33.3(2024·河北衡水·一模)在△ABC中,内角A,B,C所对的边分别是a,b,c,三角形面积为S,若D为AC边上一点,满足AB⊥BD,BD=2,且a2=-233S+ab cos C.(1)求角B;(2)求2AD +1CD的取值范围.【解析】(1)∵a2=-233S+ab cos C,∴a2=-33ab sin C+ab cos C,即a=-33b sin C+b cos C,由正弦定理得,sin A=-33sin B sin C+sin B cos C,∴sin B+C=-33sin B sin C+sin B cos C,∴cos B sin C=-33sin B sin C,∵sin C≠0,∴tan B=-3,由0<B<π,得B=2π3.(2)由(1)知,B=2π3,因为AB⊥BD,所以∠ABD=π2,∠DBC=π6,在△BCD中,由正弦定理得DCsin∠DBC=BDsin C,即DC=2sinπ6sin C=1sin C,在Rt△ABD中,AD=BDsin A=2sin A,∴2 AD +1CD=22sin A+11sin C=sin A+sin C,∵∠ABC=2π3,∴A+C=π3,∴2 AD +1CD=sin A+sin C=sinπ3-C+sin C=sinπ3cos C-cosπ3sin C+sin C=sin C+π3,∵0<C<π3,∴C+π3∈π3,2π3,∴sin C+π3∈32,1,所以2AD+1CD的取值范围为32,1.4(2024·陕西安康·模拟预测)已知锐角△ABC中,角A,B,C所对的边分别为a,b,c,其中a=8,ac=1+sin2A-sin2Csin2B,且a≠c.(1)求证:B=2C;(2)已知点M在线段AC上,且∠ABM=∠CBM,求BM的取值范围.【解析】(1)因为ac=1+sin2A-sin2Csin2B,即a-cc=sin2A-sin2Csin2B,由正弦定理可得a-cc=a2-c2b2=a+ca-cb2,又a≠c,即a-c≠0,所以1c=a+cb2,整理得b2=c2+ac,由余弦定理得b2=a2+c2-2ac cos B,整理得c=a-2c cos B,由正弦定理得sin C=sin A-2sin C cos B,故sin C=sin B+C-2sin C cos B,即sin C=sin B cos C+sin C cos B-2sin C cos B,整理得sin C=sin B-C,又因为△ABC为锐角三角形,则C∈0,π2,B∈0,π2,可得B-C∈-π2,π2,所以C=B-C,即B=2C.(2)因为点M在线段AC上,且∠ABM=∠CBM,即BM平分∠ABC,又B=2C,所以∠C=∠CBM,则∠BMC=π-C-∠CBM=π-2C,在△MCB中,由正弦定理得BCsin∠BMC=BMsin C,所以BM=BC sin Csin∠BMC=8sin Csin2C=8sin C2sin C cos C=4cos C,因为△ABC为锐角三角形,且B=2C,所以0<C<π20<2C<π20<π-3C<π2,解得π6<C<π4.故22<cos C<32,所以833<BM<42.因此线段BM 长度的取值范围833,42.1在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a =3,A =60°,则b 的取值范围是()A.0,6B.0,23C.3,23D.3,6【答案】C【解析】由正弦定理得a sin A =b sin B ,即b =a sin B sin A =3sin B sin60°=23sin B ,又△ABC 为锐角三角形,C =180°-A -B =120°-B ,又0°<B ,C <90°,则0°<120°-B <90°,解得30°<B <90°,而当30°<x <90°时,y =sin x 单调递增,故sin B ∈12,1,所以b =23sin B ∈3,23 .故选:C2已知函数f (x )=sin (ωx +φ)(ω>0),现有如下说法:①若φ=π3,函数f (x )在π6,π3 上有最小值,无最大值,且f π6 =f π3,则ω=5;②若直线x =π4为函数f (x )图象的一条对称轴,5π3,0 为函数f (x )图象的一个对称中心,且f (x )在π4,5π6 上单调递减,则ω的最大值为1817;③若f (x )=12在x ∈π4,3π4 上至少有2个解,至多有3个解,则ω∈4,163;则正确的个数为()A.0 B.1C.2D.3【答案】C【解析】对于①,因为x =π6+π32=π4时,f x 有最小值,所以sin ωπ4+π3=-1,所以ωπ4+π3=2kπ+3π2k∈Z,得到ω=8k+143k∈Z,因为f x 在区间π6,π3上有最小值,无最大值,所以π3-π4≤πω,即ω≤12,令k=0,得ω=143,故①错误;对于②,根据题意,有ωπ4+φ=2k1π+π2k1∈Z5ωπ3+φ=k2πk2∈ZT2=πω≥5π6-π4=7π12,得出ω=-12(2k1-k2)+617,k1,k2∈Z0<ω≤127,即ω=-12k+617,k∈Z0<ω≤127,得到ω=617或1817,故②正确;对于③,令ωx+φ=2kπ+π6k∈Z或ωx+φ=2kπ+5π6k∈Z,则x=-φ+2kπω+π6ωk∈Z或x=-φ+2kπω+5π6ωk∈Z,故需要上述相邻三个根的距离不超过π2,相邻四个根(距离较小的四个)的距离超过π2,即2πω≤π2,8π3ω>π2,,解得ω∈4,16 3,故③正确,故选:C.3设函数f x =sin2ωx-cos2ωx+23sinωx cosωxω>0,当x∈0,π2时,方程f x =2有且只有两个不相等的实数解,则ω的取值范围是()A.73,13 3B.73,133C.83,143D.83,143【答案】C【解析】由已知易知f x =3sin2ωx-cos2ωx=2sin2ωx-π6,当x∈0,π2时2ωx-π6∈-π6,πω-π6,所以要满足题意有5π2≤πω-π6<9π2⇒ω∈83,143.故选:C4将函数f x =sinωx-cosωx(ω>0)的图象向左平移π4个单位长度后,再把横坐标缩短为原来的一半,得到函数g x 的图象.若点π2,0是g x 图象的一个对称中心,则ω的最小值是()A.45B.12C.15D.56【答案】C【解析】由题意可得f x =222sinωx-22cosωx=2sinωx-π4,所以将f x 的图象向左平移π4个单位长度后,得到函数h x =2sin ωx +π4 -π4=2sin ωx +ωπ4-π4的图象,再把所得图象上点的横坐标缩短为原来的一半,得到函数g x =2sin 2ωx +ωπ4-π4的图象,因为点π2,0 是g x 图象的一个对称中心,所以πω+ωπ4-π4=k π,k ∈Z ,解得ω=45k +15,k ∈Z ,又ω>0,所以ω的最小值为15.故选:C5已知函数f (x )=sin ωx +π6 (ω>0),若将f (x )的图象向左平移π3个单位后所得的函数图象与曲线y =f (x )关于x =π3对称,则ω的最小值为()A.23B.13C.1D.12【答案】A【解析】函数f (x )=sin ωx +π6 ,f (x )的图象向左平移π3个单位后所得函数g (x )=sin ωx +π3 +π6=sin ωx +πω3+π6,函数y =g (x )的图象与y =f (x )的图象关于直线x =π3对称,则f (x )=g 2π3-x ,于是sin ωx +π6=sin ω2π3-x +πω3+π6 对任意实数x 恒成立,即sin ωx +π6 =sin -ωx +πω+π6 =sin π-ωx -πω+5π6 =sin ωx -πω+5π6对任意实数x 恒成立,因此-πω+5π6=π6+2k π,k ∈Z ,解得ω=-2k +23,k ∈Z ,而ω>0,则k ∈Z ,k ≤0,所以当k =0时,ω取得最小值23.故选:A6(多选题)△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,S 为△ABC 的面积,且a =2,AB ⋅AC=23S ,下列选项正确的是()A.A =π6B.若b =2,则△ABC 只有一解C.若△ABC 为锐角三角形,则b 取值范围是23,4D.若D 为BC 边上的中点,则AD 的最大值为2+3【答案】ABD【解析】对于A ,因为AB ⋅AC =23S ,所以bc cos A =23×12bc sin A ,则tan A =33,因为A ∈0,π ,所以A =π6,故A 正确;对于B ,因为b =2=a ,则B =A =π6,C =2π3,故△ABC 只有一解,故B 正确;对于C ,若△ABC 为锐角三角形,则B ∈0,π2 ,C ∈0,π2,则0<B <π20<π-π6-B <π2,则π3<B <π2,即sin B ∈32,1,由正弦定理可知:b =a sin Bsin A=4sin B ∈23,4 ,故C 错误;对于D ,若D 为BC 边上的中点,则AD =12AB +AC,所以AD 2=14AB 2+2AB ⋅AC +AC 2=14b 2+c 2+3bc由余弦定理知a 2=b 2+c 2-2bc cos A =b 2+c 2-3bc =4,得b 2+c 2=3bc +4,又b 2+c 2=3bc +4≥2bc ,所以bc ≤42-3=43+8,当且仅当b =c =2+6时取得等号,所以AD 2=14b 2+c 2+3bc =144+23bc ≤144+23×43+8 =7+43,即AD ≤7+43=2+3,故D 正确.故选:ABD .7已知函数f x =12+3sin ωx cos ωx -cos 2ωx ω>0 ,若f x 的图象在0,π 上有且仅有两条对称轴,则ω的取值范围是.【答案】56,43【解析】因为f x =12+3sin ωx cos ωx -cos 2ωx =32sin2ωx -12cos2ωx =sin 2ωx -π6,因为f x 的图象在0,π 上有且仅有两条对称轴,所以3π2≤2ωπ-π6<5π2,解得56≤ω<43,所以ω的取值范围是56,43 .故答案为:56,43.8已知函数f x =sin ωx ω>0 ,若∃x 1,x 2∈π3,π,f x 1 =-1,f x 2 =1,则实数ω的取值范围是.【答案】ω=32或ω≥52【解析】设θ=ωx,x∈π3,π,则θ∈π3ω,πω,所以问题转化为y=sinθ在θ∈π3ω,πω上存在最大值和最小值,由正弦函数图象可得,π3ω≤kπ+π2kπ+π2+π≤πω,解得k+32≤ω≤3k+32,所以k≥0,k∈Z,当k=0时,32≤ω≤32,∴ω=32;当k=1时,52≤k≤92,当k=2时,72≤ω≤152,当k=3时,92≤ω≤212,当k=n,n∈N*时,n+32≤ω≤3n+32,当k=n+1时,n+52≤ω≤3n+92,而n+52-3n+32=-2n+1<0,即n+52<3n+32,所以k∈N*时,所有情况的ω范围的并集为ω≥52;综上,实数ω的取值范围是ω=32或ω≥52.故答案为:ω=32或ω≥52.9已知函数f x =sinωx+φω>0满足f x ≥fπ12,且f x 在区间-π3,π3上恰有两个最值,则实数ω的取值范围为.【答案】125,4【解析】因为f x ≥fπ12,所以fπ12 =sinπ12ω+φ=-1,所以π12ω+φ=2kπ+3π2,k∈Z,即φ=2kπ-π12ω+3π2,k∈Z,所以f x =sinωx+2kπ-π12ω+3π2 =-cosωx-π12.当-π3≤x≤π3时,-5πω12≤ωx-π12≤πω4ω>0.因为f x 在区间-π3,π3上恰有两个最值,且-5πω12>πω4 ,所以ω>0-2π<-5πω12≤-π0<πω4<π,解得125≤ω<4.故答案为:125,4.10已知函数f (x )=-sin ωx -π4 (ω>0)在区间π3,π 上单调递减,则ω的取值范围是.【答案】0,34【解析】当x ∈π3,π时, ωπ3-π4<ωx -π4<ωπ-π4,又y =-sin x 的单调递减区间为2k π-π2,2k π+π2(k ∈Z ),所以ωπ3-π4≥2k π-π2ωπ-π4≤2k π+π2(k ∈Z ),解得6k -34≤ω≤2k +34(k ∈Z ),且2k +34≥6k -34(k ∈Z ),解得k ≤38,又ω>0,所以k =0,所以ω的取值范围为0,34.故答案为:0,3411若函数f x =cos ωx -π6ω>0 在区间π3,2π3内单调递减,则ω的最大值为.【答案】74【解析】由题得:12T ≥2π3-π3⇒0<ω≤3,令t =ωx -π6⇒t ∈πω3-π6,2πω3-π6,则y =cos t 在t ∈πω3-π6,2πω3-π6单调递减,故πω3-π6≥2k π2πω3-π6≤2k π+π⇒6k +12≤ω≤3k +74,由0<ω≤3,故ω∈12,74,所以ω的最大值为74,故答案为:74.12已知函数f (x )=4sin ωx ,g (x )=4cos ωx -π3+b (ω>0),且∀x 1,x 2∈R ,|f (x 1)-g (x 2)|≤8,将f (x )=4sin ωx 的图象向右平移π3ω个单位长度后,与函数g (x )的图象相邻的三个交点依次为A ,B ,C ,且BA ⋅BC<0,则ω的取值范围是.【答案】0,2π8【解析】依题意,函数f (x )的值域为[-4,4],g (x )的值域为[b -4,b +4],由∀x 1,x 2∈R ,f (x 1)-g (x 2) ≤8,得|(b -4)-4|≤8,且|(b +4)-(-4)|≤8,解得b =0,g (x )=4cos ωx -π3 =4sin ωx +π6 ,将f (x )=4sin ωx 的图象向右平移π3ω个单位长度后,得h (x )=4sin ωx -π3ω =4sin ωx -π3,在同一坐标系内作出函数y =g (x ),y =h (x )的图象,观察图象知,|AC |=2πω,取AC 中点D ,连接BD ,由对称性知|AB |=|BC |,BD ⊥AC ,由BA ⋅BC <0,得∠ABC >π2,即∠ABD >π4,|AD |>|BD |,由h (x )=g (x ),得sin ωx -π3 =sin ωx +π6 ,则ωx -π3+ωx+π6=π+2k π,k ∈Z ,解得ωx =712π+k π,k ∈Z ,于是y =4sin 712π+k π-π3=±22,则|BD |=42,因此πω>42,解得0<ω<2π8,所以ω的取值范围是0,2π8.故答案为:0,2π813在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,∠ABC =2π3,∠ABC 的平分线交AC 于点D ,且BD =2,则a +4c 的最小值为.【答案】18【解析】如图所示,则△ABC 的面积为12ac sin 2π3=12a ⋅2sin π3+12c ⋅2sin π3,则ac =2a +2c ,所以1a +1c =12,显然a ,c >0,故a +4c =(a +4c )1a +1c ×2=2×5+4c a +a c ≥25+24c a ⋅a c=18,当且仅当4ca =a c 1a +1c =12,即a =6c =3时取等号.所以a +4c 的最小值为18.故答案为:18.14在锐角△ABC 中,角A 、B 、C 所对边的边长分别为a 、b 、c ,且2b sin A -3a =0.(1)求角B;(2)求sin A+sin C的取值范围.【解析】(1)∵2b sin A-3a=0,∴2sin A sin B-3sin A=0,又∵A∈0,π2,∴sin A≠0,∴sin B=32,B∈0,π2,∴B=π3.(2)由(1)可知,B=π3,且△ABC为锐角三角形,所以0<A<π20<C=2π3-A<π2,∴A∈π6,π2,则sin A+sin C=sin A+sin2π3-A=32sin A+32cos A=3sin A+π6,因为π3<A+π6<2π3,∴sin A+sin C∈32,3.15在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2b sin A-3a=0.(1)求角B的大小;(2)求cos A+cos C的取值范围.【解析】(1)因为2b sin A-3a=0,由正弦定理边化角得:2sin B sin A-3sin A=0,所以2sin B-3sin A=0,由于在△ABC中,sin A≠0,所以2sin B-3=0,即sin B=32,又0<B<π2,所以B=π3.(2)由(1)可知B=π3,所以A+C=2π3,所以cos A+cos C=cos A+cos2π3-A=cos A+cos2π3cos A+sin2π3sin A=cos A-12cos A+32sin A=12cos A+32sin A=sin A+π6由于在锐角△ABC中,0<2π3-A<π2 0<A<π2,所以π6<A<π2,所以π3<A+π6<2π3,所以sinπ3<sin A+π6≤sinπ2,所以32<sin A+π6≤1,所以cos A+cos C的取值范围为32,1.16已知锐角△ABC的三内角A,B,C的对边分别是a,b,c,且b2+c2-(b⋅cos C+c⋅cos B)2=bc,(1)求角A的大小;(2)如果该三角形外接圆的半径为3,求bc的取值范围.【解析】(1)∵b2+c2-b cos C+c cos B2=bc,由余弦定理可得b2+c2-b⋅a2+b2-c22ab+c⋅a2+c2-b22ac2=bc,化简整理得b2+c2-a2=bc,又b2+c2-a2=2bc cos A,∴cos A=12,又0<A<π2,所以A=π3.(2)因为三角形外接圆半径为R=3,所以b=23sin B,c=23sin C,∴bc=12sin B sin C,由(1)得B+C=2π3,所以bc=12sin B sin C=12sin B sin2π3-B=12sin B32cos B+12sin B=63sin B cos B+6sin2B=33sin2B+31-cos2B=632sin2B-12cos2B+3 =6sin2B-π6+3,因为△ABC是锐角三角形,且B+C=2π3,所以π6<B<π2,∴π6<2B-π6<5π6,∴12<sin2B-π6≤1,∴6<6sin2B-π6+3≤9,即6<bc≤9.所以bc的取值范围为6,9.17在△ABC中,角A、B、C的对边分别为a、b、c,cos2B-sin2B=-1 2.(1)求角B,并计算sin B+π6的值;(2)若b=3,且△ABC是锐角三角形,求a+2c的最大值.【解析】(1)由cos2B+sin2B=1cos2B-sin2B=-12,得cos2B=14,则cos B=±12,又0<B<π,所以B=π3或2π3.当B=π3时,sin B+π6=sinπ2=1;当B=2π3时,sin B+π6=sin5π6=12.(2)若△ABC为锐角三角形,则B=π3,有0<C<π20<A=2π3-C<π2,解得π6<C<π2.由正弦定理,得asin A=csin C=bsin B=332=2,则a=2sin A,c=2sin C,所以a+2c=2sin A+4sin C=2sin2π3-C+4sin C=232cos C+12sin C+4sin C=5sin C+3cos C=27sin(C+φ),其中tanφ=35,又tanφ=35<33=tanπ6,所以0<φ<π6,则π3<C+φ<2π3,故当C+φ=π2时,sin(C+φ)取到最大值1,所以a+2c的最大值为27.18在△ABC中,D为BC边上一点,DC=CA=1,且△ACD面积是△ABD面积的2倍.(1)若AB=2AD,求AB的长;(2)求sin∠ADBsin B的取值范围.【解析】(1)设BC边上的高为AE,垂足为E,因为△ACD面积是△ABD面积的2倍,所以有S△ACDS△ABD=12CD⋅AE12BD⋅AE=2⇒BD=12⇒BC=32,设AB=2AD=x⇒AD=22x,由余弦定理可知:cos C=AC2+BC2-AB22AC⋅BC =AC2+DC2-AD22AC⋅DC⇒1+94-x22×1×32=1+1-12x22×1×1,解得x=1或x=-1舍去,即AB=1;(2)由(1)可知BD=12,BC=32,设∠ADC=θ,由DC=CA⇒∠DAC=∠ADC=θ⇒C=π-2θ且θ∈0,π2,由余弦定理可得:AD=12+12-2×1×1⋅cosπ-2θ=2+2cos2θ=2+22cos2θ-1=2cosθ,AB=12+32 2-2×1×32⋅cosπ-2θ=134+3cos2θ=134+32cos2θ-1=6cos2θ+1 4,在△ABD中,因为θ∈0,π2,所以由正弦定理可知:ABsin∠ADB =ADsin B⇒sin∠ADBsin B=ABAD=6cos2θ+142cosθ=14×24cos2θ+1cos2θ=14×24+1cos2θ,因为θ∈0,π2,所以cos θ∈0,1 ⇒cos 2θ∈0,1 ⇒1cos 2θ>1⇒24+1cos 2θ>25⇒24+1cos 2θ>5,于是有sin ∠ADB sin B >54,因此sin ∠ADB sin B 的取值范围为54,+∞ ..19记锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin B sin C +cos2C =1+cos2A -cos2B .(1)证明:B +C =2A ;(2)求c b的取值范围.【解析】(1)证明:由2sin B sin C +cos2C =1+cos2A -cos2B ,得2sin B sin C +1-2sin 2C =1+1-2sin 2A -1+2sin 2B ,即sin B sin C -sin 2C =-sin 2A +sin 2B ,由正弦定理可得bc -c 2=-a 2+b 2,即a 2=b 2+c 2-bc ,由余弦定理可得a 2=b 2+c 2-2bc cos A ,故cos A =12,又A ∈0,π2 ,故A =π3,由A +B +C =π,故B +C =π-A =2π3=2A ;(2)由正弦定理可得:c b=sin C sin B =sin π-A -B sin B =sin π3+B sin B =12sin B +32cos B sin B =12+32tan B ,又锐角△ABC 中,有0<B <π2,0<π-π3-B <π2,解得π6<B <π2,即tan B ∈33,+∞,即1tan B ∈0,3 ,故c b=12+32tan B ∈12,2 .20记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a +b +c a +b -c =3,且△ABC 的面积为334.(1)求角C ;(2)若AD =2DB ,求CD 的最小值.【解析】(1)∵a +b +c a +b -c =3,∴3=(a +b )2-c 2=a 2+b 2-c 2+2ab 结合余弦定理得3=2ab cos C +2ab =2ab 1+cos C ,∴ab =321+cos C ,∵S △ABC =12ab sin C =334,∴sin C 1+cos C =3,即2sin C 2cos C 2cos 2C 2=tan C 2=3,又∵C 2∈0,π2 ,∴C 2=π3,故C =2π3;(2)由(1)知:C =2π3,ab =321+cos C=3,∵AD =2DB ,∴CD =13CA +23CB ,∴CD 2=13CA +23CB 2=19b 2+49a 2+49ab cos C =19b 2+49a 2-23,又19b 2+49a 2-23≥219b 2⋅49a 2-23=2×23-23=23,当且仅当b =2a =6时,CD 长取最小值,此时CD =23=63,∴CD 长的最小值为63.21已知函数f x =12-sin 2ωx +32sin2ωx ω>0 的最小正周期为4π.(1)求f x 在0,π 上的单调递增区间;(2)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2a -c cos B =b ⋅cos C ,求f A 的取值范围.【解析】(1)f x =12-sin 2ωx +32sin2ωx =12-1-cos2ωx 2+32sin2ωx =32sin2ωx +12cos2ωx =sin 2ωx +π6.因为T =2π2ω=4π,所以ω=14,故f x =sin 12x +π6.由-π2+2k π≤12x +π6≤π2+2k π,k ∈Z ,解得4k π-4π3≤x ≤4k π+2π3,k ∈Z ,当k =0时,-4π3≤x ≤2π3,又x ∈0,π ,所以f x 在0,π 上的单调递增区间为0,2π3.(2)由2a -c cos B =b ⋅cos C ,得(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B =sin B cos C +cos B sin C =sin B +C =sin A .因为sin A ≠0,所以cos B =12,又B ∈0,π ,所以B =π3,又三角形为锐角三角形,则0<A <π20<2π3-A <π2,则π6<A <π2,所以π4<A 2+π6<5π12,又f A =sin A 2+π6,sin 5π12=sin π4+π6 =sin π4cos π6+cos π4sin π6=2+64,则22<sin A 2+π6 <2+64,所以f A 的取值范围为22,2+64.22已知在△ABC 中,1-cos A 2-sin A =0,(1)求A ;(2)若点D 是边BC 上一点,BD =2DC ,△ABC 的面积为3,求AD 的最小值.【解析】(1)因为1-cos A 2-sin A =0,所以sin 2A 2=sin A , 因为0<A 2<π2,sin A 2>0,则sin A 2=2sin A 2cos A 2,故cos A 2=12, 所以A 2=π3,A =2π3,(2)因为BD =2DC ,则BD =2DC ,所以AD -AB =2AC -AD ,故AD =13AB +23AC , 因为△ABC 的面积为3,所以12bc sin A =3,所以bc =4|AD |2=13AB +23AC 2=19c 2+49b 2+49AB ⋅AC =19c 2+49b 2-29bc ≥49bc -29bc =89上式当且仅当c =2b ,即c =22,b =2时取得“=”号,所以AD 的最小值是223.23在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足2sin A +C cos A -sin C cos A =sin A cos C .(1)求角A ;(2)若点D 在线段BC 上,且满足BD =3DC ,AD =3,求△ABC 面积的最大值.【解析】(1)由题意得2sin B cos A -sin C cos A =sin A cos C ,即2sin B cos A =sin A cos C +sin C cos A =sin B ,∵sin B ≠0,∴2cos A =1,∴cos A =12,又0<A <π,∴A =π3;(2)解法一:令DC =t ,则BD =3t ,∵cos ∠ADC =-cos ∠ADB ,∴AD 2+DC 2-AC 22AD ⋅DC =-AD 2+BD 2-AB 22AD ⋅BD ,即9+t 2-b 26t =-9+9t 2-c 218t ,∴12t 2=-36+3b 2+c 2①,又∵cos ∠BAC =12=b 2+c 2-16t 22bc ,∴16t 2=b 2+c 2-bc ②,∵联立①②,得144-3bc =9b 2+c 2≥6bc (当且仅当c =3b 时取等号),即bc ≤16,∴S △ABC =12bc sin ∠BAC =34bc ≤43,∴△ABC 面积的最大值为43.解法二:依题意AD =14AB+34AC,∴AD 2=14AB+34AC 2=116AB 2+9AC 2+6AB ⋅AC,即9=116AB 2+9AC 2+6AB AC cos π3=116AB 2+9AC 2+3AB AC,∵AB 2+9AC 2≥6AB AC (当且仅当AB =3AC 时取等号),∴AB AC ≤16,∴S △ABC =12AB ACsin ∠BAC ≤34×16=43,∴△ABC 面积的最大值为43.24已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,向量m =a +b ,c ,n =sin A -sin C ,sin A -sin B ,且m ⎳n .(1)求B ;(2)求b 2a 2+c 2的最小值.【解析】(1)因为m ⎳n ,所以a +b sin A -sin B =c sin A -sin C ,由正弦定理可得a +b a -b =c a -c 即a 2-b 2=ac -c 2,故a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =12,而B 为三角形内角,故B =π3.(2)结合(1)可得:b2a2+c2=a2+c2-aca2+c2=1-aca2+c2,1-aca2+c2≥1-ac2ac=1-12=12,当且仅当a=c时等号成立,故b2a2+c2的最小值为12.25已知△ABC为钝角三角形,它的三个内角A、B、C所对的边分别为a、b、c,且sin2C=sin2B+sinπ3+Bcosπ6+B,a<c,b<c.(1)求tan(A+B)的值;(2)若△ABC的面积为123,求c的最小值.【解析】(1)因为sin2C=sin2B+sinπ3+Bcosπ6+B=sin2B+12sinπ2+2B+sinπ6=sin2B+12cos2B+12=sin2B+121-2sin2B+14=34,因为sin C>0,所以sin C=3 2,由△ABC为钝角三角形且a<c,b<c知,C为钝角,所以cos C=-12,即tan C=-3,所以tan(A+B)=tanπ-C=-tan C=3.(2)因为S△ABC=12ab sin C=34ab=123,所以ab=48,由余弦定理,c2=a2+b2-2ab cos C=a2+b2+ab≥3ab=144,当且仅当a=b=43时,等号成立,此时c2的最小值为144,所以c的最小值为12.。

三角函数与解三角形中的最值(范围)问题

三角函数与解三角形中的最值(范围)问题


sin
2
2
(sin+cos)
sin

π
4

sin
2
1
(1+
),
2
tan
π
π
因为 B ∈[ , ),所以tan
6
4
因为函数 y =
sin(+
B ∈[
3
,1),
3
2
1
3
(1+ )在[ ,1)上单调递减,
2

3

所以 的取值范围为(

2,
6+ 2
].
2

高中总复习·数学
2. (2024·湖北三校联考)记△ ABC 的内角 A , B , C 的对边分别为
π
≤ )的图象离原点最近的对称轴为 x = x 0,若满足| x 0|≤
2
π
,则称 f ( x )为“近轴函数”.若函数 y =2
6
“近轴函数”,则φ的取值范围是(

sin (2 x -φ)是
高中总复习·数学
解析: y =2 sin
π
(2 x -φ),令2 x -φ= + k π, k ∈Z,∴图象
6
6
π
[0, ]上的值域为[-1,2].故选D.
2
高中总复习·数学
2.
4
3
sin+5
函数 y =
的最大值是
2−sin
6 ,最小值是
解析:法一
2−5
sin x =
,而-1≤
+1
原函数可化为
.
sin x ≤1,所以
2−5
4
-1≤
≤1,所以 ≤ y ≤6,因此原函数的最大值是6,最小值

微重点03三角函数中ω,φ的范围问题((习题版))

微重点03三角函数中ω,φ的范围问题((习题版))

微重点03三角函数中ω,φ的范围问题三角函数中ω,φ的范围问题,是高考的重点和热点,主要考查由三角函数的最值(值域)、单调性、零点等求ω,φ的取值范围,难度中等偏上.知识导图考点分类讲解考点一:三角函数的最值(值域)与ω,φ的取值范围规律方法求三角函数的最值(值域)问题,主要是整体代换ωx ±φ,利用正、余弦函数的图象求解,要注意自变量的范围.【例1】(2024·安徽安庆·二模)已知函数2()2cos sin 21(0)f x x x ωωω=+->的图象关于点π,04⎛⎫⎪⎝⎭对称,且()f x 在π0,3⎛⎫⎪⎝⎭上没有最小值,则ω的值为()A.12B.32C.52D.72【变式1】(2024·河南郑州·一模)已知函数π()2sin (0)6f x x ωω⎛⎫=-> ⎪⎝⎭在π0,2⎡⎤⎢⎥⎣⎦上的值域为[]1,2-,则ω的取值范围为()A.4,23⎡⎤⎢⎥⎣⎦B.48,33⎡⎤⎢⎥⎣⎦C.24,33⎡⎤⎢⎥⎣⎦D.28,33⎡⎤⎢⎥⎣⎦【变式2】(2024·河南·模拟预测)若存在π0,2x ⎛⎫∈ ⎪⎝⎭,使π2cos 13x ω⎛⎫+> ⎪⎝⎭,则正数ω的取值范围是()A.2,43⎛⎫ ⎪⎝⎭B.2,3⎛⎫+∞ ⎪⎝⎭C.8,43⎛⎤⎥⎝⎦D.8,3⎛⎫+∞ ⎪⎝⎭【变式3】(2023·株洲模拟)已知函数f (x )=2sin(ωx +φ>0,|φy =3相邻两个交点的距离为π,若f(x)>2对∀xφ的取值范围是()B.π6,π3D.π12,π6【变式4】(2023·贵阳模拟)将函数f(xω>0)的图象向右平移14个周期后所得的图象在5个极值点,则ω的取值范围是________________.考点二:单调性与ω,φ的取值范围规律方法若三角函数在区间[a,b]上单调递增,则区间[a,b]是该函数单调递增区间的子集,利用集合的包含关系即可求解.【例2】(2024高三·全国·专题练习)已知函数π()2sin(0)6f x xωω⎛⎫=->⎪⎝⎭在π0,3⎛⎫⎪⎝⎭上存在最值,且在2π,π3⎛⎫⎪⎝⎭上单调,则ω的取值范围是()A.20,3⎛⎫⎪⎝⎭B.1117,43⎡⎤⎢⎥⎣⎦C.51,3⎡⎤⎢⎥⎣⎦D.58,23⎡⎤⎢⎥⎣⎦【变式1】已知f(x)=sin(2x-φφ在0,π3上单调递增,且f(xφ的取值范围是()A.π6,B.π6,C.π3,D.π4,【变式2】(2022·湖南长沙·模拟预测)已知函数π()tan()(0)3f x A xωω=+>,若f x()在区间ππ2⎛⎫⎪⎝⎭,内单调递减,则ω的取值范围是()A.16⎛⎫⎪⎝⎭,B.17(,)36C.117(0,][,]636D.117(0,)(,)636【变式3】.(2023·晋中模拟)已知函数f(x)=sin2x+3cos2x的图象向左平移φ(φ>0)个单位长度后得到函数g(x),若g(x)在-π4,π6上单调,则φ的最小值为________.考点三:零点与ω,φ的取值范围规律方法已知函数的零点、极值点求ω,φ的取值范围问题,一是利用三角函数的图象求解;二是利用解析式,直接求函数的零点、极值点即可,注意函数的极值点即为三角函数的最大值、最小值点.【例3】已知函数[]2cos ,π,πy a x x ω=+∈-(其中,a ω为常数,且0ω>)有且仅有五个零点,则ω的取值范围是()A.[)2,4B.[)3,5C.[)4,6D.[)5,7【变式1】已知函数()()cos f x x ωϕ=+π0,2ωϕ⎛⎫>< ⎪⎝⎭的部分图象如图所示,1x ,2x 是()f x 的两个零点,若214x x =,则下列不为定值的量是()A.ϕB.ωC.1x ωD.1x ωϕ【变式2】已知函数π()2cos 2(0)3f x x ωω⎛⎫=+> ⎪⎝⎭在[0,π]上有且仅有2个零点,则ω的取值范围为.强化训练一、单选题1.(2024·贵州贵阳·一模)将函数()sin f x x =的图像先向右平移π3个单位长度,再把所得函数图像上的每个点的纵坐标不变,横坐标都变为原来的1(0)ωω>倍,得到函数()g x 的图像.若函数()g x 在π,02⎛⎫- ⎪⎝⎭上单调递增,则ω的取值范围是()A.10,6⎛⎤⎥⎝⎦B.10,3⎛⎤ ⎥⎝⎦C.10,2⎛⎤ ⎥⎝⎦D.(]0,12.(2024·广东湛江·一模)已知函数()()2πsin 03f x x ωω⎛⎫=+> ⎪⎝⎭在区间ππ,126⎛⎫ ⎪⎝⎭上单调递增,则ω的取值范围是()A.[]2,5B.[]1,14C.[]9,10D.[]10,113.(2023·江西上饶·模拟预测)若函数πcos (0)3y x ωω⎛⎫=+> ⎪⎝⎭在区间π,02⎛⎫- ⎪⎝⎭上恰有唯一极值点,则ω的取值范围为()A.28,33⎡⎤⎢⎣⎦B.28,33⎛⎤ ⎥⎝⎦C.28,36⎛⎤ ⎥⎝⎦D.17,33⎛⎫ ⎪⎝⎭4.(2023·吉林长春·一模)将函数2π()cos 3f x x ⎛⎫=+ ⎪⎝⎭图象上所有点的横坐标变为原来的1(0)ωω>,纵坐标不变,所得图象在区间2π0,3⎡⎤⎢⎥⎣⎦上恰有两个零点,且在ππ,1212⎡⎤-⎢⎥⎣⎦上单调递减,则ω的取值范围为()A.9,34⎡⎤⎢⎥⎣⎦B.9,44⎡⎫⎪⎢⎣⎭C.11,44⎡⎤⎢⎥⎣⎦D.11,64⎛⎤ ⎥⎝⎦5.(2024·全国·模拟预测)若函数()()π3cos 03f x x ωω⎛⎫=+> ⎪⎝⎭恒有()()2πf x f ≤,且()f x 在ππ,63⎡⎤-⎢⎥⎣⎦上单调递减,则ω的值为()A.16-B.56C.116D.56或1166.(2024·全国·模拟预测)已知函数()()πsin 0,2f x A x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,且π2π1632f f A ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,则当ω取最小值时,ϕ的值为()A.π12B.π18C.π18-D.π12-7.(2024·四川巴中·一模)已知函数()()sin f x x ωϕ=+π02,ωϕ⎛⎫>< ⎪⎝⎭,若()π6f x f ⎛⎫≤ ⎪⎝⎭,()4π3f x f x ⎛⎫-=-⎪⎝⎭,且()f x 在π5π,312⎛⎫⎪⎝⎭上单调,则ω的取值可以是()A.3B.5C.7D.98.(2023·四川绵阳·模拟预测)已知函数()()4cos (0),12f x x f x πωω⎛⎫=-> ⎪⎝⎭在区间0,3π⎡⎤⎢⎣⎦上的最小值恰为ω-,则所有满足条件的ω的积属于区间()A.(]1,4B.[]4,7C.()7,13D.[)13,+∞二、多选题1.(2024·辽宁葫芦岛·一模)已知()()sin cos 0f x x x ωωω=>在区间ππ,64⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值可能在()A.20,3⎛⎤ ⎥⎝⎦B.2,73⎛⎫ ⎪⎝⎭C.267,3⎡⎤⎢⎥⎣⎦D.50,193⎡⎤⎢⎥⎣⎦2.(2024·辽宁·一模)已知函数()π2cos 2(0)6f x x ωω⎛⎫=++> ⎪⎝⎭在区间ππ,63⎡⎤-⎢⎥⎣⎦上单调递减,且在区间[]0,π上有且仅有一个零点,则ω的值可以为()A.23B.56C.1112D.13123.(2023·全国·模拟预测)已知函数π()sin()0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象上相邻最低点和最高点的距离为()f x 在(0,)ϕ上有最大值,则()A.2ω=B.ϕ的取值范围为ππ,π22⎛⎫⎪+⎝⎭C.()f x 在区间0,2ϕ⎛⎫⎪⎝⎭上无零点D.()f x 在区间,2ϕϕ⎛⎫⎪⎝⎭上单调递减三、填空题1.(2024·安徽芜湖·二模)已知偶函数()()()sin 0f x x ωϕω=+>的图像关于点π,03⎛⎫⎪⎝⎭中心对称,且在区间π0,4⎡⎤⎢⎥⎣⎦上单调,则ω=.2.(2024·湖北·二模)已知函数()πsin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭满足()2π3f x f ⎛⎫≤ ⎪⎝⎭恒成立,且在区间π,π3⎛⎫⎪⎝⎭上无最小值,则ω=.3.(2024·广东·一模)已知函数()sin()(0)f x x ωϕω=+>在区间π7π(,)612上单调,且满足π()16f =-,3π()04f =,则ω=.四、解答题1.(23-24高三上·重庆·阶段练习)已知函数()()()2sin 0,0πf x x ωϕωϕ=+><<,π6x =-为()f x 的零点,π3x =是()y f x =图象的对称轴.(1)求ω;(2)若()f x 在ππ,612⎛⎫- ⎪⎝⎭上单调,求ϕ.2.(2023·河北承德·模拟预测)已知1ω>,函数π()cos 3f x x ω⎛⎫=- ⎪⎝⎭.(1)当2ω=时,求()f x 的单调递增区间;(2)若()f x 在区间ππ,63⎡⎤⎢⎥⎣⎦上单调,求ω的取值范围.3.(2024·北京平谷·模拟预测)已知函数()sin 2cos cos 2sin f x x x ϕϕ=-,其中π2ϕ<,再从条件①、条件②、条件③这三个条件中选择一个作为已知条件,使()f x 存在,并完成下列两个问题.(1)求ϕ的值;(2)若0m >,函数()f x 在区间[]0,m 上最小值为12-,求实数m 的取值范围.条件①:对任意的x ∈R ,都有()π3f x f ⎛⎫≤ ⎪⎝⎭成立;条件②:π142f ⎛⎫=- ⎪⎝⎭;条件③:ππ236f f ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭.4.(2024·全国·模拟预测)已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+>≤ ⎪⎝⎭.(1)若()f x 的图象经过点3π,04A ⎛⎫⎪⎝⎭,π,24B ⎛⎫ ⎪⎝⎭,且点B 恰好是()f x 的图象中距离点A 最近的最高点,试求()f x 的解析式;(2)若()01f =-,且()f x 在5π,π9⎛⎫⎪⎝⎭上单调,在3π0,4⎛⎫ ⎪⎝⎭上恰有两个零点,求ω的取值范围.5.(2024·广东佛山·一模)记T 为函数()()sin f x x ωϕ=+的最小正周期,其中0,0πωϕ><<,且()0f =,直线112x T =为曲线()y f x =的对称轴.(1)求ϕ;(2)若()f x 在区间[]π,2π上的值域为2⎡-⎢⎣⎦,求()f x 的解析式.。

专题二 第8讲 三角函数中的范围、最值问题

专题二   第8讲  三角函数中的范围、最值问题

第8讲 三角函数中的范围、最值问题以三角函数为背景的范围与最值问题是高考的热点,对问题的准确理解和灵活转化是解题的关键.例1 (1)若函数y =sin 2x +a cos x +58a -32在⎣⎡⎦⎤0,π2上的最大值是1,则实数a 的值为________. 答案 32解析 y =1-cos 2x +a cos x +58a -32=-⎝⎛⎭⎫cos x -a 22+a 24+58a -12. ∵0≤x ≤π2,∴0≤cos x ≤1. ①若a 2>1,即a >2,则当cos x =1时, y max =a +58a -32=1⇒a =2013<2(舍去); ②若0≤a 2≤1,即0≤a ≤2, 则当cos x =a 2时,y max =a 24+58a -12=1, ∴a =32或a =-4<0(舍去); ③若a 2<0,即a <0,则当cos x =0时, y max =58a -12=1⇒a =125>0(舍去). 综上可得,a =32. (2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若3a cos C +b =0,则tan B 的最大值是________.答案 34解析 在△ABC 中,因为3a cos C +b =0,所以C 为钝角,由正弦定理得3sin A cos C +sin(A +C )=0,3sin A cos C +sin A cos C +cos A sin C =0,所以4sin A cos C =-cos A ·sin C ,即tan C =-4tan A .因为tan A >0,所以tan B =-tan(A +C )=-tan A +tan C 1-tan A tan C =tan A +tan C tan A tan C -1=-3tan A -4tan 2A -1=34tan A +1tan A≤324=34, 当且仅当tan A =12时取等号,故tan B 的最大值是34. 例2 (1)(2020·烟台模拟)将函数f (x )=cos x 的图象向右平移2π3个单位长度,再将各点的横坐标变为原来的1ω(ω>0),得到函数g (x )的图象,若g (x )在⎣⎡⎦⎤0,π2上的值域为⎣⎡⎦⎤-12,1,则ω的取值范围为( )A.⎣⎡⎦⎤43,83B.⎣⎡⎦⎤13,53C.⎣⎡⎭⎫43,+∞D.⎣⎡⎭⎫83,+∞ 答案 A解析 f (x )=cos x 向右平移2π3个单位长度,得到y =cos ⎝⎛⎭⎫x -2π3的图象,再将各点横坐标变为原来的1ω(ω>0)得g (x )=cos ⎝⎛⎭⎫ωx -2π3, 当x ∈⎣⎡⎦⎤0,π2时,ωx -2π3∈⎣⎡⎦⎤-2π3,ωπ2-2π3, 又此时g (x )的值域为⎣⎡⎦⎤-12,1, ∴0≤ωπ2-2π3≤2π3,∴43≤ω≤83. (2)若将函数f (x )=sin ⎝⎛⎭⎫2x +π4的图象向右平移φ个单位长度,所得图象关于y 轴对称,则φ的最小正值是________.答案 3π8解析 方法一 将f (x )=sin ⎝⎛⎭⎫2x +π4的图象向右平移φ个单位长度,得到函数g (x )=sin ⎝⎛⎭⎫2x -2φ+π4的图象,该图象关于y 轴对称,即g (x )为偶函数,因此π4-2φ=k π+π2,k ∈Z ,所以φ=-k π2-π8(k ∈Z ),故当k =-1时,φ的最小正值为3π8. 方法二 将f (x )=sin ⎝⎛⎭⎫2x +π4的图象向右平移φ个单位长度,得到函数g (x )=sin ⎝⎛⎭⎫2x -2φ+π4的图象,令2x -2φ+π4=k π+π2,k ∈Z ,得x =k π2+π8+φ(k ∈Z ),此即为g (x )的对称轴方程, 又g (x )的图象关于y 轴对称,所以有k π2+π8+φ=0,k ∈Z ,于是φ=-k π2-π8(k ∈Z ),故当k =-1时,φ取最小正值3π8.(1)求解三角函数的范围或最值的关键在于根据题目条件和函数形式选择适当的工具:三角函数的有界性,基本不等式,二次函数等.(2)求解和三角函数性质有关的范围、最值问题,要结合三角函数的图象.1.已知函数f (x )=2sin(ωx +φ)(ω>0)的图象关于直线x =π3对称,且f ⎝⎛⎭⎫π12=0,则ω的最小值为( )A .2B .4C .6D .8答案 A解析 函数f (x )的周期T ≤4⎝⎛⎭⎫π3-π12=π,则2πω≤π,解得ω≥2,故ω的最小值为2. 2.若函数f (x )=2sin x +cos x 在[0,α]上是增函数,则当α取最大值时,sin 2α的值等于( ) A.45 B.35 C.25 D.215答案 A解析 f (x )=5sin(x +φ),其中tan φ=12,且φ∈⎝⎛⎭⎫0,π2,由-π2+2k π≤x +φ≤π2+2k π,k ∈Z ,得-π2-φ+2k π≤x ≤π2-φ+2k π,k ∈Z .当k =0时,增区间为⎣⎡⎦⎤-π2-φ,π2-φ,所以αmax =π2-φ,所以当α取最大值时,sin 2α=sin 2⎝⎛⎭⎫π2-φ=sin 2φ=2sin φcos φsin 2φ+cos 2φ=2tan φtan 2φ+1=45.3.已知函数f (x )=2sin ⎝⎛⎭⎫ωx +π6中x 在任意的15个单位长度的距离内能同时取得最大值和最小值,那么正实数ω的取值范围是________.答案 [10π,+∞)解析 由题意得T =2πω≤15,∴ω≥10π, ∵ω>0,∴ω≥10π.4.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0),若f (x )在⎣⎡⎦⎤0,2π3上恰有两个零点,且在⎣⎡⎦⎤-π4,π24上单调递增,则ω的取值范围是________.答案 ⎣⎡⎦⎤52,103解析 令ωx +π3=k π,k ∈Z , 得x =3k π-π3ω,k ∈Z , ∴f (x )的第2个、第3个正零点分别为5π3ω,8π3ω, ∴⎩⎨⎧ 5π3ω≤2π3,8π3ω>2π3,解得52≤ω<4, 令-π2+2k π≤ωx +π3≤π2+2k π,k ∈Z , ∴-5π6ω+2k πω≤x ≤π6ω+2k πω,k ∈Z , 令k =0,f (x )在⎣⎡⎦⎤-5π6ω,π6ω上单调递增, ∴⎣⎡⎦⎤-π4,π24⊆⎣⎡⎦⎤-5π6ω,π6ω, ∴⎩⎪⎨⎪⎧ -5π6ω≤-π4,π6ω≥π24,ω>0⇒0<ω≤103, 综上得ω的取值范围是52≤ω≤103.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数求范围典型例题
一、正弦函数的范围求解
正弦函数是高中数学中常见的三角函数之一,下面我们通过几个典型的例题来讨论如何求解正弦函数的范围。

例题一
已知函数f(x)=s in(x),求函数f(x)的值域。

解析:
根据正弦函数的定义,我们知道正弦函数的取值范围在[-1,1]之间。

所以,函数f(x)的值域即为[-1,1]。

例题二
求函数f(x)=2s in(x)+1的值域。

解析:
可以通过观察函数的性质来求解。

由于正弦函数的取值范围在[-1,1]之间,当倍数、常数的加减不改变函数的取值范围时,可以直接使用原函数的值域。

所以,函数f(x)=2s i n(x)的值域为[-2,2],再加上常数1,即函数f(x)=2si n(x)+1的值域为[-1,3]。

二、余弦函数的范围求解
余弦函数也是高中数学中常见的三角函数之一,下面我们通过几个典型的例题来讨论如何求解余弦函数的范围。

例题三
已知函数g(x)=c os(x),求函数g(x)的值域。

解析:
根据余弦函数的定义,我们知道余弦函数的取值范围也在[-1,1]之间。

所以,函数g(x)的值域即为[-1,1]。

例题四
求函数g(x)=-c os(x)+2的值域。

解析:
同样地,我们可以利用余弦函数的性质来求解。

因为余弦函数的取值
范围在[-1,1]之间,所以函数g(x)=-c o s(x)的值域为[-1,1],再加上
常数2,即函数g(x)=-c os(x)+2的值域为[1,3]。

三、正切函数的范围求解
正切函数是另一个重要的三角函数,下面我们通过例题来讨论如何求
解正切函数的范围。

例题五
已知函数h(x)=t an(x),求函数h(x)的值域。

解析:
正切函数的值域是整个实数集,即(-∞,+∞)。

所以,函数h(x)的值
域为(-∞,+∞)。

例题六
求函数h(x)=2t an(x)-1的值域。

解析:
由于正切函数的值域是整个实数集,所以函数h(x)=2ta n(x)的值域
也是整个实数集。

再加上常数-1,即函数h(x)=2t an(x)-1的值域也为
整个实数集。

四、总结
通过以上例题的讨论,我们可以得出以下结论:
1.正弦函数的值域为[-1,1],倍数和常数的加减不改变值域;
2.余弦函数的值域也为[-1,1],倍数和常数的加减同样不改变值域;
3.正切函数的值域为整个实数集,倍数和常数的加减同样不改变值域。

在解决范围求解的问题时,我们可以利用函数的性质和定义来简化求
解过程。

对于更复杂的例题,我们可以通过变形或利用三角函数的周期性质来求解。

相关文档
最新文档