数字微波通信概述

合集下载

数字微波通信系统的组成

数字微波通信系统的组成

数字微波通信系统的组成数字微波通信系统是一种高速、高质量、可靠的通信系统,由多个部分组成。

这篇文章将从以下几个方面介绍数字微波通信系统的组成。

一、数字微波通信系统的基本概念数字微波通信系统是指利用无线电波进行数字信息传输的通信系统。

它包括发射机、接收机和传输介质三部分。

二、数字微波通信系统的组成1. 发射机发射机是数字微波通信系统中非常重要的一个部分,它主要由以下几个部分组成:(1)调制器:调制器是将需要传输的信息转换为无线电频率上的模拟信号,常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)等。

(2)功率放大器:功率放大器将低功率模拟信号转换为高功率模拟信号,以便能够在传输过程中保持稳定的信号强度。

(3)频率合成器:频率合成器可以产生所需的无线电频率,并将其输出到天线上进行发射。

2. 传输介质在数字微波通信系统中,传输介质主要指天线和空气。

天线是将无线电信号从发射机传输到接收机的介质,而空气则是天线所在的媒介。

3. 接收机接收机是数字微波通信系统中另一个非常重要的部分,它主要由以下几个部分组成:(1)天线:天线将从发射机传输过来的无线电信号接收下来,并将其转换为电信号。

(2)低噪声放大器:低噪声放大器将接收到的低功率电信号转换为高功率电信号。

(3)解调器:解调器将接收到的模拟信号转换为数字信号,以便能够进行后续处理和应用。

4. 控制系统控制系统是数字微波通信系统中一个非常重要的组成部分,它主要用于控制和监测整个通信系统的运行状态。

控制系统包括以下几个部分:(1)时钟和定时器:时钟和定时器用于同步整个通信系统中各个部件之间的工作状态。

(2)故障检测和报警装置:故障检测和报警装置可以及时检测出通信系统中出现的故障,并向操作人员发出相应的警报信息。

(3)远程监控装置:远程监控装置可以通过网络远程监控整个数字微波通信系统的运行状态,并进行相应的调整和控制。

三、数字微波通信系统的应用数字微波通信系统在现代社会中得到了广泛的应用,主要包括以下几个方面:1. 电视广播数字微波通信系统可以将电视信号传输到各个地方,以便人们观看不同的电视节目。

数字微波中继通信技术

数字微波中继通信技术

第20章 数字微波中继通信技术
将信号放大到上变频器所需旳功率电平,然后与 发信机本振信号进行上变频,输出载频为f2旳微波信号。 该信号经微波功放、天馈系统后,向中间站旳另一通 信方向发送出去。信号从中间站旳某一中继机旳收信 机转接到另一中继机旳发信机时,接口频带为中频, 所以称作中频转接,中频转接省去了调制、解调器, 简化了设备,但中频转接不能上、下话路,不能消除 噪声积累。
第20章 数字微波中继通信技术
2.中频转接方式 如图20―4(b),中间站把来自某一通信方向载 频为f1旳接受信号经相应中继机(微波收发信机)旳天 馈系统,将发信端输出旳微波信号经过高频馈线送至 天线,经天线变换为无线电波朝通信方向发射出去, 再经微波低噪声放大器后,与该中继机接受机本振信 号混频,混频输出信号经中放后转接到该中间站旳另 一中继机旳发信机功率中放,
图20―4 微波中继转接方式
第20章 数字微波中继通信技术
1.基带转接方式 中间站把来自某一通信方向载频为f1旳接受信号经 相应中继机(微波收发信机)旳天馈系统(天线馈线 系统),传送到收信机。再经微波低噪声放大器后, 与该中继机旳接受机本振信号混频,混频输出信号经 中放后送到解调器解调并输出基带信号,对基带信号 进行判决再生,再生后旳信码序列进行中频数字载波 调制(图20―4(a)只示出了前一种情况)。
第20章 数字微波中继通信技术
C B
中继站 中继站
A 终端站
终端站
图20―1 微波中继通信示意图
第20章 数字微波中继通信技术
可能有人会问:“为何要采用中继通信方式呢?” 对于地面上旳远距离微波通信,采用中继方式旳直接 原因有两个:一是微波传播具有视距传播特征,即电 磁波是沿直线传播旳,而地球表面是个曲面,所以若 通信两地之间距离较长,且天线所架高度有限,则发 信端发出旳电磁波就会受到地面旳阻挡,而无法到达 收信端。所以,为了延长通信距离,需要在通信两地 之间设置若干中继站,进行电磁波转接;另一种原因 就是微波在传播过程中有损耗,在远距离通信时有必 要采用中继方式对信号逐段接受、放大和发送。

SDH数字微波通信技术的特点及其应用

SDH数字微波通信技术的特点及其应用

SDH数字微波通信技术的特点及其应用摘要:SDH是当今世界高速发展下所形成的一种通信技术,它的成功运用促进了整个通信技术的发展。

本文通过对 SDH数字微波技术特性的简单剖析,进而讨论 SDH技术在当今世界的具体运用,关键词:SDH数字微波通信技术;技术特征;运用特点引言:SDH的数字微波技术是为了适应当前的发展和对通信技术的需要而产生的。

SDH微波技术在实际中具有很优秀的传输能力和良好的传输性能,目前已广泛用于广播电视产业,可以在基站建设、微波网络建设、信号传输网络建设等各个领域提高信号传输的稳定性。

它能很好地弥补现有微波技术的缺陷,使当代社会通信的品质得到了显著的提升。

一、SDH数字微波通信技术概述1.1 SDH通信的数据传送.从 SDH系统总体上分析,数字微波的传送是一个非常繁琐的环节,它在这个系统中扮演着非常关键的角色,它在接收信号的同时也扮演着很重要的角色,而数字微波的发射是通过一个端向下一个端发射,这个过程中要根据具体的情况对传播线进行相应的调整,所以在这个环节中,数字微波中继和分支台就扮演了很关键的角色。

详细地说,从一个终端接收到一个数字微波信号,需要进行合理的数字压缩,然后再对其进行调整、加工,最终得到一个规范的中频数字调制,保证了传输过程的顺畅和方便。

然后,将接收到的数据传输到传输装置中,经过一系列的数字加工,以保证传输介质的安全性,然后将微波信号传输给中继站,再将微波信号传输给接收台。

可见微波信号的传递是一个非常繁琐的环节,它需要对其进行进一步的深度加工,以确保通信的品质。

二.SDH技术应用的关键特点2.1XPIC的交叉极化技术SDH是利用 XPIC交叉极化技术来实现减少对数字传输的干扰,从而消除了对数字传输的负面影响。

XPIC的交叉极化技术的实施,要求采用技术人员对多态系统进行适当的调整,提高系统的频域利用率,提高系统的频谱利用率,从而提高系统的传输能力。

XPIC的交叉极化技术的主要工作是在信号经过交叉极化后,去除了发送时的正交信号,减少了发送信号的冗余,减小了干扰信号的目标体积,减小了干扰信号的信号强度。

数字微波原理

数字微波原理
传输性能的挑战
随着传输速率的提升,数字微波设备在信号处理、调制解 调等方面面临技术挑战。解决方案包括采用先进的信号处 理算法和优化硬件架构。
多径衰落的挑战
在复杂环境中,多径衰落成为影响数字微波传输性能的关 键因素。解决方案包括采用先进的信号合成技术和动态信 道分配策略。
高成本与设备尺寸的挑战
随着技术的进步,数字微波设备正朝着更小尺寸、更低成 本的方向发展,以满足大规模部署的需求。
低功耗设计
在节能减排的背景下,数字微波设备的低功耗设计成为重要的发展 趋势,通过优化硬件架构和采用先进的制程技术来实现。
智能化处理
借助人工智能和大数据技术,数字微波系统将实现智能化信号处理, 自动优化传输性能,提高网络可靠性。
数字微波技术在5G网络中的应用
01
5G回传
数字微波技术作为5G回传的重要手段,能够提供大带宽、高速率的传
02
数字微波收发信机通常由调制解调器、中频处理单元、射频收发单元和电源等 部分组成。
03
调制解调器负责对数字信号进行调制和解调,中频处理单元负责对信号进行变 频和滤波等处理,射频收发单元负责信号的发送和接收,电源提供设备所需的 电能。
数字微波中继站
数字微波中继站是数字微波通信系统中的重要组成部分,它负责将数字信号从一个站点传输到另一个 站点。
解码
在接收端,数字微波信号需要通过相应的解码方式还原为原 始数据。解码过程与编码过程相反,需要根据不同的编码方 式采用相应的解码算法,如相干检测、非相干检测等。
数字微波信号的频谱压缩与展宽
频谱压缩
为了提高数字微波信号的传输效率,可以采用频谱压缩技术。频谱压缩技术通 过改变信号的调制方式和编码方式,将信号的频谱压缩,从而在相同的带宽内 传输更多的数据。

SDH数字微波通信技术特点及应用

SDH数字微波通信技术特点及应用

SDH数字微波通信技术特点及应用
SDH(Synchronous Digital Hierarchy)数字微波通信技术是
一种高速、可靠、安全、灵活的通信技术。

它采用同步时隙复用技术,通过将多路低速数字信号进行同步、逐时隙复用,形成高速数
字信号,实现了基于光纤、微波、卫星等传输介质的大容量、高质
量数字通信。

SDH技术具有以下特点:
1. 高速可靠:SDH技术能够提供高速传输和高质量服务,最高
传输速率可达到155Mbps、622Mbps、2.5Gbps等级,传输速度和质
量十分稳定可靠,可满足各种应用场景的需求。

2. 灵活性强:SDH技术支持多种接口和拓扑结构,非常灵活,
满足不同应用需求。

SDH技术可与其他技术相结合,如ATM、IP等,形成更为完善的通信网络。

3. 安全性高:SDH技术具有较高的数据安全性,可提供多种加
密和保护机制,确保数据传输的安全性和完整性。

4. 维护管理方便:SDH技术具有完善的远程维护和管理功能,
操作简单,可随时监测网络运行状况,及时发现和处理故障和问题,提高网络的可靠性和稳定性。

SDH技术广泛应用于各种通信场景,如城市通信网、传输网、
接入网、移动通信网络、广播电视网等。

在提升传输带宽和质量、
增强网络安全性、提高网络的可靠性和维护管理效率方面,都发挥
着重要作用。

SDH数字微波通信技术是一种高速、可靠、安全、灵活的通信技术,有着广泛的应用前景和发展空间。

IP(PTN)数字微波介绍

IP(PTN)数字微波介绍

关于IP(PTN)数字微波ASB设备说明上海贝尔阿尔卡特是全系列通信产品供应商,和中国的多家运营商有着长期的友好合作,提供包括无线、交换及传输在内的多种产品。

不同于其他专业的微波小厂家,上海贝尔阿尔卡特可为用户提供端到端的解决方案,及完善的服务;ALCATEL-LUCENT拥有业界最全的微波产品线,涵盖所有频段和容量,可提供9400AWY PDH微波系列;9500MXC SDH微波系列;9600LSY长距SDH 微波系列,以及最新的基于Packet的9500MPR微波系列。

同时ALU是业界第一个推出真正基于Packet的微波专业厂家。

9500MPR基于Packet的微波特性如下:●机械结构室内室外型●频率范围 6 GHz 到38 GHz●调制模式 4 QAM /16 QAM /32 QAM /64 QAM /128 QAM /256QAM;支持自适应调节●接口10/100/1000 Ethernet, E1, ATM最多192 E1, 5个嵌入GE端口, 最多53 GE端口●吞吐量每个无线载波容量高达350 Mb/s2Gb/s 无线容量10 GB/s 交换容量●配置1+0, 1+1 HSB, 频率分集, 空间分集,节点配置,每子框多至6个无线方向●特性完全设备保护, 无任何故障点基于VLAN的内部包交叉连接电路仿真和ATM 伪线数据包业务同步分配LTE Ready (支持1Gbs E-Band radio, Synch-E)9500 MRP IP微波传输系统技术优势●多业务汇聚平台●业务识别●10Gbps的分组节点●根据业务需求的自适应调制●通用ODU- 9500MXC与9500MPR采用同样的ODU支持TDM至分组网络的平滑过渡,充分保护已有投资●内置分组交换节点- 基于自适应调制的分组传输- 所有业务会聚到Ethernet●高灵活性:- 模块化设计降低初期投资- 全IP节点优化网络运营●统一的网元管理系统- 可集成到光传输网络1350 OMS- 可集成到数据网络5620 SAM关于业界其他IP微波的一点说明业界一些微波厂家将带有以太接口的PDH微波或者SDH微波称作IP微波,其实这是在偷换概念。

第3章数字微波通信系统

第3章数字微波通信系统
15
1、直接中继(微波转接)
----把接收到的微波信号用微波放大器直接 放大。
移频:收、发的频率不一样。






微 波 放 大
16
2、外差中继(中频转接)

噪 声 放
混 频

中 放
上 变 频
功 放
----中频转接只将收到的微波信号混频(下变频) 至中频(70MHz或140MHz),经中频放大器放大后 再送到发送设备的上变频器变换为微波频率,经功 率放大后由天线发射出去。
9
3.3 微波的视距传播
1 自由空间传播损耗的计算
➢ 自由空间传播损耗通常用分贝(dB)来表示:
L 10 lg L 20 lg 4d
➢ 若距离d用km表示,频率f用MHz表示有:
LS 32.4 20 lg d (km) 20 lg f (MHz )
➢ 若距离d用km表示,频率f用GHz表示有:
CO1 Ci G1
Ci
CO2
LF
CO 2
Ci LF
CO2 Ci LF
对数(dbm、dbw)
12
Gt
LS
Gr
Lt
发信机
Pt
Lr
Pre
收信机
Gt (Gr ) : 发射(接收)天线增益
Pt : 发射功率
Lt (Lr ) : 发端(收端)馈线系统损耗 Pre : 接收功率
Pre Pt
G
的中频信号进行调制,并将70MHz已调信号 送入微波发信机。
21
(4)中频信号——微波射频信号的变换 在微波发信机,对70MHz的已调波进行混频,
即70MHz的中频信号对微波载波进行调制,将 70MHz的中频信号变为微波射频信号。 (5)微波信号的发送

通信技术概论第五章数字微波通信系统

通信技术概论第五章数字微波通信系统

5.2 微波的视距传播特性
发射天线
h1
d
d1
hc d 2
d
R 1
接收天线
h2
d’——直视距离 hc——余隙 d ——最大通信距离(最 大视距传播距离或最大 传播距离)
发射天线
接收天线
d
hc
h1
h2
d
(a)实际
(b)简化
5.2.1 视距与天线高度的关系
5.2 微波的视距传播特性
图5.2.1中,发射天线和接收天线之间的连线表示它们之 间的直视路径,其长度为直视距离(d );
波段名称 K V Q M E N D
频率范围(GHz) 18~26.5 26.5~40 33~50 50~75 60~90 90~136 137~143
5.1 数字微波通信概述
5.1.3 微波通信的概念
♣ 微波通信(microwave communication ):是一种利用 微波作为载波传送信息的通信手段,即载波频率是微波。也可 以说,凡是利用微波传播进行的通信均为微波通信。
5.1 数字微波通信概述
♣ 我国微波通信的发展 我国第一条微波中继通信(试验)电路是北京-方庄- 杨村-天津,该电路于1960年4月开通。 1976年,我国以北京为中心连通全国20多个省市建成了 大规模的微波通信干线。 20世纪80年代,随着数字信号处理技术和大规模集成 电路的发展,微波通信系统得到迅速发展。 20世纪90年代后出现了容量更大的数字微波通信系统
5.1.2 微波的概念
♣ 微波(microwave):微波是一种电磁波,是全部电 磁波频谱的一个有限频段。即波长介于1毫米到1米,或频率 介于300MHz~300GHz之间的电磁波。
【注】“微”,就是该无线电波的波长相对于周围物体的 几何尺小很小的意思。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章数字微波通信概述本章主要内容:➢微波和微波通信的概念➢微波通信的常用频段➢数字微波通信的特点➢微波通信的分类➢微波通信的应用➢微波站的分类➢数字微波的中继方式➢数字微波通信系统的组成➢数字微波通信系统的技术指标重点:➢什么是微波和微波通信?➢微波通信的分类➢微波站的作用➢中继方式➢数字微波通信系统的组成1.1 数字微波通信的概念本节需要掌握的内容:➢微波通信的概念➢微波通信的频段➢微波的视距传播特性➢微波通信的分类一、微波与微波通信什么是微波?频率在300MHz到300GHz(波长为1m到1mm)范围内的电磁波。

什么是微波通信?利用微波作为载波来携带信息并通过电波空间进行传输的一种无线通信方式。

模拟微波通信和数字微波通信。

与其他通信系统一样,都由模拟微波通信发展为数字微波通信。

微波通信的起源和发展。

微波技术是第二次世界大战期间围绕着雷达的需要发展起来的,由于具有通信容量大而投资费用省、建设速度快、安装方便和相对成本低、抗灾能力强等优点而得到迅速的发展。

20世纪40年代到50年代产生了传输频带较宽,性能较稳定的模拟微波通信,成为长距离大容量地面干线无线传输的主要手段,其传输容量高达2700路,而后逐步进入中容量乃至大容量数字微波传输。

80年代中期以来,随着同步数字序列(SDH)在传输系统中的推广使用,数字微波通信进入了重要的发展时期。

目前,单波道传输速率可达300Mbit/s以上,为了进一步提高数字微波系统的频谱利用率,使用了交叉极化传输、无损伤切换、分集接收、高速多状态的自适应编码调制解调等技术,这些新技术的使用将进一步推动数字微波通信系统的发展。

因此,数字微波通信和光纤通信、卫星通信一起被称为现代通信传输的三大支柱。

我国第一条微波中继通信线路是60年代初开始建立的。

目前已试制成功2,4,6,8,11GHz等多个频段的各种容量的微波通信设备,并正在向数字化、智能化、综合化方向迅速发展。

二、微波通信的常用频段微波既是一个很高的频率,同时也是一个很宽的频段,在微波通信中所使用的频率范围一般在1GHz~40GHz,具体来讲,主要有以下几个频段:L波段 1.0——2.0GHz C波段 4.0——8.0GHzS波段 2.0——4.0GHz x波段8.0——12.4GHzKu波段12.4——18GHz K波段18——26.5GHz三、微波的传播特性微波除了具有电磁波的一般特性外,还具有一些自身的特性,主要有:1.视距传播特性微波的特点和光有些相似。

因为微波的波长较短,和周围物体的尺寸相比要小得多。

即具有直线传播和在物体上产生显著反射的特性,因此,微波波束在自由空间中是以直线传播的,也称作视距传播。

2.极化特性无线电波由随时间变化的电场和磁场组成,电场和磁场相互依存,相互转化,形成统一的时变电磁场体系。

时变电磁场以波动的形式在空间存在和运动,因此称为电磁波或无线电波。

无线电波具有一定的极化特性。

极化的定义:迎着电磁波的传播方向,观察瞬间电场矢量端点所描绘的轨迹曲线。

三种不同的极化形式:(1) 线极化。

指电场矢量E的端点随时间t 的变化轨迹保持在一条直线上。

若这条直线与地面平行,则称为水平极化;若与地面垂直,称为垂直极化,水平极化和垂直极化是彼此相互正交的两个函数。

(2) 圆极化。

指电场矢量E 的端点随时间t 的变化轨迹为一个圆。

)cos(cos )()()(21θωω++=+=t E a t E a t E a t E a t E y x y y x x左旋圆极化:电场矢量E 的旋转变化方向为顺时针;右旋圆极化。

左旋圆极化和右旋圆极化是两个彼此正交的函数。

(3) 椭圆极化。

是极化波的一般形式。

直线极化波和圆极化波都可以看作是椭圆极化波的特殊形式。

由数学分析知,当两个函数正交时,两函数的相关系数为零,因此,在微波通信中常采用不同的极化方式来扩充系统容量或消除同频信号间的干扰。

垂直极化水平极化圆极化椭圆极化(a)线极化(b) 园极化和椭圆极化图 1-1 极化特性四、 数字微波通信的特点1. 抗干扰能力强,线路噪声不积累数字通信相对与模拟通信都有这个优点。

数字信号的再生使数字微波中继通信的线路噪声不逐站积累。

再生的概念。

但是一旦干扰对数字信号造成了误码,则在以后的传输过程中被纠正过来的可能性很小,因此误码是逐站积累的。

2. 保密性强主要表现在两个方面:一是数字信号易于加密,除了设备中已采用了扰码电路外,还可以根据要求加入相应的加密电路;二是微波通信中使用的天线方向性好,因此偏离微波射线方向是接收不到微波信号的。

3.便于组成数字通信网数字微波通信系统中传输的是数字信息,便于与各种数字通信网相连,并且可以用计算机控制各种信息的交换。

4.设备体积小,功耗低数字微波中继通信设备的体积小、功耗低主要表现在两个方面:一是因传输的是数字信号,因此设备中大量采用集成电路,使得设备的体积变小,电源的损耗降低;二是数字信号的抗干扰能力强,这样就可减小微波设备的发信功率(大都在1W以下),从而使功放的体积变小、功耗下降。

5.占用频带宽数字通信通信相对于模拟通信的缺点。

—路模拟电话通常占用4kHz带宽,而一路数字电话(速率为64kbit/s) 在理想情况下至少需要32kHz的传输带宽。

因此在同等传输带宽情况下,数字微波的传输容量要小于模拟微波,目前随着新的调制技术的发展以及频带压缩技术的应用,数字微波的这一不足正日趋得到改善。

五、微波通信的分类四类:地面微波中继通信、一点对多点微波通信、卫星通信和微波散射通信等。

1.地面微波中继通信由微波的传播特性可知,微波波束在自由空间中是以直线传播的,但地球是一个两极稍扁、赤道略鼓的椭球体,地表面是个椭球面,两地距离大于视距(60Km),就直接收不到对方发来的微波信号了。

另外,微波在空间传播过程中,能量要不断受到损耗,相位亦要发生变化。

因此,对于微波通信,为了获得比较稳定的传输特性,点到点的传输距离不宜太远。

为了实现地面上的远距离通信,就需要每隔50公里左右设置一个微波中继站。

中继站把前一站传来的信号经处理后转发到下一站去,直到终端站,构成一条中继通信线路。

图1-2 地面微波中继通信地面微波中继通信的微波天线一般安装在铁塔上,铁塔高度应保证相邻两站的天线满足视距传播要求。

在山区架设天线时,可适当利用地理条件,进行超视距中继通信,如可利用尖劈山头周围绕射障碍,获得绕射增益。

但是一般以不超过100~150Km为宜,否则由于信噪比过分减小而影响传输质量。

2.一点对多点微波通信一点对多点微波通信系统是一种分布式的无线电系统,它是在空间从一点到多点传输信息。

这种系统有中心站(基地台)和次级站(用户)组成的通信网络。

基地台应构成覆盖360°方向的圆形无线区域,而用户一侧只要设置一个面对基地台方向的小型定向天线,很容易地建立起通信线路。

每个用户站可以分配十几或数十个电话用户,在必要时还可通过中继站延伸至数百公里外的用户使用。

用户图1-3 点对多点微波通信该系统一般采用一对多点的预定分配时分多址(PA-TDMA),许多用户共用一种载频和一个基地台设备。

因此,无线频率得到有效利用,而且设备利用率亦高。

基地台的监控系统可高效地监控每个用户线路的状态和设备状态,并且基地台能为用户进行维修。

对于一些具有地址分散、业务量小的用户系统,如城市郊区、县城至农村村镇或沿海岛屿的用户、以及分散的居民点十分适用,较为经济。

3.卫星通信微波卫星通信是一种特殊的微波中继通信系统,它的中继站设在离地面36000公里的天空中。

这种系统的通信卫星的运行方向与地球自转的方向相同,且围绕地球一周的时间为24小时。

因此,从地球上看这运行的通信卫星,相对是静止的,所以称为同步通信卫星。

通信卫星上有微波转发设备,它把地面站发射来的微波信号接收下来,经变频放大等处理后,再转发给另一个地面站,完成中继通信任务。

有关卫星通信的详细内容将在《卫星通信》课程中讲述。

4. 微波散射通信这种通信系统是利用大气对流层不均匀气团的散射作用,使一部分微波信号反射回地面,实现远距离微波通信。

其一跳距离(一次跨越通信距离)可达数百公里。

不过利用散射到达接收端的微波信号已很微弱了,为了实现可靠通信,需要采用大功率发射,以及高增益低噪声接收技术。

同时,由于散射信号是不规则变化的,为了克服和减少这种变化的影响,还需要采用分集接收技术。

微波散射通信大多用于军事微波通信方面,一般较少采用于民用通信。

本书主要讨论微波中继通信。

图1-5 微波散射通信六、数字微波通信的应用与光纤通信和卫星通信这两种传输手段相比,微波通信具有组网灵活,建设周期短,成本低等优点,特别适合于在山区、铁路等铺设光缆不便的地方使用,目前主要应用在四个方面:1.干线光纤传输的备份及补充点对点的SDH微波、PDH微波主要用于干线光纤传输系统在遇到自然灾害时的紧急修复,以及由于种种原因不适合使用光纤的地段和场合。

例如,在1976年的唐山大地震中,在京津之间的同轴电缆全部断裂的情况下,六个微波通道全部安然无恙;九十年代的长江中下游的特大洪灾中,微波通信又一次显示了它的巨大威力。

2.农村、海岛等边远地区和专用通信网中为用户提供基本业务的场合这些场合可以使用微波点对点、点对多点系统,微波频段的无线用户环路也属于这一类。

3.城市内的短距离支线连接如移动通信基站之间、基站控制器与基站之间的互连、局域网之间的无线联网等等,既可使用中小容量点对点微波,也可使用无需申请频率的微波数字扩频系统。

4.宽带无线接入(如LMDS)宽带无线接入技术以投资少、见效快、组网灵活等优势,在接入市场具有较强的竞争力,并能在日趋激烈的高速数据业务竞争中快速占领有效市场。

作为宽带固定无线接入系统的代表,LMDS(本地多点分配业务)技术已日益成熟。

LMDS是上世纪90年代发展起来的一种宽带无线接入技术,能够在3-5km的范围内,以点对多点的广播信号传送方式,传输话音、视频和图像等多种宽带交互式数据及多媒体业务,速率可达155Mbit/s。

与光纤等有线接入手段相比,LMDS具有建设成本低、项目启动快、建设周期短、维护费用低等诸多优势。

1.2 微波中继通信系统本节需要掌握的内容:➢微波站的分类➢不同微波站的功能、设备➢三种微波中继方式的概念、特点和应用➢数字微波通信系统的组成一、微波站的分类微波中继通信系统由许多微波站构成,除了由若干个终端站以外,还有许多中继站。

对于一条微波中继线而言,它通常具有两个终端站,若干个中继站,中继站的数目取决于线路的传输距离。

下图所示为一个典型的微波中继通信线路的组成。

端站间站生中继站纽站主站)端站图1-6 数字微波中继线路的组成终端站是指位于微波线路两端的微波站。

相关文档
最新文档