围岩压力计算

合集下载

地下洞室围岩应力与围岩压力计算

地下洞室围岩应力与围岩压力计算

第六章地下洞室围岩应力与围岩压力计算第一节概述一、地下洞室的定义与分类1、定义: 地下洞室(underground cavity)是指人工开挖或天然存在于岩土体中作为各种用途的地下空间。

2、地下洞室的分类按用途:矿山巷道(井)、交通隧道、水工隧道、地下厂房(仓库)、地下军事工程按洞壁受压情况:有压洞室、无压洞室按断面形状:圆形、矩形、城门洞形、椭圆形按与水平面关系:水平洞室、斜洞、垂直洞室(井)按介质类型:岩石洞室、土洞二、洞室围岩的力学问题(1)围岩应力重分布问题——计算重分布应力1)天然应力:人类工程活动之前存在于岩体中的应力。

又称地应力、初始应力、一次应力等。

2)重分布应力:由于工程活动改变了的岩体中的应力。

又称二次分布应力等。

地下开挖破坏了岩体天然应力的相对平衡状态,洞室周边岩体将向开挖空间松胀变形,使围岩中的应力产生重分布作用,形成新的应力状态,称为重分布应力状态。

(2)围岩变形与破坏问题——计算位移、确定破坏范围在重分布应力作用下,洞室围岩将向洞内变形位移。

如果围岩重分布应力超过了岩体的承受能力,围岩将产生破坏。

(3)围岩压力问题——计算围岩压力围岩变形破坏将给地下洞室的稳定性带来危害,因而,需对围岩进行支护、衬砌,变形破坏的围岩将对支衬结构施加一定的荷载,称为围岩压力(或称山岩压力、地压等)。

(4)有压洞室围岩抗力问题——计算围岩抗力在有压洞室中,作用有很高的内水压力,并通过衬砌或洞壁传递给围岩,这时围岩将产生一个反力,称为围岩抗力。

天然应力,没有工程活动 开挖洞室后的应立场,为重分布应力,与天然应力有所改变在附近开挖第二个洞室,则视前一个洞室开挖后的应力场为天然应力,第二个洞室开挖后的应力场为重分布应力第二节围岩重分布应力计算一、围岩重分布应力的概念围岩:洞室开挖后,应力重分布影响范围内的岩体。

围岩(重分布)应力:应力重分布影响范围内岩体的应力。

围岩应力与围岩性质、洞形、洞室受外力状态有关。

深浅埋划分

深浅埋划分
深埋隧道围岩压力的确定(工程类比法) ⑴ 深埋隧道围岩压力的确定(工程类比法) 按下式计算: 围岩竖向匀布压力q 按下式计算:
s-1
q = 0.45 ×2 ×γω (kN/m2)
围岩级别, --6 式中 :S—围岩级别,S=4--6; 围岩容重, γ— 围岩容重, (kN/m3); ω=1+ i(B-5) — 宽度影响系数; 宽度影响系数; i(BB — 隧道宽度,(m); 隧道宽度,(m ,(m); i —以B=5m为基准,B每增减1m时的围岩压力 为基准, 每增减1m 1m时的围岩压力 增减率。 增减率。 当B<5m,取i =0.2;当B > 5m,取i =0.1。


深埋隧道围岩松散压力值是以施工坍方平均 深埋隧道围岩松散压力值是以施工坍方平均
高度(等效荷载高度值)为根据, 高度(等效荷载高度值)为根据,为了形成此高 度值,隧道上覆岩体就有一定的厚度。根据经 度值,隧道上覆岩体就有一定的厚度。 验,这个深度通常为2~2.5倍的坍方平均高度 这个深度通常为2 2.5倍的坍方平均高度 通常为 值
在矿山法施工的条件下
I~Ⅲ级围岩取 Hp=2hq Ⅳ~Ⅵ级围岩取 Hp=2.5hq
当隧道覆盖层厚度H≥Hp时为深埋, 时为深埋,
H<Hp时为浅埋
深埋隧道围岩压力的确定(工程类比法) ⑴ 深埋隧道围岩压力的确定(工程类比法)
q = 0.45 ×2
● 适用条件
s-1
×γω (kN/m2)
① H/B < 1.7, 式中H为隧道高度; 1.7, 式中H为隧道高度; 深埋隧道,IV—VI级围岩 级围岩; ② 深埋隧道,IV—VI级围岩; 不产生显著偏压力及膨胀力的一般隧道; ③ 不产生显著偏压力及膨胀力的一般隧道; 采用钻爆法施工的隧道。 ④ 采用钻爆法施工的隧道。

围岩压力计算方法

围岩压力计算方法
5
围岩压力的概念
⑷ 冲击压力:是指围岩中积累了大量的弹性变性能 之后,由于隧道的开挖,围岩的约束被解除,能量 突然释放所产生的压力。
冲击压力是岩体能量的积累与释放问题,所以 它与弹性模量直接相关。弹性模量较大的岩体, 在高地应力作用下,易于积累大量的弹性变形能, 一旦遇到适宜条件,就会突然猛烈的大量释放。
13
确定方法
理论估算法:是在实践的基础上从理论上研究围岩 压力的方法。由于地质条件的不确定性,影响围岩 压力的因素多,企图建立一种完善的和适合各种 实际情况的通用围岩压力理论及计算方法是困难 的。
14
一般规定
1、Ⅰ-Ⅳ级围岩中的深埋隧道,围岩压力主要为形 变压力,其值可按释放荷载计算。 2、Ⅳ-Ⅵ级围岩中深埋隧道的围岩压力为松散荷 载时,其垂直均布压力及水平均布压力可按下列 公式计算:
1、围岩压力
隧道开挖后,因围岩变形或松散等原因, 作用于洞室周边岩体或支护结构上的压力。 从狭义上来理解,围岩压力是指围岩作用在 支护结构上的压力。在工程中一般研究狭义 的围岩压力。
2
围岩压力的概念
1、围岩压力的分类(按作用力发生形态) ⑴ 松散压力:是指由于开挖而松动或坍塌的岩体以 重力形式直接作用在支护结构的压力。 ⑵ 形变压力:是指由于围岩变形受到与之密贴的 支护的抑制,而使围岩与支护结构共同变形过程中, 围岩对支护结构施加的接触压力。 ⑶ 膨胀压力:是指由于围岩吸水而膨胀崩解所引 起的压力。 ⑷ 冲击压力:是指围岩中积累了大量的弹性变性 能之后,由于隧道的开挖,围岩的约束被解除,
IV~VI级围岩取 Hp=2.5hq
当隧道覆盖层厚度H≥Hp时为深埋,
H<Hp时为浅埋
21
计算公式
1、埋深(H)小于或等于等效荷载高度hq时, 荷载视为均布竖向压力

普氏理论计算围岩压力

普氏理论计算围岩压力

一、普氏系数的确定
二、硐室围岩压力
注:1、2、主要参考:肖树芳、杨淑碧编,1987,岩体力学,地质出版社,P125-133。

侧向压力P h 按朗金主动土压理论进行计算;
P 0为仅考虑硐室两侧岩体在较大压力作用下向硐内挤入时形成的底部围岩压力。

普氏理论计算围岩压力
适用条件:假设岩体为不具有内聚力的松散体,如断裂破碎带或强风化带内岩体.
f 值一般可根据岩石单轴抗压强度来确定,即f =σc /100;也可根据类比法与经验确定。

各种岩石 的f 值的经验数值列于下页附表1。

实际工作中可以根据前期塌腔形状反推该类围岩的f 值。

当岩石性质较差(例如当f <2时),硐室开挖后不但顶部要塌落,两侧也可能不稳定而出现向硐内的滑动,压力拱将继续扩大到以拱跨为2a 的新压力拱,此时新拱跨2a、硐顶垂直围岩压力、侧向围岩压力及由此产生的底部围岩压力按下表求取:。

围岩压力计算

围岩压力计算

1围岩压力计算深埋和浅埋情况下围岩压力的计算方式不同,深埋和浅埋的分界按荷载等效高度值,并结合地质条件、施工方法等因素综合判断。

按等效荷载高度计算公式如下:p=()h q式中:H p――隧道深浅埋的分界高度;h q ----------------- 等效荷载高度,h q = ^ ;q 垂直均布压力(kN/m );丫-- 围岩垂直重度(kN/m)o次衬砌承受围岩压力的百分比按下表取值:表复合式衬砌初期支护与二次衬砌的支护承载比例浅埋隧道围岩压力的计算方法隧道的埋深H大于hq而小于Hp时,垂直压力q浅広—tanB t B t值及值作用在支护结构两侧的水平侧压力为:e i =Y h 入;e 2=Y (h+Ht)入 侧压力视为均布压力时:Hp==27m,H<Hc 故为浅埋。

取© 0=45°,0 =© 0=27°, h=20m tan B =,入=,tan 0 =, 计算简图:tan =ta n侧压力系数(ta n 2ctan c1)tan tantantantantan tan c tan tan c tan盤向压力地基反力V 级围岩的等效荷载高度 4hq=x 2 X [1+ X (10-5)]=2e2垂直压力q=19X 20 X 20X 10)=mPg=n d 丫= nXX 25=m地基反力P=me i= 丫h 入=19X 20X =e2=Y (h+Ht)入=19X (20+ X =水平均布松动压力e=(e i+e2)/2=mV级围岩二衬按承受50汹岩压力进行计算,则垂直压力为q X 50%=m地基反力为P X 50%=m水平压力为e X 50%=m2衬砌结构内力计算表等效节点荷载表轴力、剪力、弯矩详细数据内力图分析(1)轴力:由ANSYSt 模分析围岩衬砌内力得出轴力图如图,最大轴力出 现在仰拱段,其值为。

轴力图(2)弯矩:由ANSYSt 模分析围岩衬砌内力得出弯矩图如图,最大正弯矩 出现在变截面段,其值为・m 最大负弯矩出现在拱顶,其值为・m■. 1761*137- tl3I-+0^-.1111*07-.13ZE+D7I60S ;+D7- .L1UE. ST=^5SETEF-1 口 二 Lxi JTJ uiEi -^..3ase+-o? ELD4 卑疵I : A 酩酣帯 ELEMM1HFG 21 231409illiLC力出MH 4酣IdELEff-5LI 眶SIsiESJETE-F-l 3TB4T1K«1M SITMiy —92 913An 21iieizii-52513 -3*6&B 2J53S B17€3I3SS&S-S-57^ 52£5«11037^ LGPLDL 5J弯矩图(3)剪力:由ANSYSt模分析围岩衬砌内力得出剪力图如图,最大剪现在仰拱段,其值为-30€^l-1€7337-550^3 111193 25045£-2朋"P -口佝4丄弱白160&14 2创他匚5J剪力图3. V 级围岩需要进行配筋计算(1)截面设计计算轴力:KN=2< 626380= 计算弯矩:KM=2< 92913=mE b =,C25混凝土,轴心受压强度设计值为:f cd =;HRB335级钢筋,抗拉强度设计值为:f sd =f s ; =300Mpa e=m/n=长细比I o /h=,按短柱计算,偏心距增大系数n 取 1,h o =h-a s =400-50=350mm①判别大小偏心受压e 0 148mm,e i q e a 148 20 168mm 0.3h 0 105mm,属于大偏心受压,2Ne “f c bh o (1 0.5 ) f y ' (h e a s ')2选取 5© 20, As=1570mm变形图A s21510mm垂直弯矩作用平面内的受压承载力:Nu=© (f cd As+fsd 'As')=+300x1572)=>N(=满足要求4. 截面强度验算按荷载- 结构模型进行设计时,最后要作截面验算。

隧道围岩分级及围岩压力

隧道围岩分级及围岩压力

隧道围岩分级及围岩压力隧道所穿过的地层是千变方化的,可能遇到各种工程性质不同的围岩。

隧道围岩分级是评价隧道围岩稳定性的重要参数,也是隧道支护方案设计和施工工艺确定的主要依据。

分级的正确与否直接影响着隧道施工和运营安全,因此,正确划分隧道围岩分级就显得尤为重要。

在围岩分级确定的情况下,如何确定支护结构上的作用力(即围岩压力)就成为正确、合理设计隧道结构的关键。

4.1 围岩岩性与初始应力4.1.1 围岩岩性隧道工程围岩是指地壳中受开挖活动影响的那一部分岩土体。

这个范围在横断面上约为6~10倍的洞径。

围岩的工程性质,一般包括三个方面:物理性质、水理性质和力学性质。

而对围岩稳定性最有影响的是力学性质,即围岩抵抗变形和破坏的性能。

围岩既可以是岩体,也可以是土体。

本书仅涉及岩体的力学性质。

岩体是在漫长的地质历史中形成的地质体,被许许多多不同方向、不同规模的断层面、层理面、节理面和裂隙面等各种地质界面切割为大小不等、形状各异的各种块体。

这些地质界面称为结构面或不连续面,这些块体称为结构体,岩体可以看作由结构面和结构体组合而成的具有结构特征的地质体。

所以,岩体的力学性质主要取决于岩体的结构特征、结构体岩石的特性及结构面的特性。

环境因素,尤其地下水和地应力对岩体的力学性质影响也很大。

在软弱围岩中,节理和裂隙比较发育,岩体被切割破碎,结构面对岩体的变形和破坏都不起主导作用,所以岩体的特性与结构体岩石的特性并无本质区别。

在完整而连续的岩体中亦是如此。

反之,在坚硬的块状岩体中,由于受软弱结构面切割,块体之间的联系减弱,此时,岩体的力学性质主要受结构面的性质及其在空间的组合所控制。

由此可见,岩体的力学性质必然是诸因素综合作用的结果。

岩体与岩石相比,两者有着很大的区别:与工程总体尺度相比,岩石几乎可以被认为是均质、连续和各向同性的介质;而岩体则具有明显的非均质性、不连续性和各向异性。

岩体抗拉变形能力差,因此,岩体受拉后很容易沿结构面发生断裂。

第六节 松散岩体的围岩压力计算

第六节 松散岩体的围岩压力计算

第六节围岩的松动压力计算浅埋:应力传递法,岩柱重量计算法。

深埋:自然冒落拱内岩体的自重或裂隙围内松动岩体的压力。

一、浅埋洞室围岩松动压力计算(2种方法)(一)岩柱法1、基本假设(1)松散岩体的C= 0 ;(2)围岩压力=岩柱的自重-柱侧面摩擦力;(3)破坏模式与受力状态如下图7-15 考虑摩擦力的计算简图l dllγnd σdT1σ3σ245ϕ+o245ϕ-o微元条滑动岩柱2、洞室顶压力的计算式中:γl —垂直应力;tg 2(45°–φ/2)—侧应力系数。

式中:d σn dl —侧面上的正压力;tg φ—摩擦系数。

微元条上的侧压力:d σn =γl tg 2(45°–φ/2)微元条上的摩擦力:dT =d σn dl tg φϕϕγϕϕγϕσtg tg H dltg tg l dl tg d dT F Hon HoHo)245( )245(222222-=⋅-⋅===⎰⎰⎰岩柱两侧面的总摩擦力为:洞顶岩柱自重:Q =2a 1γH a 1=a + h tg (45°–φ/2)根据假设求出洞顶压力集度(强度):⎪⎪⎭⎫⎝⎛-=-=11212a HK H a F Q q γ式中:K =tg 2(45°–φ/2)tg φ根据假设求出洞侧壁顶、底点压力强度:e 1= q tg 2(45°–φ/2)e 2= ( q +γh )tg 2(45°–φ/2)洞室断面衬砌受力图3、适用条件⎪⎭⎫⎝⎛=→=<KaHKaHm ax110dHdqe2e1e2e1q()0F-Q30><保证ϕ(二)泰沙基的围岩压力计算方法由微单元体的平衡条件推出围岩压力1、基本假设(1)认为岩体是松散体,但存在一定的粘聚力,且服从库仑准则:τ= c + σn tg φ(2)围岩的滑移模式和外力情况如图所示()02222111=-+-+dz a dz a a d s v v v γτσσσ2、围岩压力计算微元体的静力平衡条件:图7-16 垂直地层压力计算图()11111111111111111)ln()1())()]([)]([0)(02222A z a tg c tg a a dztg c tg a c tg a d a dzc tg ad a d dz c tg a dz a dz c tg a d dz a dz a d dz a dz a a d v v v v v v v v v s v s v v v +-=--=-⋅----=+-=+-=-++=-+=-+-+ϕλϕλσγϕλϕλσγϕλσγϕλσγσσϕλσγγϕλσσγτσγτσσσq,z ==v 0σ边界条件:za tg A A z a tg Aec tg a eA ec tg a 1111v 1)(v 1 - -ϕλϕλϕσλγϕσλγ-+-=-==-得:令)727()1(111-+--===⋅-⋅- H a tg H a tg v v v qe e tg c a p p H z ϕλϕλϕλγσ为:围岩压力的太沙基公式则,并令在洞顶处za tg z a tg qe e a tg a c ctg a A ⋅-⋅-+--=-=111)1(// -1v v 1ϕλϕλϕλγσϕσλγ任意深度的竖向应力为λ-岩体应力的侧压力系数())737()245()245(2221-⎪⎪⎭⎪⎪⎬⎫-+=-=ϕγϕtg h p e tg p e v v 3、适用条件主要用于松散岩体松动围岩压力的计算。

隧道围岩压力计算公式

隧道围岩压力计算公式

隧道围岩压力计算公式一、隧道围岩压力计算的基本原理地下隧道施工中,周围岩体对隧道的压力包括岩体重力及地表载荷对围岩的作用力两部分。

计算隧道围岩压力时需要考虑这两部分力的影响。

隧道围岩的重力即为岩体受重力作用的结果。

对于满足平衡条件的岩体,其重力可根据以下公式计算:G=γV其中,G为围岩重力,γ为围岩容重,V为岩体体积。

三、地表载荷计算公式地表载荷包括交通载荷、建筑物荷载等。

根据载荷的类型和特点,可以选取合适的计算公式进行计算。

例如,对于地面交通载荷,可以使用AASHTO公式、Burkill公式等进行计算。

根据隧道岩体的性质和周围环境的情况,可采用各种不同的计算公式。

下面列举几种常见的计算公式。

1. Culmann公式Culmann公式基于假设隧道周围岩体为弹性体,并假设岩体为各向同性的弹性体。

公式如下:P=2aγH/(√π)其中,P为围岩压力,a为自由差,γ为岩体容重,H为覆岩深度。

2. Moller公式Moller公式假设隧道周围岩体为半无限长的弹性体,该公式适用于围岩位于较深位置的隧道计算。

公式如下:P=(H/h)√πaγ其中,P为围岩压力,a为自由差,γ为岩体容重,H为覆岩深度,h 为地平面以上距离。

3.能量原理法能量原理法是根据岩体处于静力平衡状态时的能量等量原理得到的计算公式。

P = (2ah/V)∫(Fzdz)其中,P为围岩压力,a为自由差,V为岩体体积,F为岩体应力,z 为高度。

五、隧道围岩压力计算实例假设一个隧道,覆岩深度为H,岩体容重为γ,自由差为a。

根据Culmann公式,可计算出围岩压力:P=2aγH/(√π)六、综合考虑其他因素在实际工程中,还需要综合考虑其他因素,如地下水压力、地应力分布等。

这些因素会对计算结果产生一定的影响,需要在计算中进行相应的修正。

综上所述,隧道围岩压力计算涉及到地表载荷计算、岩体重力计算和计算公式的选择等多个方面。

在实际工程中,需要根据具体情况选取合适的计算公式,并综合考虑其他因素,以得到准确的围岩压力计算结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1围岩压力计算
深埋和浅埋情况下围岩压力的计算方式不同,深埋和浅埋的分界按荷载等效高度值,并结合地质条件、施工方法等因素综合判断。

按等效荷载高度计算
公式如下:H
P =(~)
q
h
式中: H
p
——隧道深浅埋的分界高度;
h
q ——等效荷载高度,
q
h=
q
γ

q——垂直均布压力(kN/m2);
γ——围岩垂直重度(kN/m3)。

二次衬砌承受围岩压力的百分比按下表取值:
表复合式衬砌初期支护与二次衬砌的支护承载比例
浅埋隧道围岩压力的计算方法
隧道的埋深H大于hq而小于Hp时,垂直压力
Q
B B
t t
q
H
==γH(1-λθ)


tan。

表各级围岩的θ值及
φ值
2(tan 1)tan tan tan c c
c ϕ+ϕβϕ+ϕ-θ
c tan =tan
侧压力系数()tan tan tan tan tan tan tan tan c
c c β-ϕλ=
β1+βϕ-θ+ϕθ
⎡⎤⎣⎦
作用在支护结构两侧的水平侧压力为:e 1=γh λ ; e 2=γ(h+Ht)λ 侧压力视为均布压力时:
Ⅴ级围岩的等效荷载高度hq=×24
×[1+×(10-5)]= Hp==27m,H<Hq,故为浅埋。

取φ0=45°,θ=φ0=27°,h=20m ,tan β=,λ=,tan θ=, 计算简图:
()21
2
+1e =
e e
垂直压力q=19×20×20×10)=m
Pg=πdγ=π××25=m
地基反力P=m
e1=γhλ=19×20×=
e2=γ(h+Ht)λ=19×(20+×=
水平均布松动压力e=(e1+e2)/2=m
Ⅴ级围岩二衬按承受50%围岩压力进行计算,则垂直压力为q×50%=m
地基反力为P×50%=m
水平压力为e×50%=m
2衬砌结构内力计算
表等效节点荷载
表轴力、剪力、弯矩详细数据
50+0557********
51+054099729306
52+052405025569
53+0521159
54+0517015
内力图分析
(1)轴力:由ANSYS建模分析围岩衬砌内力得出轴力图如图,最大轴力出现在仰拱段,其值为。

轴力图
(2)弯矩:由ANSYS建模分析围岩衬砌内力得出弯矩图如图,最大正弯矩出现在变截面段,其值为·m,最大负弯矩出现在拱顶,其值为·m。

弯矩图
(3)剪力:由ANSYS建模分析围岩衬砌内力得出剪力图如图,最大剪力出
现在仰拱段,其值为。

剪力图
变形图
3.Ⅴ级围岩需要进行配筋计算
(1)截面设计
计算轴力:KN=2×626380= 计算弯矩:KM=2×92913=m ξb =,
C25混凝土,轴心受压强度设计值为:f cd =;
HRB335级钢筋,抗拉强度设计值为:f sd =f sd '=300Mpa ; e=m/n=
长细比l 0/h=,按短柱计算,偏心距增大系数η取1, h 0=h-a s =400-50=350mm ① 判别大小偏心受压
,
1053.016820148,
148000mm h mm e e e mm e a i =≥=+=+==
属于大偏心受压,
202
011510)
'(')
5.01('mm a h f bh f Ne A A s y c s s =-⨯--==ξξα
选取5φ20,As=15702
mm
垂直弯矩作用平面内的受压承载力: Nu=φ(f cd As+fsd 'As ') =+300x1572) =>N(= 满足要求
4. 截面强度验算
按荷载-结构模型进行设计时,最后要作截面验算。

现行《铁路隧道设计规范》规定隧道结构计算分为“概率极限状态法设计”和“破损阶段法和容许应力法设计”两种形式。

对一般地区单线隧道整体式衬砌及洞门、单线隧道偏压衬砌及洞门、单线拱形明洞及洞门结构可采用概率极限状态法设计,也可以采用破损阶段法设计。

其他隧道结构则要求采用破损阶段法或容许应力法。

对混凝土矩形构件,当e>时,由抗压强度控制承载能力,不必检算抗裂;当e ≤时,由抗拉强度控制承载能力,不必检算抗压。

隧道结构截面抗压强度按下式计算:
bd R KN a ϕα≤
式中 K-安全系数 N-轴向力(MN )
Ra-混凝土或砌体的抗压极限强度(MPa ) α-轴心偏心影响系数 ϕ-构件纵向弯曲系数
b-结构的纵向计算宽度(取1m ) d-截面厚度
从抗裂要求出发,混凝土矩形截面偏心受压构件的抗拉强度按下式计算: KN(6e-d)≤φR 1bd 2
式中 R1-混凝土的抗拉极限强度
表混凝土和砌体结构的强度安全系数
强度验算:
M/Nmax=2081400=
M/Nmin=92913/626380=
=
1,选取第①种情况:e<=进行抗压强度控制验算
KN≤φαR a bd
α=(e/d)=
KN=2×2081400=4162800N
φαR a bd=1×××10^6×1×=6619880N
得KN≤φαR a bd,满足要求
2,选第②种情况:e>=
进行抗拉强度控制验算
KN(6e-d)≤φR1bd2
KN(6e-d)=3×626380×(6×)=920402N
φR1bd2=×1××1××10^6=498400N 得KN(6e-d)>φR1bd2,不满足要求
11。

相关文档
最新文档