必修一函数知识点整理和例题讲解(含答案)

合集下载

部编版高中数学必修一第四章指数函数与对数函数带答案知识点总结(超全)

部编版高中数学必修一第四章指数函数与对数函数带答案知识点总结(超全)

(名师选题)部编版高中数学必修一第四章指数函数与对数函数带答案知识点总结(超全)单选题1、已知函数f (x )=log a (x −b )(a >0且a ≠1,a ,b 为常数)的图象如图,则下列结论正确的是( )A .a >0,b <−1B .a >0,−1<b <0C .0<a <1,b <−1D .0<a <1,−1<b <02、下列计算中结果正确的是( )A .log 102+log 105=1B .log 46log 43=log 42=12 C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33 3、若32是函数f (x )=2x 2−ax +3的一个零点,则f (x )的另一个零点为( ) A .1B .2C .(1,0)D .(2,0)4、Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I(t)=K1+e −0.23(t−53),其中K 为最大确诊病例数.当I (t ∗)=0.95K 时,标志着已初步遏制疫情,则t ∗约为( )(ln19≈3)A .60B .63C .66D .695、果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度h 与其采摘后时间t (天)满足的函数关系式为ℎ=m ⋅a t .若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果多长时间后失去40%新鲜度( )A .25天B .30天C .35天D .40天6、下列各组函数中,表示同一个函数的是( )A .y =1与y =x 0B .y =x 与y =(√x)2C .y =2log 2x 与y =log 2x 2D .y =ln 1+x 1−x 与y =ln (1+x )−ln (1−x )7、设f(x)=log 2(1x+a +1)是奇函数,若函数g(x)图象与函数f(x)图象关于直线y =x 对称,则g(x)的值域为( )A .(−∞,−12)∪(12,+∞)B .(−12,12)C .(−∞,−2)∪(2,+∞)D .(−2,2)8、已知0<a <1,b <−1,则函数y =a x +b 的图像必定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限多选题9、若函数y =a x −(b +1)(a >0且a ≠1)的图像过第一、三、四象限,则必有( ).A .0<a <1B .a >1C .b >0D .b <010、(多选题)下列计算正确的是( )A .√(−3)412=√−33B .(a 23b 12)(−3a 12b 13)÷(13a 16b 56)=−9a a >0,b >0 C .√√93=√33D .已知x 2+x −2=2,则x +x −1=211、已知a ,b 均为正实数,若log a b +log b a =52,a b =b a ,则ab =( )A .12B .√22C .√2D .2填空题12、对数型函数f (x )的值域为[0,+∞),且在(0,+∞)上单调递增,则满足题意的一个函数解析式为______.部编版高中数学必修一第四章指数函数与对数函数带答案(十三)参考答案1、答案:D分析:根据函数图象及对数函数的性质可求解.因为函数f (x )=log a (x −b )为减函数,所以0<a <1又因为函数图象与x 轴的交点在正半轴,所以x =1+b >0,即b >−1又因为函数图象与y 轴有交点,所以b <0,所以−1<b <0,故选:D2、答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确;对于B :log 46log 43=log 36,故B 错误; 对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A3、答案:A分析:由32是函数f (x )=2x 2−ax +3的一个零点,可得a 值,再利用韦达定理列方程解出f (x )的另一个零点. 因为32是函数f (x )=2x 2−ax +3的一个零点,所以f (32)=2×(32)2−a ×32+3=0,解得a =5.设另一个零点为x 0,则x 0+32=52,解得x 0=1,所以f (x )的另一个零点为1.故选:A .4、答案:C分析:将t =t ∗代入函数I (t )=K 1+e −0.23(t−53)结合I (t ∗)=0.95K 求得t ∗即可得解.∵I (t )=K 1+e −0.23(t−53),所以I (t ∗)=K 1+e −0.23(t ∗−53)=0.95K ,则e 0.23(t∗−53)=19,所以,0.23(t ∗−53)=ln19≈3,解得t ∗≈30.23+53≈66.故选:C.小提示:本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.5、答案:B分析:根据给定条件求出m 及a 10的值,再利用给定公式计算失去40%新鲜度对应的时间作答.依题意,{10%=m ⋅a 1020%=m ⋅a 20,解得m =120,a 10=2,当ℎ=40%时,40%=120⋅a t , 即40%=120⋅a 10⋅a t−10,解得a t−10=4=(a 10)2=a 20,于是得t −10=20,解得t =30,所以采摘下来的这种水果30天后失去40%新鲜度.故选:B6、答案:D分析:分别计算每个选项中两个函数的定义域和对应关系,定义域和对应关系都相同的是同一个函数,即可得正确选项.对于A :y =1定义域为R ,y =x 0定义域为{x|x ≠0},定义域不同不是同一个函数,故选项A 不正确; 对于B :y =x 定义域为R ,y =(√x)2的定义域为{x|x ≥0},定义域不同不是同一个函数,故选项B 不正确; 对于C :y =2log 2x 的定义域为{x|x >0},y =log 2x 2定义域为{x|x ≠0},定义域不同不是同一个函数,故选项C 不正确;对于D :由1+x 1−x >0可得(x +1)(x −1)<0,解得:−1<x <1,所以y =ln 1+x 1−x 的定义域为{x|−1<x <1},由{1+x >01−x >0可得−1<x <1,所以函数y =ln (1+x )−ln (1−x )的定义域为{x|−1<x <1}且y =ln (1+x )−ln (1−x )=ln 1+x 1−x ,所以两个函数定义域相同对应关系也相同是同一个函数,故选项D 正确, 故选:D.7、答案:A分析:先求出f(x)的定义域,然后利用奇函数的性质求出a 的值,从而得到f(x)的定义域,然后利用反函数的定义,即可求出g(x)的值域.因为f(x)=log 2(1x+a +1),所以1x+a +1=1+x+a x+a >0可得x <−a −1或x >−a ,所以f(x)的定义域为{x|x <−a −1或x >−a},因为f(x)是奇函数,定义域关于原点对称,所以−a −1=a ,解得a =−12, 所以f(x)的定义域为(−∞,−12)∪(12,+∞), 因为函数g(x)图象与函数f(x)图象关于直线y =x 对称,所以g(x)与f(x)互为反函数,故g(x)的值域即为f(x)的定义域(−∞,−12)∪(12,+∞).故选:A .8、答案:A解析:根据指数函数的图象结合图象的平移可得正确的选项.因为0<a <1,故y =a x 的图象经过第一象限和第二象限,且当x 越来越大时,图象与x 轴无限接近.因为b <−1,故y =a x 的图象向下平移超过一个单位,故y =a x +b 的图象不过第一象限.故选:A .9、答案:BC分析:对底数a 分情况讨论即可得答案.解:若0<a <1,则y =a x −(b +1)的图像必过第二象限,而函数y =a x −(b +1)(a >0且a ≠1)的图像过第一、三、四象限,所以a >1.当a >1时,要使y =a x −(b +1)的图像过第一、三、四象限,则b +1>1,即b >0.故选:BC小提示:此题考查了指数函数的图像和性质,属于基础题.10、答案:BC解析:根据根式运算和指数幂的运算法则求解判断.A. √(−3)412=√3412=√33,故错误;B. (a 23b 12)(−3a 12b 13)÷(13a 16b 56)=−9a23+12−16b 12+13−56=−9a ,故正确; C. √√93=916=(32)16=313=√33,故正确;D. 因为x 2+x −2=(x +x −1)2−2=2,所以(x +x −1)2=4,则x +x −1=±2,故错误; 故选:BC11、答案:AD分析:令t =log a b ,代入可求出t ,可得a 与b 的关系式,再代入a b =b a 即可求出a ,b 的值. 令t =log a b ,则t +1t =52, 所以2t 2−5t +2=0,即(2t −1)(t −2)=0,解得t =12或t =2,即log a b =12或log a b =2,所以a =b 2或a 2=b ,因为a b =b a ,代入得2b =a =b 2或b =2a =a 2,所以a =4,b =2或a =2,b =4,所以a b =2或a b =12.故选:AD.小提示:本题主要考查了对数的运算及性质,属于中档题.12、答案:f (x )=|log 2(x +1)|(答案不唯一,满足f (x )=|log a (x +b )|,a >1,b ≥1即可) 分析:根据题意可利用对数函数的性质和图像的翻折进行构造函数.∵函数f (x )的值域为[0,+∞),且在(0,+∞)上单调递增,∴满足题意的一个函数是f (x )=|log 2(x +1)|.所以答案是:f (x )=|log 2(x +1)|(答案不唯一)。

高中数学必修一第四章指数函数与对数函数知识点总结全面整理(带答案)

高中数学必修一第四章指数函数与对数函数知识点总结全面整理(带答案)

高中数学必修一第四章指数函数与对数函数知识点总结全面整理单选题1、若函数f(x)=ln(ax+√x2+1)是奇函数,则a的值为()A.1B.-1C.±1D.0答案:C分析:根据函数奇函数的概念可得ln(−ax+√x2+1)+ln(ax+√x2+1)=0,进而结合对数的运算即可求出结果.因为f(x)=ln(ax+√x2+1)是奇函数,所以f(-x)+f(x)=0.即ln(−ax+√x2+1)+ln(ax+√x2+1)=0恒成立,所以ln[(1−a2)x2+1]=0,即(1−a2)x2=0恒成立,所以1−a2=0,即a=±1.当a=1时,f(x)=ln(x+√x2+1),定义域为R,且f(−x)+f(x)=0,故符合题意;当a=−1时,f(x)=ln(−x+√x2+1),定义域为R,且f(−x)+f(x)=0,故符合题意;故选:C.2、声强级L1(单位:dB)与声强I的函数关系式为:L1=10lg(I10−12).若普通列车的声强级是95dB,高速列车的声强级为45dB,则普通列车的声强是高速列车声强的()A.106倍B.105倍C.104倍D.103倍答案:B分析:设普通列车的声强为I1,高速列车的声强为I2,由声强级得95=10lg(I110−12),45=10lg(I210−12),求出I1、I2相除可得答案.设普通列车的声强为I1,高速列车的声强为I2,因为普通列车的声强级是95dB,高速列车的声强级为45dB,所以95=10lg(I110−12),45=10lg(I210−12),95=10lg(I110−12)=10(lgI1+12),解得−2.5=lgI1,所以I1=10−2.5,45=10lg(I210−12)=10(lgI2+12),解得−7.5=lgI2,所以I2=10−7.5,两式相除得I 1I 2=10−2.510−7.5=105,则普通列车的声强是高速列车声强的105倍. 故选:B.3、设a =log 2π,b =log 6π,则( ) A .a −b <0<ab B .ab <0<a −b C .0<ab <a −b D .0<a −b <ab 答案:D分析:根据对数函数的性质可得a −b >0,ab >0, 1b−1a <1,由此可判断得选项.解:因为a =log 2π>log 22=1,0=log 61<b =log 6π<log 66=1,所以a >1,0<b <1,所以a −b >0,ab >0,故排除A 、B 选项; 又1b −1a =a−b ab=log π6−log π2=log π3<log ππ<1,且ab >0,所以0<a −b <ab ,故选:D.4、如图所示,函数y =|2x −2|的图像是( )A .B .C .D .答案:B分析:将原函数变形为分段函数,根据x =1及x ≠1时的函数值即可得解. ∵y =|2x−2|={2x −2,x ≥12−2x ,x <1,∴x =1时,y =0,x ≠1时,y >0.5、已知a=log20.6,b=log20.8,c=log21.2,则()A.c>b>a B.c>a>bC.b>c>a D.a>b>c答案:A分析:由对数函数得单调性即可得出结果.∵y=log2x在定义域上单调递增,∴log20.6<log20.8<log21.2,即c>b>a.故选:A.6、若n<m<0,则√m2+2mn+n2−√m2−2mn+n2等于()A.2m B.2n C.−2m D.−2n答案:C分析:根据根式的计算公式,结合参数范围,即可求得结果.原式=|m+n|−|m−n|,∵n<m<0,∴m+n<0,m−n>0,∴原式=−(m+n)−(m−n)=−2m.故选:C小提示:本题考查根式的化简求值,属简单题,注意参数范围即可.7、已知a=ln1,b=30.3,c=1og54,则a,b,c的大小关系是()3A.a<b<c B.b<a<c C.a<c<b D.c<a<b答案:C解析:分别将a,b,c与0,1比较大小,从而得到a,b,c的大小关系.<ln1=0,b=30.3>30=1,0=log51<c=1og54<log55=1,所以可知b>c>a 因为a=ln13故选:C8、方程log2x=log4(2x+3)的解为()C.3D.−1或3答案:C分析:根据对数运算性质化为同底的对数方程,结合对数真数大于零可求得结果.∵log2x=log4(2x+3)=12log2(2x+3)=log2√2x+3,∴{x>02x+3>0x=√2x+3,解得:x=3.故选:C.多选题9、甲乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中甲因故障停止一会后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量y(个)与加工时间x(分)之间的函数关系,A点横坐标为12,B点坐标为(20,0),C点横坐标为128.则下面说法中正确的是()A.甲每分钟加工的零件数量是5个B.在60分钟时,甲比乙多加工了120个零件C.D点的横坐标是200D.y的最大值是216答案:ACD分析:甲每分钟加工的数量是600120=5,所以选项A正确;在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B错误;设D的坐标为(t,0),由题得△AOB∽△CBD,则有1220=128−20t−20,解可得t=200,所以选项C正确;当x=128时,y=216,所以y的最大值是216.所以选项D正确. 根据题意,甲一共加工的时间为(12−0)+(128−20)=120分钟,一共加工了600个零件,则甲每分钟加工的数量是600120=5,所以选项A 正确,设D 的坐标为(t,0),在区间(128,t)和(12,20 )上,都是乙在加工,则直线AB 和CD 的斜率相等, 则有∠ABO =∠CDB ,在区间(20,128)和(0,12)上,甲乙同时加工,同理可得∠AOB =∠CBD , 则△AOB ∽△CBD , 则有1220=128−20t−20,解可得t =200;即点D 的坐标是(200,0),所以选项C 正确; 由题得乙每分钟加工的零件数为600200=3个,所以甲每分钟比乙多加工5-3=2个,在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B 错误; 当x =128时,y =(128−20)×2=216,所以y 的最大值是216.所以选项D 正确. 故选:ACD10、(多选题)下列各式既符合分数指数幂的定义,值又相等的是( ) A .(-1)13和(−1)26B .343和13-43C .212和414D .4−32和(12)−3答案:BC分析:根据分数指数幂的定义以及运算法则逐个验证与化简,即可判断选择.A 不符合题意,(-1)13和(−1)26不符合分数指数幂的定义,但(-1)13=√-13=-1,(-1)26=√(-1)26=1; B 符合题意,13-43=343.C 符合题意,414=√224=212;D 不符合题意,4−32和(12)−3均符合分数指数幂的定义,但4-32=1432=18,(12)−3 =23=8.故选:BC小提示:本题考查分数指数幂的定义以及运算法则,考查基本分析判断与化简能力,属基础题.11、已知a+a−1=3,则下列选项中正确的有()A.a2+a−2=7B.a3+a−3=16C.a12+a−12=±√5D.a32+a−32=2√5答案:AD分析:由a+1a =3(a>0),可得:a2+a−2=(a+1a)2−2;a3+a−3=(a+a−1)(a2+a−2−1);(a12+a−12)2=a+a−1+2;a√aa√a=(a+a−1)(a12+a−12)−(a12+a−12),即可判断出正误.解:∵a+1a=3,∴a2+a−2=(a+1a)2−2=32−2=7,因此A正确;a3+a−3=(a+a−1)(a2+a−2−1)=3×(7−1)=18,因此B不正确;∵(a12+a−12)2=a+a−1+2=3+2=5,a>0,解得a12+a−12=√5,因此C不正确;∵a√aa√a=(a+a−1)(a12+a−12)−(a12+a−12)=3√5−√5=2√5,因此D正确.故选:AD.填空题12、已知函数f(x)=ln(√1+x2−x)−1,若f(2x−1)+f(4−x2)+2>0,则实数x的取值范围为______. 答案:x<−1或x>3分析:令g(x)=f(x)+1=ln(√x2+1−x),分析出函数g(x)为R上的减函数且为奇函数,将所求不等式变形为g(x2−4)<g(2x−1),可得出关于x的不等式,解之即可.令g(x)=f(x)+1=ln(√x2+1−x),对任意的x∈R,√x2+1−x>|x|−x≥0,故函数g(x)的定义域为R,因为g(x)+g(−x)=ln(√x2+1−x)+ln(√x2+1+x)=ln(x2+1−x2)=0,则g(−x)=−g(x),所以,函数g(x)为奇函数,当x≤0时,令u=√1+x2−x,由于函数u1=√1+x2和u2=−x在(−∞,0]上均为减函数,故函数u=√1+x2−x在(−∞,0]上也为减函数,因为函数y=lnu在(0,+∞)上为增函数,故函数g(x)在(−∞,0]上为减函数,所以,函数g(x)在[0,+∞)上也为减函数,因为函数g(x)在R上连续,则g(x)在R上为减函数,由f(2x−1)+f(4−x2)+2>0可得g(2x−1)+g(4−x2)>0,即g(x2−4)<g(2x−1),所以,x2−4>2x−1,即x2−2x−3>0,解得x<−1或x>3.所以答案是:x<−1或x>3.13、若函数f(x)={2x+2,x≤1,log2(x−1),x>1在(−∞,a]上的最大值为4,则a的取值范围为________.答案:[1,17]分析:根据函数解析式画出函数图象,再根据指数函数、对数函数的性质判断函数的单调性,再求出f(x)= 4时x的值,即可得解.解:因为f(x)={2x+2,x≤1,log2(x−1),x>1,当x∈(−∞,1]时,易知f(x)=2x+2在(−∞,1]上单调递增,当x∈(1,+∞)时,f(x)=log2(x−1)在(1,+∞)上单调递增.作出f(x)的大致图象,如图所示.由图可知,f(1)=4,f(17)=log2(17−1)=4,因为f(x)在(−∞,a]上的最大值为4,所以a的取值范围为[1,17].所以答案是:[1,17]14、函数f(x)=4+log a(x−1)(a>0且a≠1)的图象恒过定点_________ 答案:(2,4)分析:令对数的真数为1,即可求出定点的横坐标,再代入求值即可;解:因为函数f(x)=4+log a(x−1)(a>0且a≠1),令x−1=1,解得x=2,所以f(2)=4+log a1=4,即函数f(x)恒过点(2,4);所以答案是:(2,4)解答题15、已知函数f(x)=ln(x+a)(a∈R)的图象过点(1,0),g(x)=x2−2e f(x).(1)求函数f(x)的解析式;(2)若函数y=f(x)+ln(2x−k)在区间(1,2)上有零点,求整数k的值;(3)设m>0,若对于任意x∈[1m,m],都有g(x)<−ln(m−1),求m的取值范围.答案:(1)f(x)=lnx;(2)k的取值为2或3;(3)(1,2).解析:(1)根据题意,得到ln(1+a)=0,求得a的值,即可求解;(2)由(1)可得y=ln(2x2−kx),得到2x2−kx−1=0,设ℎ(x)=2x2−kx−1,根据题意转化为函数y=ℎ(x)在(1,2)上有零点,列出不等式组,即可求解;(3)求得g(x)的最大值g(m),得出g(x)max<−ln(m−1),得到m2−2m<−ln(m−1),设ℎ(m)=m2−2m+ln(m−1)(m>1),结合ℎ(m)单调性和最值,即可求解.(1)函数f(x)=ln(x+a)(a∈R)的图像过点(1,0),所以ln(1+a)=0,解得a=0,所以函数f(x)的解析式为f(x)=lnx.(2)由(1)可知y=lnx+ln(2x−k)=ln(2x2−kx),x∈(1,2),令ln(2x2−kx)=0,得2x2−kx−1=0,设ℎ(x)=2x2−kx−1,则函数y=f(x)+ln(2x−k)在区间(1,2)上有零点,等价于函数y=ℎ(x)在(1,2)上有零点,所以{ℎ(1)=1−k<0ℎ(2)=7−2k>0,解得1<k<72,因为k∈Z,所以k的取值为2或3.(3)因为m>0且m>1m ,所以m>1且0<1m<1,因为g(x)=x2−2e f(x)=x2−2x=(x−1)2−1,所以g(x)的最大值可能是g(m)或g(1m),因为g(m)−g(1m )=m2−2m−(1m2−2m)=m2−1m2−(2m−2m)=(m−1m )(m+1m−2)=(m−1m)⋅(m−1)2m>0所以g(x)max=g(m)=m2−2m,只需g(x)max<−ln(m−1),即m2−2m<−ln(m−1),设ℎ(m)=m2−2m+ln(m−1)(m>1),ℎ(m)在(1,+∞)上单调递增,又ℎ(2)=0,∴m2−2m+ln(m−1)<0,即ℎ(m)<ℎ(2),所以1<m<2,所以m的取值范围是(1,2).小提示:已知函数的零点个数求解参数的取值范围问题的常用方法:1 、分离参数法:一般命题的情境为给出区间,求满足函数零点个数的参数范围,通常解法为从f(x)中分离出参数,构造新的函数,求得新函数的最值,根据题设条件构建关于参数的不等式,从而确定参数的取值范围;2 、分类讨论法:一般命题的情境为没有固定的区间,求满足函数零点个数的参数范围,通常解法为结合函数的单调性,先确定参数分类的标准,在每个小区间内研究函数零点的个数是否符合题意,将满足题意的参数的各校范围并在一起,即为所求的范围.。

必修一函数知识点整理和例题讲解(含答案)

必修一函数知识点整理和例题讲解(含答案)


1.已知 f (x) 2 f (x) 3x 2 ,求 f (x) 的解析式
2.已知 f (x) 是奇函数, g(x) 是偶函数,且 f (x) + g(x) = 1 ,则 f (x) =
x 1
3。已知 f (x) 满足 2 f (x) f (1) 3x ,求 f (x) 。
x
(四)、分段函数 分段函数是在其定义域的不同子集上,分别用几个不同的式子来表
的最值;二是求区间定(动),对称轴动(定)的最值问题。求二次函数的最值问题,
勿忘数形结合,注意“两看”:一看开口方向;二看对称轴与所给区间的相对位置关
系),
4
必修一函数知识点整理和例题讲解(含答案)(word 版可编辑修改)
如 1。函数 y 3x2 x 2 的值域为 2.求函数 y x2 2x 5, x [1, 2] 的值域 3。求函数 y x2 4x 2 ( x [1,1] ) 4.当 x (0,2] 时,函数 f (x) ax2 4(a 1)x 3在 x 2 时取得最大值,则 a 的取值范围是 ___ 5.已知函数 f (x) ax2 2ax 3 b(a 0) 在[1,3] 有最大值 5 和最小值 2 ,求 a 、 b 的值。
必修一函数知识点整理和例题讲解(含答案)(word 版可编辑修改)
必修一函数知识点整理和例题讲解(含答案)(word 版可编辑修改) 编辑整理:
尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对 文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(必修一函数知识点整理和例题 讲解(含答案)(word 版可编辑修改))的内容能够给您的工作和学习带来便利。同时也真诚的希望 收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以 下为必修一函数知识点整理和例题讲解(含答案)(word 版可编辑修改)的全部内容。

高中数学必修一第五章三角函数知识点归纳总结(精华版)(带答案)

高中数学必修一第五章三角函数知识点归纳总结(精华版)(带答案)

高中数学必修一第五章三角函数知识点归纳总结(精华版)单选题1、若sin (π7+α)=12,则sin (3π14−2α)=( ) A .35B .−12C .12D .13答案:C分析:令θ=π7+α可得α=θ−π7,再代入sin (3π14−2α),结合诱导公式与二倍角公式求解即可令θ=π7+α可得α=θ−π7,故sinθ=12,则sin (3π14−2α)=sin (3π14−2(θ−π7)) =sin (π2−2θ)=cos2θ=1−2sin 2θ=12故选:C2、若sin(π−α)+cos(−α)=15,α∈(0,π),则tan (32π−α)的值为( ) A .−43或−34B .−43C .−34D .34答案:C分析:根据同角三角函数的基本关系及诱导公式求解. 由sin(π−α)+cos(−α)=15可得:sinα+cosα=15,平方得:sin 2α+2sinαcosα+cos 2α=125 所以tan 2α+2tanα+1tan 2α+1=125,解得tanα=−43或tanα=−34, 又sinα+cosα=15,所以|sinα|>|cosα|, 故tanα=−43, 故选:C3、已知函数f(x)=cos 2ωx 2+√32sinωx −12(ω>0,x ∈R),若函数f(x)在区间(π,2π)内没有零点,则ω的取值范围是( )A .(0,512]B .(0,56)C .(0,512]∪[56,1112]D .(0,512]∪(56,1112] 答案:C分析:先化简函数解析式,由π<x <2π得,求得πω+π6<ωx +π6<2πω+π6,利用正弦函数图象的性质可得2πω+π6≤π或{2πω+π6≤2ππω+π6≥π,求解即可. f(x)=cosωx+12+√32sinωx −12=√32sinωx +12cosωx =sin(ωx +π6).由π<x <2π得,πω+π6<ωx +π6<2πω+π6, ∵函数f(x)在区间(π,2π)内没有零点,且πω+π6>π6, ∴2πω+π6≤π或{2πω+π6≤2ππω+π6≥π , 解得0<ω⩽512或56⩽ω⩽1112,则ω的取值范围是(0,512]∪[56,1112].故选:C .4、已知函数y =√2sin(x +π4),当y 取得最小值时,tanx 等于( )A .1B .−1C .√32D .−√32答案:A分析:由正弦函数的性质,先求出当y 取得最小值时x 的取值,从而求出tanx . 函数y =√2sin(x +π4),当y 取得最小值时,有x +π4=2kπ+3π2,故x =2kπ+5π4,k ∈Z .∴tanx =tan (2kπ+5π4)=tan (π4)=1,k ∈Z . 故选:A .5、已知tanθ=2,则sin(π2+θ)−cos(π−θ)cosθ−sin(π−θ)=( )A .2B .-2C .0D .23 答案:B分析:根据tanθ=2,利用诱导公式和商数关系求解. 因为tanθ=2, 所以sin(π2+θ)−cos(π−θ)cosθ−sin(π−θ),=2cosθcosθ−sinθ, =21−tanθ=−2,故选:B6、要得到函数y =sin (2x +π6)的图象,可以将函数y =cos (2x −π6)的图象( ) A .向右平移π12个单位长度B .向左平移π12个单位长度C .向右平移π6个单位长度D .向左平移π6个单位长度 答案:A分析:利用诱导公式将平移前的函数化简得到y =sin (2x +π3),进而结合平移变换即可求出结果.因为y =cos (2x −π6)=sin (2x −π6+π2)=sin (2x +π3),而y =sin [2(x −π12)+π3],故将函数y =cos (2x −π6)的图象向右平移π12个单位长度即可, 故选:A. 7、已知sinα=2√67,cos (α−β)=√105,且0<α<3π4,0<β<3π4,则sinβ=( )A .9√1535B .11√1035C .√1535D .√1035答案:A解析:易知sinβ=sin(α−(α−β)),利用角的范围和同角三角函数关系可求得cosα和sin (α−β),分别在sin (α−β)=√155和−√155两种情况下,利用两角和差正弦公式求得sinβ,结合β的范围可确定最终结果. ∵sinα=2√67<√22且0<α<3π4,∴0<α<π4,∴cosα=√1−sin 2α=57. 又0<β<3π4,∴−3π4<α−β<π4,∴sin (α−β)=±√1−cos 2(α−β)=±√155. 当sin (α−β)=√155时,sinβ=sin(α−(α−β))=sinαcos (α−β)−cosαsin (α−β) =2√67×√105−57×√155=−√1535, ∵0<β<3π4,∴sinβ>0,∴sinβ=−√1535不合题意,舍去; 当sin (α−β)=−√155,同理可求得sinβ=9√1535,符合题意.综上所述:sinβ=9√1535.故选:A .小提示:易错点睛:本题中求解cosα时,易忽略sinα的值所确定的α的更小的范围,从而误认为cosα的取值也有两种不同的可能性,造成求解错误. 8、若tanθ=2,则sinθ(1−sin2θ)sinθ−cosθ=( )A .25B .−25C .65D .−65 答案:A分析:由二倍角正弦公式和同角关系将sinθ(1−sin2θ)sinθ−cosθ转化为含tanθ的表达式,由此可得其值. sinθ(1−sin2θ)sinθ−cosθ=sinθ(sin 2θ+cos 2θ−sin2θ)sinθ−cosθ=sinθ(sinθ−cosθ)2sinθ−cosθ=sin 2θ−sinθcosθsin 2θ+cos 2θ=tan 2θ−tanθtan 2θ+1=25.故选:A. 多选题9、若α是第二象限的角,则下列各式中成立的是( ) A .tanα=−sinαcosαB .√1−2sinαcosα=sinα−cosαC .cosα=−√1−sin 2αD .√1+2sinαcosα=sinα+cosαE .sinα=−√1−cos 2α 答案:BC解析:利用sin 2α+cos 2α=1,tanα=sinαcosα,结合三角函数在各个象限的符号,代入每个式子进行化简、求值.对A ,由同角三角函数的基本关系式,知tanα=sinαcosα,所以A 错;对B ,C ,D ,E ,因为α是第二象限角,所以sinα>0,cosα<0,所以sinα−cosα>0,sinα+cosα的符号不确定,所以√1−2sinαcosα=√(sinα−cosα)2=sinα−cosα,所以B ,C 正确;D ,E 错. 故选:BC.小提示:本题考查同角三角函数的基本关系、三角函数在各个象限的符号,考查运算求解能力. 10、下列各式中,值为12的是( )A .cos 2π12−sin 2π12B .tan22.5∘1−tan 222.5∘C .2sin195°cos195°D .√1+cos π62答案:BC分析:运用二倍角公式,结合诱导公式和特殊角的三角函数值的求法即可得到答案. 选项A ,cos 2π12−sin 2π12=cos (2×π12)=cos π6=√32,错误; 选项B ,tan22.5°1−tan 222.5°=12⋅2tan22.5°1−tan 222.5°=12tan45°=12,正确;选项C ,2sin195∘cos195∘=sin390∘=sin (360∘+30∘)=sin30∘=12,正确;选项D ,√1+cos π62=√1+√322=√2+√32,错误.故选:BC.11、(多选)已知θ∈(0,π),sinθ+cosθ=15,则( )A .θ∈(π2,π)B .cosθ=−35 C .tanθ=−34D .sinθ−cosθ=75答案:ABD分析:已知式平方求得sinθcosθ,从而可确定θ的范围,然后求得sinθ−cosθ,再与已知结合求得sinθ,cosθ,由商数关系得tanθ,从而可判断各选项.因为sinθ+cosθ=15①,所以(sinθ+cosθ)2=sin 2θ+2sinθcosθ+cos 2θ=125,所以2sinθcosθ=−2425.又θ∈(0,π),所以sinθ>0,所以cosθ<0,即θ∈(π2,π),故A 正确.(sinθ−cosθ)2=1−2sinθcosθ=4925,所以sinθ−cosθ=75②,故D 正确.由①②,得sinθ=45,cosθ=−35,故B 正确.tanθ=sinθcosθ=−43,故C 错误. 故选:ABD . 填空题12、当θ∈(0,π2)时,若cos (5π6−θ)=−12,则sin (θ+π6)的值为_________.答案:√32##12√3 分析:先由已知条件求出sin (5π6−θ),然后利用诱导公式可求得结果. ∵θ∈(0,π2),∴5π6−θ∈(π3,5π6), ∴sin (5π6−θ)=√1−cos 2(5π6−θ)=√32, ∴sin (θ+π6)=sin [π−(5π6−θ)]=sin (5π6−θ)=√32. 所以答案是:√3213、已知sinα=2cosα,则sin 2α+2sinαcosα=______. 答案:85##1.6分析:根据题意,由同角三角函数关系可得tanα的值,而sin 2α+2sinαcosα1=sin 2α+2sinαcosαsin 2α+cos 2α,最后利用齐次式化成关于tanα的分式即可解.解:由sinα=2cosα,得tanα=sinαcosα=2, 则sin 2α+2sinαcosα1=sin 2α+2sinαcosαsin 2α+cos 2α=tan 2α+2tanαtan 2α+1=22+2×222+1=85.所以答案是:85.14、已知f (x )=sin (ωx +π3)(ω>0),f (π6)=f (π3),且f (x )在区间(π6,π3)上有最小值,无最大值,则ω=______.答案:143分析:由题意可得函数的图象关于直线x=π4对称,再根据f(x)在区间(π6,π3)上有最小值,无最大值,可得π4ω+π3=2kπ+3π2(k∈Z),由此求得ω的值.依题意,当x=π6+π32=π4时,y有最小值,即sin(π4ω+π3)=−1,则π4ω+π3=2kπ+3π2(k∈Z),所以ω=8k+143(k∈Z).因为f(x)在区间(π6,π3)上有最小值,无最大值,所以π3−π4≤T2=πω,即ω≤12,令k=0,得ω=143.所以答案是:143解答题15、已知函数f(x)=2sinxcosx−2√3sin2x+√3.(1)求函数f(x)的最小正周期及其单调递增区间;(2)当x∈[−π6,π6],时,a−f(x)≤0恒成立,求a的最大值.答案:(1)最小正周期π,单调递增区间为[kπ−5π12,kπ+π12],k∈Z(2)最大值为0分析:(1)根据正弦和余弦的二倍角公式以及辅助角公式即可化简f(x)为f(x)=2sin(2x+π3),然后根据周期公式可求周期,整体代入法求单调增区间,(2)根据x的范围可求2x+π3∈[0,2π3],进而可求f(x)的值域,故可求a的范围.(1)f(x)=2sinxcosx−2√3sin2x+√3=sin2x+√3cos2x=2sin(2x+π3)故函数f(x)的最小正周期T=2π2=π.由2kπ-π2≤2x+π3≤2kπ+π2得kπ−5π12≤x≤kπ+π12(k∈Z).∴函数f(x)的单调递增区间为[kπ−5π12,kπ+π12],k∈Z.(2)∵x∈[−π6,π6],∴2x+π3∈[0,2π3],∴sin (2x +π3)∈[0,1],f (x )=2sin (2x +π3)∈[0,2].由a −f (x )≤0恒成立,得a ≤(f (x ))min ,即a ≤0.故a 的最大值为0.。

高一函数知识点总结及例题

高一函数知识点总结及例题

高一函数知识点总结及例题高一函数知识点总结及例题:1. 函数的定义与性质:- 函数的定义:函数是一种对应关系,每个自变量对应唯一的因变量。

- 定义域和值域:函数的定义域是自变量的取值范围,值域是函数的所有可能的因变量值的集合。

- 奇偶性:奇函数的图像以原点对称,即满足$f(-x)=-f(x)$;偶函数的图像以y轴对称,即满足$f(-x)=f(x)$。

- 单调性:递增函数的图像从左到右逐渐升高;递减函数的图像从左到右逐渐降低。

例题:给定函数$f(x)=2x^2+3x-1$,求其定义域和值域。

解答:由于函数是多项式函数,所以定义域为全体实数。

接下来求值域,可以求出函数的导函数$f'(x)=4x+3$,根据导函数的单调性可以判断函数的增减性。

导函数的系数为正数4,所以原函数是递增函数。

考虑到函数是二次函数,开口向上,所以函数的最小值就是导数的零点,即$x=-\frac{3}{4}$。

将$x=-\frac{3}{4}$代入函数中,得到最小值为$f(-\frac{3}{4}) = -\frac{7}{8}$。

所以值域为$[-\frac{7}{8},+\infty)$。

2. 基本初等函数:- 线性函数:$f(x)=kx+b$,k为斜率,b为截距。

- 幂函数:$f(x)=x^a$,a为常数,当a>0时,函数递增;当a<0时,函数递减。

- 指数函数:$f(x)=a^x$,a为常数,a>1时,函数递增;0<a<1时,函数递减。

- 对数函数:$f(x)=\log_a x$,a为常数,a>1时,函数递增;0<a<1时,函数递减。

- 三角函数:正弦函数、余弦函数、正切函数等。

例题:已知函数$f(x)=2^x-3$,求解方程$f(x)=0$的解。

解答:将$f(x)$置0得到方程$2^x-3=0$,移项得$2^x=3$。

由指数函数的性质可知,$x=\log_2 3$。

高一数学上册第一章函数及其表示知识点及练习题(含答案)

高一数学上册第一章函数及其表示知识点及练习题(含答案)

函数及其表示(一)知识梳理1.映射的概念设B A 、是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,则称f 是集合A 到集合B 的映射,记作f(x).2.函数的概念(1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对A 中的 任意数 x ,在集合B 中都有 唯一确定 的数y 和它对应,则这样的对应关系叫做从A 到B 的一个函数,通常记为___y=f(x),x ∈A(2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 对于的函数值的集合所有的集合构成值域。

(3)函数的三要素: 定义域 、 值域 和 对应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式来表示。

4.分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。

(二)考点分析考点1:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。

考点2:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法;(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f1.2函数及其表示练习题(2)一、选择题1. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .A. ⑴、⑵B. ⑵、⑶C. ⑷D. ⑶、⑸2. 函数()y f x =的图象与直线1x =的公共点数目是( )A. 1B. 0C. 0或1D. 1或23. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A. 2,3B. 3,4C. 3,5D. 2,54. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A. 1B. 1或32C. 1,32或 D.5. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( )A. 沿x 轴向右平移1个单位B. 沿x 轴向右平移12个单位 C. 沿x 轴向左平移1个单位 D. 沿x 轴向左平移12个单位 6. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A. 10 B. 11 C. 12 D. 13二、填空题1. 设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 . 2. 函数422--=x x y 的定义域 . 3. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 .4.函数0y =_____________________. 5. 函数1)(2-+=x x x f 的最小值是_________________.三、解答题1.求函数()f x =.2. 求函数12++=x x y 的值域.3. 12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,求()y f m =的解析式及此函数的定义域.4. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.参考答案(2)一、选择题 1. C 2. C 3. D 4. D∴2()3,12,f x x x x ===-<<而∴ x =5. D 平移前的“1122()2x x -=--”,平移后的“2x -”, 用“x ”代替了“12x -”,即1122x x -+→,左移 6. B [][](5)(11)(9)(15)(13)11f f f f f f f =====.二、 1.(),1-∞- 当10,()1,22a f a a a a ≥=-><-时,这是矛盾的; 当10,(),1a f a a a a<=><-时; 2. {}|2,2x x x ≠-≠且 240x -≠3. (2)(4)y x x =-+- 设(2)(4)y a x x =+-,对称轴1x =, 当1x =时,max 99,1y a a =-==-4. (),0-∞ 10,00x x x x -≠⎧⎪<⎨->⎪⎩ 5. 54- 22155()1()244f x x x x =+-=+-≥-. 三、 1. 解:∵10,10,1x x x +≠+≠≠-,∴定义域为{}|1x x ≠-2. 解: ∵221331(),244x x x ++=++≥∴y ≥,∴值域为)+∞ 3. 解:24(1)4(1)0,30m m m m ∆=--+≥≥≤得或,222121212()2y x x x x x x =+=+-224(1)2(1)4102m m m m =--+=-+∴2()4102,(03)f m m m m m =-+≤≥或.4. 解:对称轴1x =,[]1,3是()f x 的递增区间,max ()(3)5,335f x f a b ==-+=即min ()(1)2,32,f x f a b ==--+=即∴3231,.144a b a b a b -=⎧==⎨--=-⎩得。

部编版高中数学必修一第五章三角函数带答案知识点总结全面整理

部编版高中数学必修一第五章三角函数带答案知识点总结全面整理

(名师选题)部编版高中数学必修一第五章三角函数带答案知识点总结全面整理单选题1、函数f(x)=sin (2x −π3)的一个对称中心的坐标是( ) A .(0,0)B .(0,−√32)C .(π2,0)D .(π6,0) 2、已知tanα=−2,则2sinα+cosαcosα−sinα=( )A .−4B .−12C .−1D .−13 3、已知sinαcosα=12,则tanα+1tanα的值为( )A .12B .−12C .−2D .24、已知函数y =√2sin(x +π4),当y 取得最小值时,tanx 等于( ) A .1B .−1C .√32D .−√325、若函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=( ). A .1B .32C .2D .36、将函数y =2sin (x +π3)的图象向左平移m (m >0)个单位长度后,所得到的图象关于原点对称,则m 的最小值是( ) A .π12B .π6C .π3D .2π37、sin (3π2+α)=( )A .sinαB .−sinαC .cosαD .−cosα8、函数f (x )=2sin (ωx +φ)(ω>0)图像上一点P (s,t )(−2<t <2)向右平移2π个单位,得到的点Q 也在f (x )图像上,线段PQ 与函数f (x )的图像有5个交点,且满足f (π4−x)=f (x ),f (−π2)>f (0),若y =f (x ),x ∈[0,π2]与y =a 有两个交点,则a 的取值范围为( ) A .(−2,−√2]B .[−2,−√2]C .[√2,2)D .[√2,2]多选题9、已知函数f(x)=3sin(ωx +π3)(ω>0)的图象对称轴与对称中心的最小距离为π4,则下列结论正确的是( )A .f(x)的最小正周期为2πB .f(x)的图象关于(−π6,0)对称 C .f(x)在(−5π12,π12)上单调递减 D .f(x)的图象关于直线x =7π12对称 10、下列不等式中成立的是( ) A .sin1<sin π3B .cos2π3>cos2C .cos (−70∘)>sin18∘D .sin4π5>sin17π611、已知函数f(x)=sin(3x +φ)(−π2<φ<π2)的图象关于直线x =π4对称,则( ) A .函数f (x +π12)为偶函数B .函数f(x)在[π12,π6]上单调递增C .若|f (x 1)−f (x 2)|=2,则|x 1−x 2|的最小值为π3D .将函数f(x)图象上所有点的横坐标缩小为原来的13,得到函数y =sin(x +φ)的图象 填空题12、若sin (θ+π8)=13,则sin (2θ−π4)=________.13、若cosα=−35, α为第二象限的角,则sin(π−α)=__________.部编版高中数学必修一第五章三角函数带答案(四十二)参考答案1、答案:D分析:解方程2x−π3=kπ,k∈Z即得解.解:令2x−π3=kπ,k∈Z,∴x=12kπ+π6,令k=0,∴x=π6,所以函数f(x)=sin(2x−π3)的一个对称中心的坐标是(π6,0).故选:D2、答案:C分析:利用齐次化可求三角函数式的值.2sinα+cosαcosα−sinα=2tanα+11−tanα=−4+11−(−2)=−1,故选:C.3、答案:D解析:根据题中条件,由切化弦,将所求式子化简整理,即可得出结果.∵sinαcosα=12,∴tanα+1tanα=sinαcosα+cosαsinα=sin2α+cos2αsinαcosα=112=2,故选:D.4、答案:A分析:由正弦函数的性质,先求出当y取得最小值时x的取值,从而求出tanx.函数y=√2sin(x+π4),当y取得最小值时,有x+π4=2kπ+3π2,故x=2kπ+5π4,k∈Z.∴tanx=tan(2kπ+5π4)=tan(π4)=1,k∈Z.故选:A.5、答案:B分析:根据f(π3)=1以及周期性求得ω.依题意函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减, 则{f (π3)=sin π3ω=1T 2=πω≥π3, 即{π3ω=2kπ+π2,k ∈Z 0<ω≤3 ,解得ω=32.故选:B 6、答案:D分析:由三角函数平移变换可得平移后函数为y =2sin (x +m +π3),根据对称性得到m +π3=kπ(k ∈Z ),结合m >0可得所求最小值.将y =2sin (x +π3)向左平移m (m >0)个单位长度得:y =2sin (x +m +π3),∵y =2sin (x +m +π3)图象关于原点对称,∴m +π3=kπ(k ∈Z ),解得:m =−π3+kπ(k ∈Z ),又m >0, ∴当k =1时,m 取得最小值2π3. 故选:D. 7、答案:D分析:利用诱导公式sin (π+α)=−sinα,sin (π2+α)=cos α代入计算. sin (3π2+α)=sin (π+π2+α)=−sin (π2+α)=−cos α. 故选:D . 8、答案:A分析:首先根据已知条件分析出|PQ |=2π=2T ,可得ω=2,再由f (π4−x)=f (x )可得y =f (x )对称轴为x =π8,利用f (−π2)>f (0)可以求出符合题意的一个φ的值,进而得出f (x )的解析式,再由数形结合的方法求a 的取值范围即可.如图假设P(0,0),线段PQ与函数f(x)的图像有5个交点,则|PQ|=2π,所以由分析可得|PQ|=2π=2T,所以T=π,可得ω=2πT =2ππ=2,因为f(π4−x)=f(x)所以f[π4−(π8+x)]=f(π8+x),即f(π8−x)=f(π8+x),所以x=π8是f(x)的对称轴,所以2×π8+φ=π2+kπ(k∈Z),即φ=π4+kπ(k∈Z),f(−π2)=2sin(−π+φ)=−2sinφ>f(0)=2sinφ,所以sinφ<0,可令k=−1得φ=−3π4,所以f(x)=2sin(2x−3π4),当x∈[0,π2]时,令2x−3π4=t∈[−3π4,π4],则f(t)=2sint,t∈[−3π4,π4]作f(t)图象如图所示:当t=−3π4即x=0时y=−√2,当t=−π2即x=π8时,y=−2,由图知若y =f (x ),x ∈[0,π2]与y =a 有两个交点,则a 的取值范围为(−2,−√2], 故选:A小提示:关键点点睛:本题解题的关键是取特殊点P (0,0)便于分体问题,利用已知条件结合三角函数图象的特点,以及三角函数的性质求出f (x )的解析式,再利用数形结合的思想求解a 的取值范围. 9、答案:BD分析:先利用f(x)的图象对称轴与对称中心的最小距离和周期的关系求出ω值,再利用整体思想求其周期、单调性和对称轴.因为f(x)的图象对称轴与对称中心的最小距离为π4,所以T 4=π4,即T =π,即选项A 错误; 由T =2πω=π,得ω=2,即f(x)=3sin(2x +π3),因为f(−π6)=3sin(−π3+π3)=3sin0=0,所以f(x)的图象关于(−π6,0)对称,即选项B 正确; 当−5π12<x <π12时,则−π2<2x +π3<π2,所以f(x)=3sin(2x +π3)在(−5π12,π12)上单调递增,即选项C 错误;因为f(7π12)=3sin(7π6+π3)=3sin 3π2=−3,所以f(x)的图象关于直线x =7π12对称,即选项D 正确. 故选:BD. 10、答案:ACD分析:结合诱导公式,根据y =sinx 和y =cosx 的单调性依次判断各个选项即可得到结果. 对于A ,∵y =sinx 在(0,π2)上单调递增,又0<1<π3<π2,∴sin1<sin π3,A 正确; 对于B ,∵y =cosx 在(π2,π)上单调递减,又π2<2<2π3<π,∴cos2π3<cos2,B 错误;对于C ,∵cos (−70∘)=cos70∘=sin20∘,又sin20∘>sin18∘,∴cos (−70∘)>sin18∘,C 正确; 对于D ,∵sin4π5=sin (π−π5)=sin π5,sin17π6=sin (3π−π6)=sin π6,又sin π6<sin π5,∴sin 4π5>sin17π6,D 正确.故选:ACD. 11、答案:BC分析:根据函数f(x)=sin(3x +φ)(−π2<φ<π2)的图象关于直线x =π4对称,由3×π4+φ=kπ+π2,k ∈Z 求得函数的解析式,再逐项判断.因为函数f(x)=sin(3x +φ)(−π2<φ<π2)的图象关于直线x =π4对称, 所以3×π4+φ=kπ+π2,k ∈Z ,即φ=kπ−π4,k ∈Z , 又因为−π2<φ<π2,则φ=−π4, 所以f(x)=sin(3x −π4),A.函数f (x +π12)=sin(3(x +π12)−π4)=sin3x 为奇函数,故错误;B. 因为x ∈[π12,π6],则3x −π4∈[0,π4],又y =sinx 在[0,π4]上递增,所以函数f(x)在[π12,π6]上单调递增,故正确; C. T =2π3因为|f (x 1)−f (x 2)|=2,则f (x 1),f (x 2) 分别为函数的最大值和最小值,则|x 1−x 2|的最小值为T 2=π3,故正确;D.将函数f(x)图象上所有点的横坐标缩小为原来的13,得到函数y =sin(9x −π4)的图象,故错误; 故选:BC 12、答案:−79分析:由题知2(θ+π8)−π2=(2θ−π4),进而根据诱导公式与二倍角公式求解即可.解:因为2(θ+π8)−(2θ−π4)=π2,所以sin (2θ−π4)=sin [2(θ+π8)−π2]=−cos [2(θ+π8)] =2sin 2(θ+π8)−1=2×(13)2−1=−79. 所以答案是:−7913、答案:45分析:先根据同角三角函数的关系求出sinα,再结合诱导公式即可求出sin(π−α).,α为第二象限的角,∵cosα=−35,∴sinα=√1−cos2α=45∴sin(π−α)=sinα=4.5.所以答案是:45小提示:本题考查同角三角函数的关系以及诱导公式的应用,属于基础题.。

高中数学必修一第三章函数的概念与性质知识点梳理(带答案)

高中数学必修一第三章函数的概念与性质知识点梳理(带答案)

高中数学必修一第三章函数的概念与性质知识点梳理单选题>0,1、已知函数f(x)=(m2−m−1)x m3−1是幂函数,对任意的x1,x2∈(0,+∞)且x1≠x2,满足f(x1)−f(x2)x1−x2若a,b∈R,a+b<0,则f(a)+f(b)的值()A.恒大于0B.恒小于0C.等于0D.无法判断答案:B解析:根据函数为幂函数以及函数在(0,+∞)的单调性,可得m,然后可得函数的奇偶性,结合函数的单调性以及奇偶性,可得结果.由题可知:函数f(x)=(m2−m−1)x m3−1是幂函数则m2−m−1=1⇒m=2或m=−1>0又对任意的x1,x2∈(0,+∞)且x1≠x2,满足f(x1)−f(x2)x1−x2所以函数f(x)为(0,+∞)的增函数,故m=2所以f(x)=x7,又f(−x)=−f(x),所以f(x)为R单调递增的奇函数由a+b<0,则a<−b,所以f(a)<f(−b)=−f(b)则f(a)+f(b)<0故选:B>小提示:本题考查幂函数的概念以及函数性质的应用,熟悉函数单调递增的几种表示,比如f(x1)−f(x2)x1−x20,[f(x1)−f(x2)]⋅(x1−x2)>0,属中档题.<0,且f(2)=0,则不2、定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞),(x1≠x2),有f(x2)−f(x1)x2−x1等式xf(x)>0的解集是()A.(−2,2)B.(−2,0)∪(2,+∞)C.(−∞,−2)∪(0,2)D.(−∞,−2)∪(2,+∞)分析:依题意可得f(x)在[0,+∞)上单调递减,根据偶函数的性质可得f (x )在(−∞,0)上单调递增,再根据f(2)=0,即可得到f (x )的大致图像,结合图像分类讨论,即可求出不等式的解集; 解:因为函数f(x)满足对任意的x 1,x 2∈[0,+∞),(x 1≠x 2),有f (x 2)−f (x 1)x 2−x 1<0,即f(x)在[0,+∞)上单调递减,又f (x )是定义在R 上的偶函数,所以f (x )在(−∞,0)上单调递增, 又f(2)=0,所以f (−2)=f (2)=0,函数的大致图像可如下所示:所以当−2<x <2时f (x )>0,当x <−2或x >2时f (x )<0, 则不等式xf(x)>0等价于{f(x)>0x >0 或{f(x)<0x <0,解得0<x <2或x <−2,即原不等式的解集为(−∞,−2)∪(0,2); 故选:C3、已知函数f (x )对于任意x 、y ∈R ,总有f (x )+f (y )=f (x +y )+2,且当x >0时,f (x )>2,若已知f (2)=3,则不等式f (x )+f (2x −2)>6的解集为( ) A .(2,+∞)B .(1,+∞)C .(3,+∞)D .(4,+∞)分析:设g (x )=f (x )−2,分析出函数g (x )为R 上的增函数,将所求不等式变形为g (3x −2)>g (4),可得出3x −2>4,即可求得原不等式的解集. 令g (x )=f (x )−2,则f (x )=g (x )+2,对任意的x 、y ∈R ,总有f (x )+f (y )=f (x +y )+2,则g (x )+g (y )=g (x +y ), 令y =0,可得g (x )+g (0)=g (x ),可得g (0)=0,令y =−x 时,则由g (x )+g (−x )=g (0)=0,即g (−x )=−g (x ), 当x >0时,f (x )>2,即g (x )>0,任取x 1、x 2∈R 且x 1>x 2,则g (x 1)+g (−x 2)=g (x 1−x 2)>0,即g (x 1)−g (x 2)>0,即g (x 1)>g (x 2), 所以,函数g (x )在R 上为增函数,且有g (2)=f (2)−2=1,由f (x )+f (2x −2)>6,可得g (x )+g (2x −2)+4>6,即g (x )+g (2x −2)>2g (2), 所以,g (3x −2)>2g (2)=g (4),所以,3x −2>4,解得x >2. 因此,不等式f (x )+f (2x −2)>6的解集为(2,+∞). 故选:A. 4、函数f(x)=0√x−2定义域为( )A .[2,+∞)B .(2,+∞)C .(2,3)∪(3,+∞)D .[2,3)∪(3,+∞) 答案:C分析:要使函数有意义,分母不为零,底数不为零且偶次方根被开方数大于等于零. 要使函数f(x)=0√x−2有意义,则{x −3≠0x −2>0,解得x >2且x ≠3, 所以f(x)的定义域为(2,3)∪(3,+∞). 故选:C.小提示:具体函数定义域的常见类型: (1)分式型函数,分母不为零;(2)无理型函数,偶次方根被开方数大于等于零;(3)对数型函数,真数大于零;(4)正切型函数,角的终边不能落在y轴上;(5)实际问题中的函数,要具有实际意义.5、下列函数既是偶函数又在(0,+∞)上单调递减的是()A.y=x+1x B.y=−x3C.y=2−|x|D.y=−1x2答案:C分析:逐项判断函数奇偶性和单调性,得出答案.解析:A项y=x+1x,B项y=−x3均为定义域上的奇函数,排除;D项y=−1x2为定义域上的偶函数,在(0,+∞)单调递增,排除;C项y=2−|x|为定义域上的偶函数,且在(0,+∞)上单调递减.故选:C.6、函数f(x)为奇函数,g(x)为偶函数,在公共定义域内,下列结论一定正确的是()A.f(x)+g(x)为奇函数B.f(x)+g(x)为偶函数C.f(x)g(x)为奇函数D.f(x)g(x)为偶函数答案:C分析:依次构造函数,结合函数的奇偶性的定义判断求解即可.令F1(x)=f(x)+g(x),则F1(−x)=f(−x)+g(−x)=−f(x)+g(x)≠−F1(x),且F1(−x)≠F1(x),∴F1(x)既不是奇函数,也不是偶函数,故A、B错误;令F2(x)=f(x)g(x),则F2(−x)=f(−x)g(−x)=−f(x)g(x)=−F2(x),且F2(−x)≠F2(x),∴F2(x)是奇函数,不是偶函数,故C正确、D错误;故选:C7、已知f(2x−1)=4x2+3,则f(x)=().A.x2−2x+4B.x2+2x C.x2−2x−1D.x2+2x+4答案:D分析:利用换元法求解函数解析式. 令t =2x −1,则x =t+12,f (t )=4(t+12)2+3=t 2+2t +4;所以f(x)=x 2+2x +4. 故选:D.8、下列四组函数中,表示相同函数的一组是( ) A .f(x)=x 2−x x,g (x )=x −1B .f(x)=√x 2,g(x)=(√x)2C . f (x )=x 2−2,g (t )=t 2-2D .f (x )=√x +1⋅√x −1,g(x)=√x 2−1 答案:C分析:根据相同函数的判断原则进行定义域的判断即可选出答案. 解:由题意得: 对于选项A :f(x)=x 2−x x的定义域为{x|x ≠0},g(x)=x −1的定义域为R ,所以这两个函数的定义域不同,不表示相同的函数,故A 错误;对于选项B :f(x)=√x 2的定义域为R ,g(x)=(√x)2的定义域为{x|x ≥0},所以这两个函数的定义域不同,不表示相同的函数,故B 错误;对于选项C :f (x )=x 2−2的定义域为R ,g (t )=t 2−2的定义域为R ,这两函数的定义域相同,且对应关系也相同,所以表示相同的函数,故C 正确;对于选项D :f (x )=√x +1⋅√x −1的定义域为{x|x ≥1},g(x)=√x 2−1的定义域为{x|x ≤−1或x ≥1},所以这两个函数的定义域不同,不表示相同的函数,故D 错误. 故选:C 多选题9、已知f(2x −1)=4x 2,则下列结论正确的是A .f(3)=9B .f(−3)=4C .f(x)=x 2D .f(x)=(x +1)2答案:BD解析:利用换元法求出f(x)的解析式,再对选项进行一一验证,即可得答案. 令t =2x −1⇒x =t+12,∴f(t)=4(t+12)2=(t +1)2.∴f(3)=16,f(−3)=4,f(x)=(x +1)2. 故选:BD.小提示:本题考查换元法求函数的解析式、函数值的求解,考查运算求解能力,属于基础题.10、已知函数f (x )={kx +1,x ≤0log 2x,x >0,下列是关于函数y =f [f (x )]+1的零点个数的判断,其中正确的是( )A .当k >0时,有3个零点B .当k <0时,有2个零点C .当k >0时,有4个零点D .当k <0时,有1个零点 答案:CD解析:令y =0得f [f (x )]=−1,利用换元法将函数分解为f (x )=t 和f (t )=﹣1,作出函数f (x )的图象,利用数形结合即可得到结论.令y =f [f (x )]+1=0,得f [f (x )]=−1,设f (x )=t ,则方程f [f (x )]=−1等价为f (t )=﹣1, ①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解, 由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解, 即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点. 故选:CD .小提示:本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,属于难题.11、下列函数既是偶函数,在(0,+∞)上又是增函数的是()A.y=x2+1B.y=2x C.y=|x|D.y=|1x−x|答案:AC分析:根据偶函数的定义和增函数的性质,逐个分析判断即可得解.对A,开口向上,且对称轴为x=0,所以y=x2+1是偶函数,在(0,+∞)上是增函数,故A正确;对B,y=2x为奇函数,故B错误;对C,y=|x|为偶函数,当x∈(0,+∞)时,y=x为增函数,故C正确;对D,令f(x)=|1x −x|,f(−x)=|1−x+x|=|1x−x|=f(x)为偶函数,当x∈(0,1),y=1x−x为减函数,故D错误,故选:AC填空题12、有对应法则f:(1)A={0,2},B={0,1},x→x2;(2)A={-2,0,2},B={4},x→x2;(3)A=R,B={y|y>0},x→1x2;(4)A=R,B=R,x→2x+1;(5)A={(x,y)|x,y∈R},B=R,(x,y)→x+y.其中能构成从集合A到集合B的函数的有________(填序号).答案:(1)(4)分析:利用函数的定义判断.(1)由函数的定义知,正确;(2)当x=0时,B中不存在数值与之对应,故错误;(3)当x=0时,B中不存在数值与之对应,故错误;(4)由函数的定义知,正确;(5)因为集合A不是数集,故错误;所以答案是:(1)(4)13、函数y=√7+6x−x2的定义域是_____.答案:[−1,7].分析:由题意得到关于x的不等式,解不等式可得函数的定义域.由已知得7+6x−x2≥0,即x2−6x−7≤0解得−1≤x≤7,故函数的定义域为[−1,7].小提示:求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.14、已知函数f(x)={|lnx|,x>0,x2+4x+3,x≤0,若函数g(x)=[f(x)]2−4f(x)+m+1恰有8个零点,则m的范围为___________.答案:2≤m<3解析:设f(x)=t,则g(x)=[f(x)]2−4f(x)+m+1=0,转化为t2−4t+m+1=0,由g(x)有8个零点,转化为方程f(x)=t,t∈(0,3]有4个不同的实根,即m+1=−t2+4t在t∈(0,3]内有2个不同的实根,利用数形结合法求解.画出函数f(x)={|lnx|,x>0,x2+4x+3,x≤0,的图像如图所示,设f(x)=t,由g(x)=[f(x)]2−4f(x)+m+1=0,得t2−4t+m+1=0.因为g(x)有8个零点,所以方程f(x)=t有4个不同的实根,结合f(x)的图像可得在t∈(0,3]内有4个不同的实根.所以方程t2−4t+m+1=0必有两个不等的实数根,即m+1=−t2+4t在t∈(0,3]内有2个不同的实根,画出函数y=−t2+4t的图象,如图所示:结合图像可知,3≤m+1<4,故2≤m<3.小提示:方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解解答题15、已知幂函数f(x)=(m2−2m+2)x3k−k2(k∈Z)是偶函数,且在(0,+∞)上单调递增.(1)求函数f(x)的解析式;(2)若f(2x−1)<f(2−x),求x的取值范围:(3)若实数a,b(a,b∈R∗)满足2a+3b=7m,求3a+1+2b+1的最小值.答案:(1)f(x)=x2;(2)(−1,1);(3)2.分析:(1)由幂函数定义得m值,由单调性得k的范围,结合奇偶性得k值.(2)利用偶函数和单调性解不等式;(3)由(1)得2a+3b=7,用“1”的代换凑配出定值,由基本不等式得最小值.(1)f(x)是幂函数,则m2−2m+2=1,m=1,又f(x)是偶函数,所以3k−k2=k(3−k)是偶数,f(x)在(0,+∞)上单调递增,则3k−k2>0,0<k<3,所以k=1或2.所以f(x)=x2;(2)由(1)偶函数f(x)在[0,+∞)上递增,f(2x−1)<f(2−x)⇔f(|2x−1|)<f(|2−x|)⇔|2x−1|2<|2−x|2⇔−1<x<1.所以x的范围是(−1,1).(3)由(1)2a+3b=7,2(a+1)+3(b+1)=12,a>0,b>0,3 a+1+2b+1=112(3a+1+2b+1)[2(a+1)+3(b+1)]=112(12+9(b+1)a+1+2(a+1)b+1)≥112(12+2√9(b+1)a+1×4(a+1)b+1)=2,当且仅当9(b+1)a+1=4(a+1)b+1,即a=2,b=1时等号成立.所以3a+1+2b+1的最小值是2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修一知识点和题型练习一 集合与函数1 集合的含义及表示*⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪∈∉⎨⎪⎧⎪⎨⎪⎩⎪⎪⎩确定性集合中元素的特征 互异性无序性 集合与元素的关系 : 列举法 集合的表示 描述法常见的数集 N N Z Q R2,,A B B A A B A B A A A A B A B A B οοφ≠⊆⊆=⎧⊆⊆⊆⎪⎪⎨⎪⎪⊆≠⊂⎩1定义:A=B2若且则子集: , 集合相等: 集合间的基本关系真子集: 若且 则 空集φ的特殊性: 空集是任何集合的子集,任何非空集合的真子集 *结论 含有n 个元素的集合,其子集的个数为2n ,真子集的个数为21n -3集合的基本运算{}{}{}|||U A B x x A x B A B x x A x B C A x x U x A ⎧⋃=∈∈⎪⋂=∈∈⎨⎪=∈∉⎩并集:或 交集:且 补集:且在集合运算中常借助于数轴和文氏图(*注意端点值的取舍) *结论 (1)A A A ⋃= A A A ⋂=, A A φ⋃= A φφ⋂=(2)A B B A B ⋃=⊆若则 A B A A B ⋂=⊆若则练习题1. 若集合P ={x |2≤x <4},Q ={x |x ≥3},则P ∩Q 等于( )A .{x |3≤x <4}B .{x |3<x <4}C .{x |2≤x <3}D .{x |2≤x ≤3} 2.已知集合M ={2,3,4},N ={0,2,3,5},则M ∩N =( )A .{0,2}B .{2,3}C .{3,4}D .{3,5}3. 已知全集U ={1,2,3,4,5,6,7},集合A ={1,3,5,6},则∁U A =( )A .{1,3,5,6}B .{2,3,7}C .{2,4,7}D .{2,5,7} 4.已知集合A ={x |x >2},B ={x |1<x <3},则A ∩B =( )A .{x |x >2}B .{x |x >1}C .{x |2<x <3}D .{x |1<x <3}5.已知集合A ={3,4,5,12,13},B ={2,3,5,8,13},则A ∩B =________.6.已知集合A ={-2,-1,3,4},B ={-1,2,3},则A ∩B =________. 7. 已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( )A .{x |x ≥0}B .{x |x ≤1}C .{x |0≤x ≤1}D .{x |0<x <1}8.设集合M ={1,2,4,6,8},N ={1,2,3,5,6,7},则M ∩N 中元素的个数为( )A .2B .3C .5D .79. 已知集合A ={-2,0,2},B ={x |x 2-x -2=0},则A ∩B =( )A .∅B .{2}C .{0}D .{-2}10.已知集合M ={x |-1<x <3},N ={-2<x <1},则M ∩N =( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3)二、函数及其表示⎧⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎨⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩函数的定义 定义域函数的三要素对应法则值域区间的表示 解析式法函数的表示法列表法图像法(一)、求定义域1.函数y = ) A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥≤或D .{|01}x x ≤≤2.函数422--=x x y 的定义域 。

3.函数y =的定义域为 4.函数11122--+-=x x x y 的定义域为5.函数()f x =的定义域为 6.函数f(x)=xx -132 +lg(3x+1)的定义域是 ( )A.(-∞,-31) B.(-31,31)C.(-31,1)D.(-31,+∞)(二).求函数值域(最值)的方法: (1)基本函数的值域常见函数的值域:一次函数()0y kx b k =+≠的值域为R.二次函数()20y ax bx c a =++≠,当0a >时为24,4ac b a ⎡⎫-+∞⎪⎢⎣⎭,当0a <时为24,4ac b a ⎛⎤--∞ ⎥⎝⎦. 反比例函数()0ky k x=≠的值域为{}0y R y ∈≠. 指数函数()01x y a a a =>≠且的值域为{}0y y >. 对数函数()log 01a y x a a =>≠且的值域为R. 如: 1.xxy -+=43 的值域是2.函数y =的值域是(A )[0,)+∞ (B )[0,4] (C )[0,4) (D )(0,4) 3.函数()()2log 31x f x =+的值域为A. ()0,+∞B. )0,+∞⎡⎣C. ()1,+∞D. )1,+∞⎡⎣ (2)二次函数的值域:(二次函数在给出区间上的最值有两类:一是求闭区间[,]m n 上的最值;二是求区间定(动),对称轴动(定)的最值问题。

求二次函数的最值问题,勿忘数形结合,注意“两看”:一看开口方向;二看对称轴与所给区间的相对位置关系), 如1.函数232y x x =-+的值域为2.求函数225,[1,2]y x x x =-+∈-的值域3.求函数242y x x =-++([1,1]x ∈-)4.当]2,0(∈x 时,函数3)1(4)(2-++=x a ax x f 在2=x 时取得最大值,则a 的取值范围是___5.已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值。

(三).求函数解析式的常用方法:(1)待定系数法――已知所求函数的类型(二次函数的表达形式有三种:一般式:2()f x ax bx c =++;顶点式:2()()f x a x m n =-+;零点式:12()()()f x a x x x x =--,要会根据已知条件的特点,灵活地选用二次函数的表达形式)。

如1.已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;2.若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 。

(2)代换(配凑)法――已知形如(())f g x 的表达式,求()f x 的表达式。

1.若函数x x x f 2)12(2-=+,则)3(f = .2.若221)1(xx x x f +=-,则函数)1(-x f =_____(3)方程的思想――已知条件是含有()f x 及另外一个函数的等式,可抓住等式的特征对等式的进行赋值,从而得到关于()f x 及另外一个函数的方程组。

如1.已知()2()32f x f x x +-=-,求()f x 的解析式2.已知()f x 是奇函数,)(x g 是偶函数,且()f x +)(x g = 11-x ,则()f x =3.已知()f x 满足12()()3f x f x x+=,求()f x 。

(四)、分段函数 分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。

在求分段函数的值0()f x 时,一定首先要判断0x 属于定义域的哪个子集,然后再代相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集。

如:1.已知f (x )=⎩⎨⎧x -1(x >0),0(x =0),x +5(x <0),则f ( f (-2) ) = ()A .-2B .0C .2D .-12.已知f (x )=⎩⎨⎧x -5 (x ≥6)f (x +2) (x <6),则f (3) = ( )A .2B .3C .4D .53.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A .1B .1或32 C .1,32或 D 4.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( ) A .1516B .2716-C .89D .185.函数222(03)()6(20)x x x f x x x x ⎧-≤≤⎪=⎨+-≤≤⎪⎩的值域是( )A .RB .[)9,-+∞C .[]8,1-D .[]9,1-五.函数的奇偶性。

(1)定义:若()f x 定义域关于原点对称1ο若对于任取x 的,均有()()f x f x -= 则()f x 为偶函数2ο若对于任取x 的,均有()()f x f x -=-则()f x 为奇函数 ((3)判定方法:1ο定义法 (证明题) 2ο图像法 3ο口诀法 (4)定义法: 证明函数奇偶性步骤: 1ο 求出函数的定义域观察其是否关于原点对称(前提性必备条件) 2ο 由出发()f x -,寻找其与()f x 之间的关系3ο 下结论(若()()f x f x -=则()f x 为偶函数,若()()f x f x -=-则()f x 为奇函数函数)口诀法: 奇函数+奇函数=奇函数:偶函数+偶函数=偶函数奇函数⨯奇函数=偶函数: 奇函数⨯偶函数=奇函数:偶函数⨯偶函数=偶函数具有奇偶性的函数的定义域的特征:定义域必须关于原点对称!为此确定函数的奇偶性时,务必先判定函数定义域是否关于原点对称。

如:1.已知2()3f x ax bx a b =+++是偶函数,定义域为[1,2]a a -.则a =___,b = 2.下列判断正确的是( )A .函数22)(2--=x xx x f 是奇函数 B .函数()(1f x x =-C .函数()f x x =D .函数1)(=x f 既是奇函数又是偶函数 3.已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是( )A. 1B. 2C. 3D. 44.设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数。

5.奇函数()f x 在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为1-,则2(6)(3)f f -+-=______。

6.若函数2()1x af x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为________.7.若22()21x x a a f x +-=+·为奇函数,则实数a =___.8.若1()21xf x a =+-是奇函数,则a = . 9.已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是 ( )(A )(13,23) B.[13,23) C.(12,23) D.[12,23)10.已知函数)(x f 是定义在),(∞+∞-上的偶函数. 当)0,(∞-∈x 时,4)(x x x f -=,则(0,)x ∈+∞时=)(x f11.已知3()4f x ax bx =+-其中,a b 为常数,若(2)2f -=,则(2)f 的值等于( ) A .2- B .4- C .6- D .10-12.已知函数()f x 为R 上的奇函数,当0x ≥时,()(1)f x x x =+.若()2f a =-,则实数a = .六、函数的单调性(1) 定义: 设[]2121,,x x b a x x ≠∈⋅那么:1212,()()x x f x f x <<⇔[]1212()()()0x x f x f x -->⇔0)()(2121>--x x x f x f []b a x f ,)(在⇔上增函数;1212,()()x x f x f x <>⇔[]1212()()()0x x f x f x --<⇔0)()(2121<--x x x f x f []b a x f ,)(在⇔上减函数.(2) 判定方法:1ο定义法(证明题) 2ο图像法 3ο复合法 (3) 定义法:用定义来证明函数单调性的一般性步骤: 1ο 设值:任取12,x x 为该区间内的任意两个值,且12x x <2ο 做差,变形,比较大小:做差12()()f x f x -,并利用通分,因式分解,配方,有理化等方法变形比较12(),()f x f x 大小3ο下结论(说函数单调性必须在其单调区间上)(4)常见函数利用图像直接判断单调性:一次函数,二次函数,反比例函数,指对数函数,幂函数,对勾函数(5)复合法:针对复合函数采用同增异减原则(6)单调性中结论:在同一个单调区间内:增+增=增: 增—减=增:减+减=减:减—增=增若函数)(x f 在区间[]b a ,为增函数,则—)(x f ,)(1xf 在[]b a ,为减函数 (7)单调性的应用:①求值域;②解不等式;③求参数范围;④比较大小.特别提醒:求单调区间时,一是勿忘定义域,二是在多个单调区间之间不一定能添加符号“U ”和“或”只能用“和”;三是单调区间应该用区间表示,不能用集合或不等式表示. 练习: 1.函数4()([3,6])2f x x x =∈-的值域为____________。

相关文档
最新文档