围岩正应力计算公式

合集下载

第二章矿山岩体内应力及其重新分布

第二章矿山岩体内应力及其重新分布
31
第三节 围岩的极限平衡与支承压力分布
本节介绍:围岩极限平衡区及其应力分布、支承压力形成及其分布
一、围岩内应力状态及“三区”的形成:
1、孔周围岩体的力学状态: 切向应力分布: (大——小) 受力状态: (单向——三向) 抗压强度: (低——高) 破坏顺序: (外——里)
极限平衡区
32
2、围岩三区的形成:
5) Hmax Hmin Z
构造应力目前尚难以计算,只能实测。
5
3、构造应力(最大主应力)的现场判断: 1)水平巷道,破坏具有明显的方向性,且两帮破坏程度较 顶底破坏程度大时; 2)垂直巷道,巷帮发生对称性破坏时,沿破坏连线方向; 3)与褶皱脊线(褶曲轴)、逆断层走向垂直; 4)沿X形节理(断裂)锐角平分线方向; 5)与纵张节理走向一致。
未开采前,地下空间已形成原岩应力场 在较大范围内,原岩应力场分布不均 不均衡应力场随围岩变形及时间推移将趋于平衡
2
二、自重应力: 由地心引力引起的应力场叫自重应力
铅直应力:z H
水平应力:x yz
其中: ——侧压系数
海 姆: 1 (静水压力理论)
金尼克:
( 弹性侧压理论)
1
一般 0.2—0.3 则 0.2— 50.43
深度
H max 1
RT
9
第二节 “孔”周围的应力分布
本节介绍:园孔等压、园孔不等压、椭圆、矩形等孔周围应力分布。
一、应力集中概念:
应力集中——受力体内,孔周围局部区域应力高于其 它区域应力的现象。
应力集中特点: 集中应力大小与所受应力有关; 与孔的曲率有关,曲率大,集中程度大; 集中是局部的; 影响范围与孔径有关。
1)平衡微分方程: (极坐标系)

7.矿山压力及其控制(第七章)

7.矿山压力及其控制(第七章)

巷道的稳定性和周边位移主要取决于岩层原岩 应力p,反映岩石强度性质的内摩擦角和粘聚力等。 他们之间的关系为:
①巷道的周边位移随巷道所在位置原岩应力的
增大,呈执教函数关系迅速增长;指数的大小取 决于的变化,值越小,指数越大,u值增长愈迅速。
②巷道的塑性区半径R和周边位移u随内摩擦角
和粘聚力c的减小,即围岩强度降低,显著增大。
(3) 采动引起的地板岩层应力分布
煤层开采引起回采空间周围岩层应力重新分布, 不仅在回采空间周围煤体上造成应力集中,还会 向底板深部传递,在底板岩层一定范围内重新分 布应力,成为影响底板巷道布置和维护的重要因 素。 按着在集中载荷、均布载荷、三角形载荷作用下 计算半无限平面体内应力的有关公式,计算在三 种典型的载荷作用下底板岩层的应力分布(图7- 5)。
式中
R-大圆形巷道半根据巷道断面形状进行 具体计算。一般情况下可借鉴上述公式近似计算。
如围岩局部的应力超过岩体强度,巷道周边向岩体学部 扩展到一定范围形成塑性变形区,在塑性区与弹性区交界处 围岩应力集中。确定相邻巷道间距时,相邻巷道的应力影响 带不宜超过巷道塑性变形区与弹性变形区的交界。各向等压 条件下,圆形巷道塑性区、弹性区内围岩应力分布和塑性区 半径可解析计算。对于非圆形巷道的弹塑性围岩体,其应力 分布和塑性区半径可采用数值计算方法,根据岩体基本质量 级别按表7-1选用岩体物理力学参数 .
如相邻巷道的应力影响带彼此重叠,但没有到达相邻 巷道,可进行巷道围岩应力值的叠加。各向同性弹性岩体 中单一圆形巷道围岩内应力分布计算表明,在静水压应力 场中,巷道的应力影响区形状为半径等于6a的圆(a为巷 道断面径)。在非静水压应力场中,巷道的应力影响区形 状不再是圆形,一般为长轴不大于12a的椭圆。 因此,断面相同的两圆形巷道的间距D为 6r<D<12r 半径不同的两圆形巷道的间距D为 6R<D<6(r+R)

地下洞室围岩应力与围岩压力计算

地下洞室围岩应力与围岩压力计算

第六章地下洞室围岩应力与围岩压力计算第一节概述一、地下洞室的定义与分类1、定义: 地下洞室(underground cavity)是指人工开挖或天然存在于岩土体中作为各种用途的地下空间。

2、地下洞室的分类按用途:矿山巷道(井)、交通隧道、水工隧道、地下厂房(仓库)、地下军事工程按洞壁受压情况:有压洞室、无压洞室按断面形状:圆形、矩形、城门洞形、椭圆形按与水平面关系:水平洞室、斜洞、垂直洞室(井)按介质类型:岩石洞室、土洞二、洞室围岩的力学问题(1)围岩应力重分布问题——计算重分布应力1)天然应力:人类工程活动之前存在于岩体中的应力。

又称地应力、初始应力、一次应力等。

2)重分布应力:由于工程活动改变了的岩体中的应力。

又称二次分布应力等。

地下开挖破坏了岩体天然应力的相对平衡状态,洞室周边岩体将向开挖空间松胀变形,使围岩中的应力产生重分布作用,形成新的应力状态,称为重分布应力状态。

(2)围岩变形与破坏问题——计算位移、确定破坏范围在重分布应力作用下,洞室围岩将向洞内变形位移。

如果围岩重分布应力超过了岩体的承受能力,围岩将产生破坏。

(3)围岩压力问题——计算围岩压力围岩变形破坏将给地下洞室的稳定性带来危害,因而,需对围岩进行支护、衬砌,变形破坏的围岩将对支衬结构施加一定的荷载,称为围岩压力(或称山岩压力、地压等)。

(4)有压洞室围岩抗力问题——计算围岩抗力在有压洞室中,作用有很高的内水压力,并通过衬砌或洞壁传递给围岩,这时围岩将产生一个反力,称为围岩抗力。

天然应力,没有工程活动 开挖洞室后的应立场,为重分布应力,与天然应力有所改变在附近开挖第二个洞室,则视前一个洞室开挖后的应力场为天然应力,第二个洞室开挖后的应力场为重分布应力第二节围岩重分布应力计算一、围岩重分布应力的概念围岩:洞室开挖后,应力重分布影响范围内的岩体。

围岩(重分布)应力:应力重分布影响范围内岩体的应力。

围岩应力与围岩性质、洞形、洞室受外力状态有关。

第10章岩体原位应力测试

第10章岩体原位应力测试
◦ 四分向环式钻孔变形计、电阻应变仪或压磁应力计(包括加 力装置)、压磁应力仪、送进杆、水平及垂直定向装置、围 压率定器、稳压电源设备

钻孔设备
◦ 钻机及相应配套的岩芯管、钻杆等;φ36mm钻头, φ110mm或φ130mm钻头;孔底磨平钻头和锥形钻头
(3)用f36mm钻头钻 一深约300-400mm的 同心孔,并将钻孔冲洗 干净;
(4)测试要点 1)清除试面上松动岩块并把它整平,其范围不小于解除 岩芯直径的2倍。岩面起伏差不超过0.5cm,要做好试面 的现场描述; 2)在已处理的试验面上,埋设应变计丛(或贴应变片丛)。 每组应变丛不得少于三只应变计(片)。应变计(片)埋好后, 应加保护罩,以防损坏; 3)把应变计(片)与应变仪接通,读出并记录各应变计(片) 的初始值; 4)用钻机分级掏槽,并记录其应变读数。每级掏深一般 为2cm,掏槽的最终深度一般要求达到应变读数稳定时为 止,并不得小于解除岩芯直径的0.5倍。
(1)测试原理 应力解除法是在岩体表面和地下洞室壁上预先埋设应变计 (或贴电阻片),然后在其周围掏环形槽(图),并同时测量岩体 应力解除后的应变值。根据岩体应力解除前后的应变变化和 岩体的弹性模量,计算岩体的表面应力。
(2)应用范围 应力解除法常用于岩体表面和地下洞室围岩表面的应 力测量。每次试验只能确定平面上两个方向的最大、最 小主应力。如果要确定该处的三向应力,至少要在三个 不同方向的面上进行三次测量。 (3)主要仪器设备 1)钢弦应变计和钢弦应变仪或电阻应变片和电阻应变 仪。 2)应变计保护罩。 3)钻机及相应配套的器材,用于掏槽。
(4)测试要点 1)把试验面上的松动岩石清除,并使之基本平整,并做好现 场描述; 2)在已处理好的岩面上安装应变计,应变计的方向应与解除 槽长轴垂直,应变计的中心点与解除槽长轴中心的距离应 为槽长的1 /3。应变计安装好后应加盖保护罩,然后进行 多次读数,以确定应变计的初值。也可在解除槽两侧预埋 测点,用可拆卸的位移计量测; 3)用钻机或切割机进行分级掏槽,每级掏槽深度为2cm,同 时记录相应的应变计读数。槽的深度一般要求大于扁千斤 顶的尺寸,并使加载的扁千斤顶外缘埋入岩面25mm,以 防止加载过程中岩石局部破坏; 4)用清水将槽内的岩粉等冲洗干净,并把调制好的水泥砂浆 灌入槽内,再把扁千斤顶推入并捣实砂浆。必须严防浆体 中夹入气泡,否则将损坏扁千斤顶或使试验结果不可靠; 5)待砂浆凝固后,接通扁千斤顶和油泵,即可加压进行应力 恢复试验,一般采用分级加压并同时记录应变计读数。最 大一级压力应大于解除结束时应变计测读的相应压力。

岩体力学计算题

岩体力学计算题

计算题四、岩石的强度特征(1) 在劈裂法测定岩石单轴抗拉强度的试验中,采用的立方体岩石试件的边长为5cm,一组平行试验得到的破坏荷载分别为16.7、17.2、17.0kN,试求其抗拉强度。

解:由公式σt=2P t/πa2=2×P t×103/3.14×52×10-4=0.255P t(MPa)σt1=0.255×16.7=4.2585σt2=0.255×17.2=4.386σt3=0.255×17.0=4.335则所求抗拉强度:σt==(4.2585+4.386+4.335)/3=4.33MPa。

(2) 在野外用点荷载测定岩石抗拉强度,得到一组数据如下:试计算其抗拉强度。

(K=0.96)解:因为K=0.96,P t、D为上表数据,由公式σt=KI s=KP t/D2代入上述数据依次得:σt=8.3、9.9、10.7、10.1、7.7、8.7、10.4、9.1。

求平均值有σt=9.4MPa。

(3) 试导出倾斜板法抗剪强度试验的计算公式。

解:如上图所示:根据平衡条件有:Σx=0τ-P sinα/A-P f cosα/A=0τ=P (sinα- f cosα)/AΣy=0σ-P cosα-P f sinα=0σ=P (cosα+ f sinα)式中:P为压力机的总垂直力。

σ为作用在试件剪切面上的法向总压力。

τ为作用在试件剪切面上的切向总剪力。

f为压力机整板下面的滚珠的磨擦系数。

α为剪切面与水平面所成的角度。

则倾斜板法抗剪强度试验的计算公式为:σ=P(cosα+ f sinα)/Aτ=P(sinα- f cosα)/A(4) 倾斜板法抗剪强度试验中,已知倾斜板的倾角α分别为30º、40º、50º、和60º,如果试样边长为5cm,据经验估计岩石的力学参数c=15kPa,φ=31º,试估计各级破坏荷载值。

围岩压力计算

围岩压力计算

1围岩压力计算深埋和浅埋情况下围岩压力的计算方式不同,深埋和浅埋的分界按荷载等效高度值,并结合地质条件、施工方法等因素综合判断。

按等效荷载高度计算公式如下:HP =(~)qh式中: Hp——隧道深浅埋的分界高度;hq ——等效荷载高度,qh=qγ;q——垂直均布压力(kN/m2);γ——围岩垂直重度(kN/m3)。

二次衬砌承受围岩压力的百分比按下表取值:表复合式衬砌初期支护与二次衬砌的支护承载比例浅埋隧道围岩压力的计算方法隧道的埋深H大于hq而小于Hp时,垂直压力QB Bt tqH==γH(1-λθ)浅浅tan。

表各级围岩的θ值及φ值2(tan 1)tan tan tan c cc ϕ+ϕβϕ+ϕ-θc tan =tan侧压力系数()tan tan tan tan tan tan tan tan cc c β-ϕλ=β1+βϕ-θ+ϕθ⎡⎤⎣⎦作用在支护结构两侧的水平侧压力为:e 1=γh λ ; e 2=γ(h+Ht)λ 侧压力视为均布压力时:Ⅴ级围岩的等效荷载高度hq=×24×[1+×(10-5)]= Hp==27m,H<Hq,故为浅埋。

取φ0=45°,θ=φ0=27°,h=20m ,tan β=,λ=,tan θ=, 计算简图:()212+1e =e e垂直压力q=19×20×20×10)=mPg=πdγ=π××25=m地基反力P=me1=γhλ=19×20×=e2=γ(h+Ht)λ=19×(20+×=水平均布松动压力e=(e1+e2)/2=mⅤ级围岩二衬按承受50%围岩压力进行计算,则垂直压力为q×50%=m地基反力为P×50%=m水平压力为e×50%=m2衬砌结构内力计算表等效节点荷载表轴力、剪力、弯矩详细数据50+0557********51+05409972930652+05240502556953+052115954+0517015内力图分析(1)轴力:由ANSYS建模分析围岩衬砌内力得出轴力图如图,最大轴力出现在仰拱段,其值为。

岩石力学第四章 巷道围岩应力分布及其稳定性分析

岩石力学第四章  巷道围岩应力分布及其稳定性分析

pi
Cct g
1 1
sin sin
r a
1sin
Cctg
由厚壁筒公式:
r
p1
R2 0
r2
R
R02 r2
p1
R2 0
r2
R
R02 r2
r 2p
塑性区半径的确定:
1sin
R0
a
p pi
Cctg Cctg
1
sin
2sin
塑性区围岩应力分布规律:
当λ=1时,根据围岩变形状态,可将巷道周围岩体从周边开始 向深部分为4个区域:
λ不同时切向应力随角度变化的对应值
θ

15°
30°
45°
60°
90°
λ
1
2p
2p
2p
2p
2p
2p
1/2
2.5p 2.36p 2p 1.5p
p
0.5p
1/3
2.66p 2.49p 2p 1.33p 0.66p 0
1/4
2.75p 2.55p 2p 0.8p 0.5p -0.25p
2、椭圆形巷道次生应力分布
③、弹性变形区:区内岩体处于弹性状态,区内各点应力高于原 岩应力,应力接触后能恢复到原岩应力状态。
④、原岩状态区:不受开挖影响,仍处于原岩状态。
当λ≠1时,塑性区的形状随测压系数λ不同而改变,此外塑性 区的形状还受巷道形状、围岩强度和原岩应力大小的影响。
影响塑性区半径的因素:
①、巷道所在处的原岩应力越大,巷道埋深越深,则塑性区范围 越大。
u
ua
u0
1
2E
pa1
1
3
4 cos

围岩变形弹塑性分析

围岩变形弹塑性分析

精心整理§2.1隧道围岩重分布应力的计算隧道开挖前,岩体中每个质点均受到天然应力的作用而处于相对平衡状态;隧洞开挖后,洞壁岩体因失去了原有岩体的支撑,破坏了原有的平衡状态,从而产生向洞内空间的膨胀变形,其结果又改变了相邻质点的相对平衡关系,引起应力、应变和能量的重新调整,达到新的平衡关系,形成新的应力状态。

2.1.1弹性围岩重分布应力对于那些坚硬致密的块状岩体,当天然应力大约等于或小于其单轴抗压强度的一般时,隧道开挖后的围岩将呈弹性变形状态。

这类围岩可近似视为各向同性、连续、均质的线弹性体,其围岩应力重分布可用弹性力学的基本理论来分析,隧洞半径相对于洞长很小时,可按平面应变问题考虑,围岩重分布应力可用柯西(Kirsh )课题求解。

图2-1是柯西课题的简化模型。

设无限大弹性薄板,在边界上受沿X 方向的外力P 作用,薄板中有一半径为R 0的圆形小孔。

取如图极坐标,薄板中任一点(,)的应力及方向如图所示,按平面问题考虑,不计体力,则点的各应力分量,即径向应力、环向应力和剪应力与应力函数间的关系,根据弹性理论可表示为:22222221111r r r r r r r r r θθθθφφσθφσφφτ∂∂=+∂∂∂=∂∂∂⎫⎪⎪⎪⎪=⎬⎪⎪⎪⎪⎭-∂∂∂(2-1) 上式的边界条件为:()()()()000cos 222sin 22r r br r b r r r br bp p bR p b R b R σθτθστ====⎫=+⎪⎪⎪=-⎬⎪⎪==⎪⎭(2-2)设满足该方程的应力函数φ是:()222ln cos 2A r Br Cr Dr F φθ-=++++(2-3)带入上式并考虑边界条件,可求得应力函数为:22220022200ln 1cos 22222pR R r r r R R r φθ⎡⎤=-----⎢⎥⎢⎥⎣⎦(2-4) 代入可得各应力分量:2400244200423(1)(1)cos 2232(122r R R r r R R rprp θθσθτθ⎪⎡⎤⎪=+-+⎢⎥⎬⎢⎥⎪⎣⎦⎪⎪=--+⎪⎭(2-5) 式中,x σ,θσ,r θτ分别为M 点的径向应力、环向应力和剪应力,以压应力为正,拉应力为负;θ为M 点的极角,自水平轴(x 轴)起始,反时针方向为正;r 为径向半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

先说Kv值的计算,Kv值指围岩的完整性系数,是表现围岩完整性的定量指标之一。

Kv=(Vpm/Vpr)^2,其中Vpm是岩体内的弹性波速,Vpr是岩石的弹性波速。

围岩越完整,岩体内裂隙越少,其比值约接近1。

这个值还真得要通过对代表性的点或段进行声波测试才能得出。

就目前国内计算围岩压力的方法,是将坑道开挖的松弛围岩质量作为荷载加在支护结构上。

但松弛荷载的几种计算方法,一种是经验公式,是根据单线铁路施工塌方的统计资料得到的经验公式,目前铁路、公路的隧道设计规范仍沿用了这个公式。

另外是基于太沙基或普氏理论的出的公式。

具体可以查阅《公路隧道设计规范》《铁路隧道设计规范》。

由于围岩压力计算跟具体的洞室形状、施工方法、时间效应等相关度太大,规范中的计算参数过于经验化,应该来说客观性比较缺乏。

比如根据塌方的到的经验公式,其针对的情况是跨度5-10m的马蹄形断面,就目前动辄15m以上的跨度,扁平率较大的隧道而言,取值是不甚合理的。

而通过有限元的方法计算,还有一些计算公式,但计算的前提大部分是假定围岩是理想弹塑性介质,与实际的岩土材料应力-应变性质不尽相同。

尤其对于破裂的岩体而言,问题更为突出。

而就大多数需要计算的地下结构而言,往往是处于软岩或破碎岩体之中。

比较能反应实际隧道压力情况情况的办法当然是通过直接测定,但无论是通过压力盒直接测定或形变间接推算或通过监控信息进行反演计算,都还比较困难。

对于围岩松动圈的具体测定我个人比较认可通过钻孔进行超声波探测。

就个人经验而已,双车道隧道的松弛半径大概在1.5倍的开挖洞径,围岩荷载按0.5-1倍洞径计算比较合适。

相关文档
最新文档