浙教版中考数学模拟试题及答案(含详解)
最新浙教版九年级数学中考试题(含答案)

2022年初中毕业升学适应性检测数学试题卷一、选择题(本题有10小题, 每小题3分, 共30分)1.的相反数是.. )A.3B.C.D.2.计算的结果是.. )A. B. C. D.3.如图是由5个大小相同的小正方体摆成的几何体,它的俯视图是()A./B./C./D./4.不透明的袋子中有3个白球和2个红球, 这些球除颜色外无其他差别, 从袋子中随机摸出1个球, 恰好是白球的概率()A. B. C. D.5.已知, 则一定有, “□”中应填的符号是.. )A. B. C. D.6.某市2018年底森林覆盖率为63%. 为贯彻落实“绿水青山就是金山银山”的发展理念, 该市大力开展植树造林活动, 2020年底森林覆盖率达到68%, 如果这两年森林覆盖率的年平均增长率为x, 那么, 符合题意的方程是.. )A. B.C. D.7.将抛物线向左平移1个单位, 再向下平移2个单位得到的抛物线必定经过.. )A. B. C. D.8.已知线段AB,下列尺规作图中,PQ与AB的交点O不一定是AB的中点的是.. )A.AB.BC.CD.D9.如图,是圆锥的母线,已知底面圆直径,圆锥的侧面积为,则的值为.. )A. B. C. D.10.如图,平行四边形的顶点在轴的正半轴上,点在对角线上,反比例函数的图像经过、两点.已知平行四边形的面积是,则点的坐标为. )A. B. C. D.二、填空题(本题有6小题, 每小题4分, 共24分)11.因式分解: ______.12.使有意义的x的取值范围是______.13.如图是小明某一天测得的7次体温情况的折线统计图,这组数据的中位数是______.14.我国明代数学读本《算法统宗》一书中有这样一道题: 一支竿子一条索, 索比竿子长一托, 对折索子来量竿, 却比竿子短一托. 如果1托为5尺, 那么索长为_______尺. (其大意为: 现有一根竿和一条绳索, 如果用绳索去量竿, 绳索比竿长5尺;如果将绳索对折后再去量竿, 就比竿短5尺, 则绳索长几尺. )15.如图,在等腰三角形中,,,为的中点,为上任意一点,则的范围是______.16.已知关于, 的二元一次方程组(, 为实数).(1)若, 则/值是__________;(2)若, 同时满足, , 则的值是__________.三、解答题(本题有8小题, 第17~19题每题6分, 第20, 21题每题8分, 第22, 23题每题10分, 第24题12分, 共66分, 各小题都必须写出解答过程)17.计算: .18.解方程:.19.在“双减政策”下,某校开展学生社团活动,组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在该校随机抽取50名学生做问卷调查,得到如图所示的两个不完全统计图.结合以上信息, 回答下列问题:(1)请你补全条形统计图, 并在图上标明具体数据;(2)计算参与科技制作社团所在扇形的圆心角度数;(3)已知该校共有学生3000人, 请你估计全校有多少学生报名参加篮球社团活动. 20.如图,在的方格纸中,的顶点均在格点上,请按要求画图.(仅用无刻度的直尺,且不能用直尺的直角,保留作图痕迹)(1)在图1中, 找一格点, 使四边形是中心对称图形, 并补全该四边形;(2)在图2中, 在上作点, 使得.21.甲、乙两地/路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后,按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发小时后离甲地的路程为千米,图中折线表示接到通知前与之间的函数关系.(1)根据图象可知, 休息前汽车行驶的速度为千米/小时;(2)求线段DE所表示的y与x之间的函数表达式;(3)接到通知后, 汽车仍按原速行驶能否准时到达?请说明理由.22.如图,在中,,以的边为直径作,交于点,过点作,垂足为点.(1)试证明DE是O的切线;(2)若的半径为5, , 求此时的长.23.如图,抛物线与x轴,y轴分别交于A,D,C三点,已知点A(4,0),点C(0,4).若该抛物线与正方形OABC交于点G且CG:GB=3:1.(1)求抛物线的解析式和点D的坐标;(2)若线段OA, OC上分别存在点E, F, 使EF⊥FG.已知OE=m, OF=t.①当t为何值时, m有最大值?最大值是多少?②若点E与点R关于直线FG对称, 点R与点Q关于直线OB对称. 问是否存在t, 使点Q 恰好落在抛物线上?若存在, 直接写出t的值;若不存在, 请说明理由.24.如图,矩形,点是对角线上的动点(不与、重合),连接,作交射线于点.已知,.设的长为.(1)如图1, 于点, 交于点. 求证: ;(2)试探究: 是否是定值?若是, 请求出这个值;若不是, 请说明理由;(3)当是等腰三角形时, 请求出所有的值.2022年初中毕业升学适应性检测数学试题卷一、选择题(本题有10小题, 每小题3分, 共30分)【1题答案】【答案】A【2题答案】【答案】D【3题答案】【答案】D【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】B【7题答案】【答案】B【8题答案】【答案】C【9题答案】【答案】D【10题答案】【答案】B二、填空题(本题有6小题, 每小题4分, 共24分)【11题答案】【答案】()()22y y +-【12题答案】【答案】2x ≥【13题答案】【答案】36.8【14题答案】【答案】20【15题答案】 372t ≤≤【16题答案】【答案.. ①... ②.8三、解答题(本题有8小题, 第17~19题每题6分, 第20, 21题每题8分, 第22, 23题每题10分, 第24题12分, 共66分, 各小题都必须写出解答过程)【17题答案】【答案】1【18题答案】【答案】32 x=【19题答案】【答案】(1)补全条形统计图见解析, 图上标明具体数据15, 10 (2)参与科技制作社团所在扇形的圆心角度数为86.4︒(3)全校有600学生报名参加篮球社团活动【20题答案】【答案】(1)见解析(2)见解析【21题答案】【答案】(1)80;(2);(3)不能, 理由见解析.【22题答案】【答案】(1)详见解析;(2)3DE=【23题答案】【答案】(1), 点D的坐标为(-1, 0);(2)①当时, m有最大值, ;②存在, 当时点恰好落在抛物线上【24题答案】【答案】(1)见解析(2)的值为定值, 这个值为(3)x值为145或8。
2024-2025学年浙教版中考数学模拟试卷及答案

2024-2025学年浙教版中考数学模拟试卷班级:____________________ 学号:____________________ 姓名:____________________一、单选题(每题3分)1.若函数y=2x+1与直线y=−x+5相交,则交点的坐标是:A.(2,5)B.(1,3)C.(3,7)D.(−1,−1)答案:BBC,连接AE并延长至F,使2.已知正方形ABCD的边长为a,点E在BC上,且BE=13EF=AE。
则△AEF的面积与正方形ABCD面积之比为:A.1:2B.1:3C.1:4D.1:6答案:D3.下列哪个数是方程x2−9x+20=0的一个根?A. 4B. 5C. 6D. 7答案:B4.若tanθ=3,则sin2θ的值为:4A.2425B.1225C.1625D.725答案:A5.在半径为r的圆中,弦AB的长度为r,则∠AOB(O为圆心)的度数为:A. 30°B. 45°C. 60°D. 90°答案:C二、多选题(每题4分)1.【函数】问题描述:这里是关于函数的一个问题…•选项A: 描述A•选项B: 描述B•选项D: 描述D•选项E: 描述E答案:选项A: 描述A, 选项B: 描述B2.【几何】问题描述:这里是关于几何的一个问题…•选项E: 描述E•选项D: 描述D•选项A: 描述A•选项C: 描述C•选项B: 描述B答案:选项C: 描述C, 选项B: 描述B3.【几何】问题描述:这里是关于几何的一个问题…•选项E: 描述E•选项C: 描述C•选项A: 描述A•选项D: 描述D答案:选项B: 描述B, 选项A: 描述A, 选项C: 描述C4.【函数】问题描述:这里是关于函数的一个问题…•选项C: 描述C•选项E: 描述E•选项D: 描述D•选项A: 描述A•选项B: 描述B答案:选项A: 描述A, 选项C: 描述C5.【概率统计】问题描述:这里是关于概率统计的一个问题…•选项B: 描述B•选项D: 描述D•选项A: 描述A•选项C: 描述C•选项E: 描述E答案:选项A: 描述A, 选项B: 描述B, 选项C: 描述C三、填空题(每题3分)1.若一个正方形的对角线长为(8√2)厘米,则该正方形的面积为________平方厘米。
浙教版2020年中考数学模拟试题及答案(含详解) (3)

中考数学模拟试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>03.(2.00分)方程组的解为()A.B.C.D.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m25.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.47.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC∠DAE.(填“>”,“=”或“<”)10.(2.00分)若在实数范围内有意义,则实数x的取值范围是.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=,b=,c=.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数30≤t≤3535<t≤4040<t≤4545<t≤50合计线路A59151166124500 B5050122278500 C4526516723500早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴PQ∥l()(填推理的依据).18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|19.(5.00分)解不等式组:20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB 上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.76 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为cm.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.26.(6.00分)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.(7.00分)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B 重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.28.(7.00分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.3.(2.00分)方程组的解为()A.B.C.D.【分析】方程组利用加减消元法求出解即可;【解答】解:,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m2【分析】先计算FAST的反射面总面积,再根据科学记数法表示出来,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值是易错点,由于249900≈250000有6位,所以可以确定n=6﹣1=5.【解答】解:根据题意得:7140×35=249900≈2.5×105(m2)故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m【分析】将点(0,54.0)、(40,46.2)、(20,57.9)分半代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.【点评】考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC>∠DAE.(填“>”,“=”或“<”)【分析】作辅助线,构建三角形及高线NP,先利用面积法求高线PN=,再分别求∠BAC、∠DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:连接NH,BC,过N作NP⊥AD于P,S△ANH=2×2﹣﹣×1×1=AH•NP,=PN,PN=,Rt△ANP中,sin∠NAP====0.6,Rt△ABC中,sin∠BAC===>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE,故答案为:>.【点评】本题考查了锐角三角函数的增减性,构建直角三角形求角的三角函数值进行判断,熟练掌握锐角三角函数的增减性是关键.10.(2.00分)若在实数范围内有意义,则实数x的取值范围是x≥0.【分析】根据二次根式有意义的条件可求出x的取值范围.【解答】解:由题意可知:x≥0.故答案为:x≥0.【点评】本题考查二次根式有意义,解题的关键正确理解二次根式有意义的条件,本题属于基础题型.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=1,b=2,c=﹣1.【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣2时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.【点评】本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤3535<t≤4040<t≤4545<t≤50合计A59151166124500B5050122278500C4526516723500早高峰期间,乘坐C(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【分析】分别计算出用时不超过45分钟的可能性大小即可得.【解答】解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=0.954,∴C线路上公交车用时不超过45分钟的可能性最大,故答案为:C.【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为380元.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第3.【分析】两个排名表相互结合即可得到答案.【解答】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:3【点评】本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理)(填推理的依据).【分析】(1)根据题目要求作出图形即可;(2)利用三角形中位线定理证明即可;【解答】(1)解:直线PQ如图所示;(2)证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理).故答案为:AP,CQ,三角形中位线定理;【点评】本题考查作图﹣复杂作图,平行线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=4×+1﹣3+1=﹣+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(5.00分)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.【点评】此题主要考查了等腰三角形的性质,切线的性质,全等三角形的判定和性质,锐角三角函数,正确作出辅助线是解本题的关键.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【分析】(1)把A(4,1)代入y=中可得k的值;(2)直线OA的解析式为:y=x,可知直线l与OA平行,①将b=﹣1时代入可得:直线解析式为y=x﹣1,画图可得整点的个数;②分两种情况:直线l在OA的下方和上方,画图计算边界时点b的值,可得b的取值.【解答】解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.【点评】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x 的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.763 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为3或4.91或5.77cm.【分析】(1)利用圆的半径相等即可解决问题;(2)利用描点法画出图象即可.(3)图中寻找直线y=x与两个函数的交点的横坐标以及y1与y2的交点的横坐标即可;【解答】解:(1)当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当PA=PC或PA=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是B(填“A“或“B“),理由是该学生的成绩小于A课程的中位数,而大于B课程的中位数,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;(2)根据两个课程的中位数定义解答可得;(3)用总人数乘以样本中超过75.8分的人数所占比例可得.【解答】解:(1)∵A课程总人数为2+6+12+14+18+8=60,∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,∴中位数在70≤x<80这一组,∵70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,∴A课程的中位数为=78.75,即m=78.75;(2)∵该学生的成绩小于A课程的中位数,而大于B课程的中位数,∴这名学生成绩排名更靠前的课程是B,故答案为:B、该学生的成绩小于A课程的中位数,而大于B课程的中位数.。
【2022】浙江省杭州市中考数学模拟试卷(含答案解析)

浙江省杭州市中考数学模拟试卷(含答案)(考试时间:120分钟分数:150分)一.选择题(共10小题,满分40分,每小题4分)1.﹣1+3的结果是()A.﹣4B.4C.﹣2D.22.如图,王华用橡皮泥做了个圆柱,再用手工刀切去一部分,则其左视图是()A.B.C.D.3.在某个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是()A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小4.对于反比例函数y=,下列说法正确的是()A.图象经过点(2,﹣1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大5.在一次训练中,甲、乙、丙三人各射击10次的成绩(单位:环)如图,在这三人中,此次射击成绩最稳定的是()A.甲B.乙C.丙D.无法判断6.把不等式组:的解集表示在数轴上,正确的是()A.B.C.D.7.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.20°B.30°C.50°D.80°8.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为()A.﹣2B.2C.0D.19.如图,矩形ABCD的边AB=1,BC=2,以点B为圆心,BC为半径画弧,交AD于点E,则图中阴影部分的面积是()A.B.2C.D.2﹣10.图1是甲、乙两个圆柱形水槽,一个圆柱形的空玻璃杯放置在乙槽中(空玻璃杯的厚度忽略不计).将甲槽的水匀速注入乙槽的空玻璃杯中,甲水槽内最高水位y(厘米)与注水时间t(分钟)之间的函数关系如图2线段DE所示,乙水槽(包括空玻璃杯)内最高水位y(厘米)与注水时间t(分钟)之间的函数关系如图2折线O﹣A﹣B﹣C所示.记甲槽底面积为S1,乙槽底面积为S2,乙槽中玻璃杯底面积为S3,则S1:S2:S3的值为()A.8:5:1B.4:5:2C.5:8:3D.8:10:5二.填空题(共6小题,满分30分,每小题5分)11.因式分解:2x2﹣4x═.12.点A(a,5),B(3,b)关于y轴对称,则a+b=.13.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.14.如图,△ABC中,点D在BA的延长线上,DE∥BC,如果∠BAC=80°,∠C=33°,那么∠BDE的度数是.15.如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,点A在点B左侧,顶点在折线M﹣P﹣N上移动,它们的坐标分别为M(﹣1,4)、P(3,4)、N(3,1).若在抛物线移动过程中,点A横坐标的最小值为﹣3,则a﹣b+c的最小值是.16.如图,已知⊙O的半径为5,P是直径AB的延长线上一点,BP =1,CD是⊙O的一条弦,CD=6,以PC,PD为相邻两边作▱PCED,当C,D点在圆周上运动时,线段PE长的最大值与最小值的积等于.三、解答题(本题共8个小题,共80分)17.(1)计算:3sin30°+0201932-(2)化简:2+-+(21)(42)a a a 18.(本题8分)某校积极开展“阳光体育”活动,并开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有3000名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?.19题19.(本题8分)如图,在△ABC中,点D、E、F分别是边AB、BC、CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)若∠AHF=20°,∠AHD=50°,求∠DEF的度数.20.(本题8分)如图,网格中有一条线段AB,点A、B都在格点上,网格中的每个小正方形的边长为1.(1)在图①中画出格点△ABC,使△ABC是等腰三角形;(2)以AB为斜边作Rt△ABC(见图②),在图②中找出格点D,作锐角△ADC,且使得∠ADC=∠B.21.(10分)如图,点P 是圆O 直径CA 延长线上的一点,PB 切圆O 于点B ,点D 是圆上的一点,连接AB ,AD ,BD ,CD ,∠P=30°.(1)求证:PB=BC ;(2)若AD=6,tan ∠DCA=43,求BD 的长.22.(12分)已知如图,抛物线4516542++-=x x y 交x 轴于A 、C 两点,点D 是x 轴上方抛物线上的点,以A ,D 为顶点按逆时针方向作正方形ADEF.(1)求点A 的坐标和抛物线的对称轴的表达式;(2)当点F 落在对称轴上时,求出点D 的坐标;(3)连接OD 交EF 于点G ,记OA 和EF 交于点H ,当△AFH 的面积是四边形ADEH 面积的71时,则OADOGH S S △△= .(直接写出答案)23.(本题12分)一连锁店销售某品牌商品,该商品的进价是60元.因为是新店开业,所以连锁店决定当月前10天进行试营业活动,活动图① 图② 21题期间该商品的售价为每件80元,据调查研究发现:当天销售件数1y (件)和时间第x (天)的关系式为c bx x y ++=21(101≤≤x ),已知第4天销售件数是40件,第6天销售件数是44件.活动结束后,连锁店重新制定该商品的销售价格为每件100元,每天销售的件数也发生变化:当天销售数量2y (件)与时间第x (天)的关系为:822+=x y (3111≤≤x ). (1)求1y 关于x 的函数关系式;(2)若某天的日毛利润是1120元,求x 的值;(3)因为该连锁店是新店开业,所以试营业结束后,厂家给这个连锁店相应的优惠政策:当这个连锁店日销售量达到60件后(不含60),每多销售1件产品,当日销售的所有商品进价减少2元,设该店日销售量超过60件的毛利润总额为W ,请直接写出W 关于x 的函数解析式,及自变量x 的取值范围: .24.(本题14分)在矩形ABCD 中,AB=6,BC=8,BE ⊥AC 于点E ,点O 是线段AC 上的一点,以AO 为半径作圆O 交线段AC 于点G ,设AO=m .(1)直接写出AE 的长:AE= ;(2)取BC 中点P ,连接PE ,当圆O 与△BPE 一边所在的直线相切时,求出m 的长;(3)设圆O 交BE 于点F ,连接AF 并延长交BC 于点H .①连接GH ,当BF=BH 时,求△BFH 的面积;②连接DG ,当tan ∠HFB=3时,直接写出DG 的长,DG= .答案一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据有理数的加法解答即可.【解答】解:﹣1+3=2,故选:D.【点评】此题考查有理数的加法,关键是根据法则计算.2.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是上下两个矩形,矩形的公共边是虚线,故选:A.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.【分析】根据概率的意义对各选项分析判断后利用排除法求解.【解答】解:科比罚球投篮的命中率大约是83.3%,科比罚球投篮2次,不一定全部命中,A选项错误、B选项正确;科比罚球投篮1次,命中的可能性较大、不命中的可能性较小,C、D选项说法正确;故选:A.【点评】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.4.【分析】根据反比例函数性质逐项判断即可.【解答】解:∵当x=2时,可得y=1≠﹣1,∴图象不经过点(2,﹣1),故A不正确;∵在y=中,k=2>0,∴图象位于第一、三象限,且在每个象限内y随x的增大而减小,故B、D不正确;又双曲线为中心对称图形,故C正确,故选:C.【点评】本题主要考查反比例函数的性质,掌握反比例函数的图象形状、位置及增减性是解题的关键.5.【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:根据统计图波动情况来看,此次射击成绩最稳定的是乙,波动比较小,比较稳定.故选:B.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.【分析】先求出两个不等式的解集,各个不等式的解集的公共部分就是这个不等式组的解集.【解答】解:解不等式组得:.再分别表示在数轴上为.在数轴上表示得:.故选A.【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.【分析】根据平行线的性质求出∠4,根据三角形的外角的性质计算即可.【解答】解:∵AB∥CD,∴∠4=∠2=50°,∴∠3=∠4﹣∠1=20°,故选:A.【点评】本题考查的是平行线的性质,三角形的外角的性质,掌握两直线平行,内错角相等是解题的关键.8.【分析】根据多项式乘以多项式的法则,可表示为(a +b )(m +n )=am +an +bm +bn ,计算即可.【解答】解:根据题意得:(x +m )(2﹣x )=2x ﹣x 2+2m ﹣mx ,∵x +m 与2﹣x 的乘积中不含x 的一次项,∴m =2;故选:B .【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.9.【分析】连接BE .则阴影部分的面积=S矩形ABCD ﹣S △ABE ﹣S 扇形BCE ,根据题意知BE =BC =2,则AE =、∠AEB =∠EBC =30°,进而求出即可.【解答】解:如图,连接BE ,则BE =BC =2,在Rt △ABE 中,∵AB =1、BE =2,∴∠AEB =∠EBC =30°,AE ==,则阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形BCE=1×2﹣×1×﹣=2﹣﹣, 故选:A . 【点评】此题主要考查了扇形面积求法,本题中能够将不规则图形的面积进行转换成规则图形的面积差是解题的关键.10.【分析】根据题意和函数图象中的数据可以列出相应的方程组,求出S1:S2:S3的值,本题得以解决.【解答】解:由题意可得,,解得,S1:S2:S3=4:5:2,故选:B.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.二.填空题(共6小题,满分30分,每小题5分)11.【分析】直接提取公因式2x,进而分解因式即可.【解答】解:2x2﹣4x=2x(x﹣2).故答案为:2x(x﹣2).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【分析】直接利用关于y轴对称点的性质得出a,b的值,进而得出答案.【解答】解:∵点A(a,5),B(3,b)关于y轴对称,∴a=﹣3,b=5,则a+b=﹣3+5=2.故答案为:2.【点评】此题主要考查了关于y轴对称点的性质,正确记忆关于y轴对称点的横纵坐标关系是解题关键.13.【分析】列表得出所有等可能结果,从中找到积为大于﹣4小于2的结果数,根据概率公式计算可得.【解答】解:列表如下:﹣2﹣112﹣22﹣2﹣4﹣12﹣1﹣21﹣2﹣122﹣4﹣22由表可知,共有12种等可能结果,其中积为大于﹣4小于2的有6种结果,∴积为大于﹣4小于2的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】先根据三角形内角和定理,得出∠B,再根据平行线的性质,即可得到∠BDE 的度数.【解答】解:∵∠BAC=80°,∠C=33°,∴△ABC中,∠B=67°,∵DE∥BC,∴∠BDE=180°﹣∠B=180°﹣67°=113°,故答案为:113°.【点评】本题主要考查了三角形内角和定理以及平行线的性质,解题时注意:两直线平行,同旁内角互补.15.【分析】由题意得:当顶点在M处,点A横坐标为﹣3,可以求出抛物线的a值;当顶点在N处时,y=a﹣b+c取得最小值,即可求解.【解答】解:由题意得:当顶点在M处,点A横坐标为﹣3,则抛物线的表达式为:y=a(x+1)2+4,将点A坐标(﹣3,0)代入上式得:0=a(﹣3+1)2+4,解得:a=﹣1,当x=﹣1时,y=a﹣b+c,顶点在N处时,y=a﹣b+c取得最小值,顶点在N处,抛物线的表达式为:y=﹣(x﹣3)2+1,当x=﹣1时,y=a﹣b+c=﹣(﹣1﹣3)2+1=﹣15,故答案为﹣15.【点评】本题考查的是二次函数知识的综合运用,本题的核心是确定顶点在M、N处函数表达式,其中函数的a值始终不变.16.【分析】连接OC .设CD 交PE 于点K ,连接OK .求出OK ,OP 的值,利用三角形的三边关系即可解决问题.【解答】解:连接OC .设CD 交PE 于点K ,连接OK .∵四边形PCED 是平行四边形,∴EK =PK ,CK =DK ,∴OK ⊥CD ,在Rt △COK 中,∵OC =5,CK =3,∴OK ==4,∵OP =OB +PB =6,∴6﹣4≤PK ≤6+4,∴2≤PK ≤10,∴PK 的最小值为2,最大值为10,∵PE =2PK ,∴PE 的最小值为4,最大值为20,∴线段PE 长的最大值与最小值的积等于80.故答案为80.【点评】本题考查垂径定理,勾股定理,三角形的三边关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(本题8分)(1)2124- (4分); (2)2a+1 (4分) 18.(本题8分)(1)40人 (3分),(2)12人 (2分),(3)1125人 (3分)19.(本题8分)(1)证明略(4分),(2)70° (4分)20.(本题8分)答案略,每个小题4分21.(本题10分)(1)证明略(4分),(2)334+ (6分)22.(12分)(1)A (4,0) 2分,对称轴是直线x=1 (2分)(2)求出点D 的纵坐标是3 (2分),D (2214+,3)或D (2214-,3)(3分)写出1个给2分(3)4009(3分) 23.(12分)(1)5682+-=x x y (5分) (2)第8天和第12天 (4分,第8天得3分,第10天舍去得1分);(3))3026(5129682≤<--=x x x w (3分)24.(本题14分)(1)AE=518(2分);(2)59=m (2分),415=m (2分),2027=m (3分) (3)518(3分),(4)DG=5512(2分)。
2024-2025学年浙教版中考数学模拟试卷及答案

2024-2025学年浙教版中考数学模拟试卷一、单选题(每题3分)1. 题目: 解方程组:1.(2x +3y =12)2.(x −y =1)答案:(x =3,y =2)2. 题目: 解二次方程:(x 2−5x +6=0)答案:(x =2)或(x =3)3. 题目: 解方程组:1.(3x −4y =16)2.(2x +y =10)答案:(x =5611),(y =−211)4. 题目: 解二次方程:(4x 2−9=0)答案:(x =−32)或(x =32)5. 题目: 解三次方程:(x 3−2x 2−x +2=0)答案:(x =−1),(x =1), 或(x =2)二、多选题(每题4分)题目1 (4分):下列哪些选项是代数式的正确表述?(A)3x + 4y - z (B) 5 * 6 + 2 / x (C) 2x^2 - 3x + 4 (D) a / b + c答案: (A), (C)题目2 (4分):下面哪一组线性方程有唯一解?(A)x + y = 3; x - y = 1 (B) 2x + 3y = 5; 4x + 6y = 10 (C) x + y = 2; 2x + 2y = 4 (D) 3x - 2y = 1;6x - 4y = 2答案: (A)题目3 (4分):在等腰三角形ABC中,AB=AC,角B和角C的度数可能是什么?(A)50°和 50° (B) 45°和 45° (C) 60°和 60° (D) 70°和 70°答案: (A), (B), (C), (D)题目4 (4分):抛掷一枚公平的骰子两次,得到两个点数之和为7的概率是多少?(A)1/6 (B) 1/9 (C) 1/12 (D) 1/18答案: (A)题目5 (4分):下列哪些变换可以保持图形的形状和大小不变?(A) 平移 (B) 旋转 (C) 缩放 (D) 反射答案: (A), (B), (D)请仔细审题并作答,祝你考试顺利!三、填空题(每题3分)1. 计算:((23)2−4×6),答案:402. 解方程:(2x +3=7),求 x 的值,答案:23. 若 a:b = 3:4,且 b = 12,求 a 的值,答案:94. 一个正方形的周长是 20 厘米,求它的面积,答案:25 平方厘米5. 在直角三角形中,一条直角边长为 3 厘米,另一条直角边长为 4 厘米,求斜边长,答案:5 厘米四、解答题(每题8分)题目1已知函数(f (x )=2x 2−3x +4),求函数的最小值及对应的(x )值。
浙江省杭州市2022年数学中考模拟试卷及答案浙教版

浙江省杭州市2022年中考模拟卷数学试卷一 仔细选一选 本题有10个小题, 每小题3分, 共30分下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在 答题卷中相应的格子内 注意可以用多种不同的方法来选取正确答案 1.-(-)的相反数是 (原创) (A )-7 (B )17 (C ) (D ) 17- 2.小明在纸上看到的t R ABC 如图(1),小红在放大镜下看到的此三角形如图(2),则的三个三角函数值( ) (原创)A 都增大B 都不变C 都减小D 不能确定 3.下列运算正确的是 (原创)(A )()()22a b a b a b +--=- (B )()2239a a +=+(C )2242a a a += (D )()22424a a -=4在图中的几何体中,它的左视图是 ( ) (原创)5.教室的一扇窗户打开后,用窗钩可以将其固定,这里所运用的几何原理是( ) (原创)(A )两点之间线段最短 (B )三角形的稳定性(C )两点确定一条直线 D 垂线段最短6 在等腰ABC 中,AB=AC ≠BC ,现以该三角形的任意一条边为公共边作一个与ABC 全等的等腰三角形,问有几个这样的三角形可以做出来( ) (改编) (A )3个 (B )4个 (C )5个 (D )7个7数据3,3,4,5,4,,6的平均数是4,则的值为 (原创) (A )3 (B )4 (C )5 (D )68 由3,4,5三个数字随机生成点的坐标,如果每个点出现的可能性相等,那么从中任意取一点,则这个点在函数=1图像上的概率是( ) (原创)CAC (D)(C)(B)(A)第4题图(A )29 B 91 C 23 D 13的函数:2w t=,则下列有关此函数图像的描述正确的是( )(原创)(A )该函数图像与坐标轴有两个交点 (B )该函数图像经过第一象限 (C )该函数图像关于原点中心对称 (D )该函数图像在第四象限 10.设12340,,,,x x x x 是正整数,且1234058x x x x ++++=,则222212340x x x x ++++的最大值和最小值为( )改编(A )400,94 (B )200,94 (C )400,47 (D )200,47 二 认真填一填 本题有6个小题, 每小题4分, 共24分要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案 11在实数范围内分解因式32x x -的结果为 。
2023年浙江省杭州市中考数学模拟卷(含答案解析)
2023年浙江省杭州市中考数学模拟卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算42-÷的结果是().A.2-B.2C.12-D.122.第四届世界茉莉花大会、2022年中国(横州)茉莉花文化节于9月19日、20日在南宁市和横州市两地举行,茉莉花产业成了横州市一张靓丽的名片,目前横州市茉莉花种植面积约125000亩.数据125000用科学记数法可表示为()A.60.12510⨯B.51.2510⨯C.412.510⨯D.312510⨯3.计算62a a⋅的结果是()A.3a B.4a C.8a D.12a4.在平面直角坐标系中,点(1,2)P-关于原点对称的点在()A.第一象限B.第二象限C.第三象限D.第四象限5.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.数学活动课上,孙老师对圆周率的小数点后100位数字进行了统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数与中位数分别为()A.14,5B.5,9C.9,5D.14,4.56.从甲、乙、丙、丁四名青年骨干教师中随机选取两名去参加“同心向党”演讲比赛,则恰好抽到甲、丙两人的概率是()A.18B.16C.14D.127.如果关于x的一元二次方程210ax bx++=的一个解是x=1,则代数式2022-a-b 的值为()A.-2022B.2021C.2022D.20238.若一个多边形的每一个内角都等于140︒,则这个多边形的边数是()A.7B.8C.9D.109.某活动小组购买了4个篮球和5个足球,一共花费435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意可列方程组为()A .343435x y y y -=⎧⎨+=⎩B .345435y x x y -=⎧⎨+=⎩C .345435x y x y =-⎧⎨+=⎩D .345435x y x y -=⎧⎨+=⎩10.已知在平面直角坐标系xOy 中,过点O 的直线交反比例函数1y x=的图象于A ,B 两点(点A 在第一象限),过点A 作AC x ⊥轴于点C ,连结BC 并延长,交反比例函数图象于点D ,连结AD ,将ACB △沿线段AC 所在的直线翻折,得到1ACB ,1AB 与CD 交于点E .若点D 的横坐标为2,则AE 的长是()A .23BC.2D .1二、填空题11.分解因式:229x y -=________.12.五线谱是一种记谱法,通过在五根等距离的平行横线上标以不同时值的音符及其他记号来记载音乐.如图,A ,B ,C 为直线l 与五线谱的横线相交的三个点,则AB BC的值是_______.13.不等式组34214x x +<⎧⎪⎨-≤⎪⎩的解为_________.14.如图,一辆小车沿倾斜角为α的斜坡向上行驶26米,已知12cos 13α=,则小车上升的高度是________米.15.如图,以AD 为直径的半圆O 经过Rt △ABC 的斜边AB 的两个端点,交直角边AC 于点E .B 、E 是半圆弧的三等分点,弧BE 的长为23π,则图中阴影部分的面积为_____.16.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,A 点坐标为()50-,,对角线AC 和OB 相交于点D 且40AC OB ⋅=.若反比例函数(0)ky x x=<的图象经过点D ,并与BC 的延长线交于点E ,则OCE S = _____.三、解答题17.计算:(1)(052020--;(2)x (1-x )+(x +1)(x -1).18.某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.19.已知,如图,点A ,D ,B ,E 在同一条直线上,,,AC EF AD EB A E ==∠=∠,BC 与DF 交于点G .(1)求证:ABC EDF △≌△;(2)当110CGD ∠=︒时,求GBD ∠的度数.20.如图,ABC 内接于O ,AB AC =,ADC △与ABC 关于直线AC 对称,AD 交O 于点E .(1)求证:CD 是O 的切线.(2)连接CE ,若1cos 3D =,6AB =,求CE 的长.21.小李、小王分别从甲地出发,骑自行车沿同一条路到乙地参加公益活动.如图,折线OAB 和线段CD 分别表示小李、小王离甲地的距离y (单位:千米)与时间x (单位:小时)之间的函数关系.根据图中提供的信息,解答下列问题:(1)求小王的骑车速度,点C 的横坐标;(2)求线段AB 对应的函数表达式;(3)当小王到达乙地时,小李距乙地还有多远?22.如图,在正方形ABCD 中,6AB =,E 为AB 的中点,连接CE ,作CF EC ⊥交射线AD 于点F ,过点F 作FG CE ∥交射线CD 于点G ,连接EG 交AD 于点H .(1)求证:CE CF =.(2)求HD 的长.(3)如图2,连接CH ,点P 为CE 的中点,Q 为AF 上一动点,连接PQ ,当QPC ∠与四边形GHCF 中的一个内角相等时,求所有满足条件的DQ 的长.23.如图1,抛物线()2102y x bx c c =++<与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,过点C 作CD x ∥轴,与抛物线交于另一点D ,直线BC 与AD 相交于点M .(1)已知点C 的坐标是()04-,,点B 的坐标是()40,,求此抛物线的解析式;(2)若112b c =+,求证:AD BC ⊥;(3)如图2,设第(1)题中抛物线的对称轴与x 轴交于点G ,点P 是抛物线上在对称轴右侧部分的一点,点P 的横坐标为t ,点Q 是直线BC 上一点,是否存在这样的点P ,使得PGQ △是以点G 为直角顶点的直角三角形,且满足GQP OCA ∠=∠,若存在,请直接写出t 的值;若不存在,请说明理由.参考答案:1.A【分析】按照“两数相除,异号得负,并把绝对值相除”的法则直接计算即可.【详解】解:(-4)÷2=-2故选:A .【点睛】本题考查有理数除法运算,解题的关键是熟练掌握运算法则,注意先确定运算的符号,同号得正,异号得负.2.B【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:5125000 1.2510=⨯.故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.C【分析】根据同底数的幂相乘,底数不变,指数相加求解即可.【详解】解:62a a ⋅=a 6+2=a 8,故选C .【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解答本题的关键.4.D【分析】根据关于原点对称的点坐标变换规律即可得.【详解】解: 点(1,2)P -关于原点对称的点的坐标为(1,2)-,∴在平面直角坐标系中,点(1,2)P -关于原点对称的点在第四象限,故选:D .【点睛】本题考查了关于原点对称的点坐标变换规律,熟练掌握关于原点对称的点坐标变换规律是解题关键.5.C【分析】直接根据众数和中位数的定义可得答案.【详解】解:圆周率的小数点后100位数字的出现次数最多的为9,故众数为9;处于最中间的两位数为5和5,所以中位数为5故答案为:9,5.【点睛】本题主要考查众数和中位数,解题的关键是掌握求一组数据的众数和中位数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.找出处于最中间的两位数取他们的平均数,即为中位数.6.B【分析】根据列表法求概率即可.【详解】解:设,,,A B C D 表示甲、乙、丙、丁四名青年骨干教师,列表如下AB C D A --AB AC AD B BA --BC BD C CA CB --CD DDADBDC--共有12种等可能结果,其中恰好抽到甲、丙两人有2种结果,故恰好抽到甲、丙两人的概率为21=126.故选B【点睛】本题考查了列表法求概率,掌握求概率的方法是解题的关键.7.D【分析】根据一元二次方程解得定义即可得到1a b +=-,再由()20222022a b a b --=-+进行求解即可.【详解】解:∵关于x 的一元二次方程210ax bx ++=的一个解是x =1,∴10a b ++=,∴1a b +=-,∴()()20222022202212023a b a b --=-+=--=,故选D .【点睛】本题主要考查了代数式求值和一元二次方程的解,熟知一元二次方程解得定义是解题的关键.8.C【分析】先求出外角的度数,根据多边形的外角和等于360︒即可求出多边形的边数.【详解】解:∵一个多边形的每一个内角都等于140︒,∴这个多边形的每一个内角对应的外角度数为18014040︒-︒=︒,∵多边形的外角和为360°,∴多边形的边数为360940°=°,故选:C .【点睛】本题考查了多边形的内角和外角,能灵活运用多边形的外角和等于360︒进行求解是解此题的关键.9.D【分析】设篮球的单价为x 元,足球的单价为y 元,根据题意列出二元一次方程组,即可求解.【详解】解:设篮球的单价为x 元,足球的单价为y 元,由题意得:345435x y x y -=⎧⎨+=⎩,故选:D .【点睛】本题考查了列二元一次方程组,找到等量关系是解题的关键.10.B【分析】求出直线BC ,1AB 的解析式,联立两个解析式,求出E 点坐标,利用两点间距离公式,进行求解即可.【详解】解:设点A 的坐标为1,m m ⎛⎫ ⎪⎝⎭,则点B 的坐标为1,m m ⎛⎫-- ⎪⎝⎭∵AC x ⊥轴,∴(),0C m ,设直线BC 的解析式为y kx b =+,把1,,B m m ⎛⎫-- ⎪⎝⎭(),0c m 代入,得10km b m mk b ⎧-+=-⎪⎨⎪+=⎩,解得:21212k m b m ⎧=⎪⎪⎨⎪=-⎪⎩,∴2122x y m m=-,∵点D 的横坐标为2,∴12,2D ⎛⎫ ⎪⎝⎭把点12,2D ⎛⎫⎪⎝⎭代入2122x y m m =-得:121,2m m ==-(舍),∴()()()1,1,1,11,0A B C --,直线BC 的解析式为:1122y x =-,∵将ACB △沿线段AC 所在的直线翻折,得到1ACB ,∴点1B 的坐标为()3,1-,设直线1AB 的解析式为y ax n =+,把()1,1A ,()13,1B -代入可得:1,31a n a n +=⎧⎨+=-⎩解得:12a n =-⎧⎨=⎩,∴2y x =-+,联立21122y x y x =-+⎧⎪⎨=-⎪⎩,解得:5313x y ⎧=⎪⎪⎨⎪=⎪⎩,∴51,33E ⎛⎫⎪⎝⎭,∴3AE ==.故选:B .【点睛】本题考查反比例函数与一次函数综合应用,坐标系下的旋转.熟练掌握旋转的性质,正确的求出一次函数的解析式,是解题的关键.11.()()33x y x y +-##()()33x y x y -+【分析】直接根据平方差公式因式分解即可求解.【详解】解:229x y -=()()33x y x y +-,故答案为:()()33x y x y +-.【点睛】本题考查了因式分解,掌握平方差公式是解题的关键.12.2【分析】过点A 作AD a ⊥于D ,交b 于E ,根据平行线分线段成比例定理列出比例式,计算即可.【详解】过点A 作AD a ⊥于D ,交b 于E,∵a b ,∴2==AB AE BC ED,故答案为:2.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.13.21x -£<【分析】分别解出两个不等式的解集,并将解集表示在数轴上,找到公共解集即可.【详解】解:34214x x +<⎧⎪⎨-≤⎪⎩①②解不等式①得,1x <解不等式②得,2x ≥-将解集表示在数轴上,如图,∴不等式组的解集为21x -£<故答案为:21x -£<.【点睛】本题考查解一元一次不等式组、在数轴上表示不等式的解集等知识,是基础考点,掌握相关知识是解题关键.14.10【分析】由题意易得该直角三角形的三边之比为5∶12∶13,进而可得5sin 13α=,然后问题可求解.【详解】解:∵12cos 13α=,∴该直角三角形的三边之比为5∶12∶13,∴5sin 13α=,∵小车沿倾斜角为α的斜坡向上行驶26米,∴小车上升的高度是26sin 2056113α⨯=⨯=米;故答案为10.【点睛】本题主要考查解直角三角形的应用,熟练掌握三角函数是解题的关键.1523π【分析】连接BD ,BE ,BO ,EO ,由 BE 的长为23π,可求出圆的半径,然后根据图中阴影部分的面积为:S △ABC -S 扇形BOE ,即可求解.【详解】解:连接BD ,BE ,BO ,EO ,∵B ,E 是半圆弧的三等分点,∴∠EOA =∠EOB =∠BOD =60°,∴∠BAC =∠EBA =30°,∴BE ∥AD ,∵ BE 的长为23π,∴6021803R ππ=,解得R =2.∴AB =AD ∴BC =12AB3,AC =13,22ABC s BC AC ∆=⨯⨯==∵△BOE 和△ABE 同底等高,∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为:S △ABC -S 扇形BOE 23π,23π.【点睛】本题考查扇形的面积公式,解直角三角形,勾股定理,圆周角定理的推论,添加辅助线,利用割补法求面积是关键.16.2【分析】如图所示,过点C 作CG AO ⊥于G ,根据菱形和三角形的面积公式可得1210OAC OABC S S ==菱形V ,再由5OA =,求出CG 4=,在Rt OGC △中,根据勾股定理得3OG =,即()34C -,,根据菱形的性质和两点中点坐标公式求出()42D -,,将D 代入反比例函数解析式可得k ,进而求出点E 坐标,最后根据三角形面积公式分别求得OCE S 即可.【详解】解:如图所示,过点C 作CG AO ⊥于G ,∵40BO AC ⋅=,∴1202OABC BO S AC =⋅=菱形,∴1210OAC OABC S S ==菱形V ,∴1102AO CG ⋅=,∵()50A -,,∴5OA =,∴CG 4=,在Rt OGC △中,54OC OA CG ===,,∴3OG ==,∴()34C -,,∵四边形OABC 是菱形,∴()84B -,,∵D 为BO 的中点,∴()42D -,,又∵D 在反比例函数上,∴428k =-⨯=-,∵()34C -,,∴E 的纵坐标为4,又∵E 在反比例函数上,∴E 的横坐标为824-=-,∴()24E -,,∴1CE =,∴1114222OCE S CE CG =⋅=⨯⨯=△,故答案为:2.【点睛】本题主要考查了反比例函数图象上点的坐标特征以及菱形性质的运用,解题时注意:菱形的对角线互相垂直平分.17.(1)9(2)1x -【分析】(1)利用绝对值的代数意义,算术平方根的定义以及零指数幂的定义计算即可.(2)利用单项式乘多项式的运算法则以及平方差公式化简即可.【详解】(1)解:(052020-+5519=+-=.(2)解:原式221x x x =-+-,【点睛】本题考查了平方差公式,算术平方根,单项式乘多项式以及零指数幂的定义和法则,牢固掌握运算法则是解题的关键.18.(1)5,20,80(2)图见解析(3)3 5【分析】(1)用喜欢跳绳的学生人数除以所占的百分比,求出班级人数,用班级人数减去喜欢跳绳,乒乓球和其他项目的人数,求出喜欢篮球项目的人数,用喜欢乒乓球的人数除以班级总人数,得到乒乓球的百分比,用全校人数乘以喜欢篮球的百分比,求出全校喜欢篮球的人数;(2)补全条形图即可;(3)画树状图求概率即可.【详解】(1)解:调查的总人数为2040%50÷=人,∴喜欢篮球项目的同学的人数502010155=---=人;扇形图中:“乒乓球”的百分比:1020% 50=,全校喜欢篮球的人数:58008050⨯=人,∴估计全校学生中有80人喜欢篮球项目;故答案为:5,20,80;(2)补全条形图如下:(3)解:画树状图如下:共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果所以所抽取的2名同学恰好是1名女同学和1名男同学的概率123205==.【点睛】本题考查条形图和扇形图综合应用,以及画树状图法求概率.通过扇形图和条形图有效地获取信息,是解题的关键.19.(1)证明见解析;(2)55︒.【分析】(1)先根据线段的和差可得AB ED =,再根据三角形全等的判定定理即可得证;(2)先根据三角形全等的性质可得GBD GDB ∠=∠,再根据三角形的外角性质即可得.【详解】证明:(1)AD EB = ,AD BD EB BD ∴+=+,即AB ED =,在ABC 和EDF 中,AC EF A E AB ED =⎧⎪∠=∠⎨⎪=⎩,()ABC EDF SAS ∴≅ ;(2)由(1)已证:ABC EDF ≅ ,ABC EDF ∴∠=∠,即GBD GDB ∠=∠,110GBD G D DB CG ∠+∠=∠=︒ ,5512CG BD D G ∠∴=∠=︒.【点睛】本题考查了三角形全等的判定定理与性质、三角形的外角性质等知识点,熟练掌握三角形全等的判定方法是解题关键.20.(1)证明见解析(2)4【分析】(1)如图所示,连接OC ,连接AO 并延长交BC 于F ,根据等边对等角得到A ABC CB =∠∠,再证明AF BC ⊥,得到90ACF CAF ∠+∠=︒,由OA OC =,得到OAC OCA ∠=∠,由轴对称的性质可得ACB ACD ∠=∠,即可证明90ACD OCA ∠+∠=︒,从而证明CD 是O 的切线;(2)由轴对称的性质得B D ∠=∠,CD BC =,再由圆内接四边形对角互补推出,CED D ∠=∠,得到CE CD BC ==,解Rt ABF ,求出2BF =,则24BC BF ==,即可得到4CE BF ==.【详解】(1)证明:如图所示,连接OC ,连接AO 并延长交BC 于F ,∵AB AC =,∴A ABC CB =∠∠,∵ABC 内接于O ,∴AF BC ⊥,∴90ACF CAF ∠+∠=︒,∵OA OC =,∴OAC OCA ∠=∠,∴90ACF OCA +=︒∠∠,由轴对称的性质可得ACB ACD ∠=∠,∴90ACD OCA ∠+∠=︒,即90OCD ∠=︒,又∵OC 是O 的半径,∴CD 是O 的切线;(2)解:由轴对称的性质得B D ∠=∠,CD BC =,∵四边形ABCE 是圆内接四边形,∴180B AEC AEC CED +=︒=+∠∠∠∠,∴CED D ∠=∠,∴CE CD BC ==,∵1cos 3D =,∴1cos cos 3B D ==,在Rt ABF 中,cos 2BF AB B =⋅=,∴24BC BF ==,∴4CE BF ==.【点睛】本题主要考查了切线的判定,等腰三角形的性质与判定,锐角三角函数,轴对称的性质等等,灵活运用所学知识是解题的关键.21.(1)18千米/小时,0.5(2)()9 4.50.5 2.5y x x =+≤≤;(3)4.5千米【分析】(1)根据函数图象中的数据先求出小王的骑车速度,再求出点C 的坐标;(2)用待定系数法可以求得线段AB 对应的函数表达式;(3)将2x =代入(2)中的函数解析式求出相应的y 的值,再用27减去此时的y 值即可求得当小王到达乙地时,小李距乙地的距离.【详解】(1)解:由图可得,小王的骑车速度是:()()2792118-÷-=(千米/小时),点C 的横坐标为:19180.5-÷=;(2)设线段AB 对应的函数表达式为()0y kx b k =+≠,∵()0.5,9A ,()2.5,27B ,∴0.592.527k b k b +=⎧⎨+=⎩,解得:94.5k b =⎧⎨=⎩,∴线段AB 对应的函数表达式为()9 4.50.5 2.5y x x =+≤≤;(3)当2x =时,18 4.522.5y =+=,∴此时小李距离乙地的距离为:2722.5 4.5-=(千米),答:当小王到达乙地时,小李距乙地还有4.5千米.【点睛】本题考查了从函数图象获取信息,以及一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(1)证明见解析(2)2(3)DQ 的值为333,3,414【分析】(1)证明△△BCE DCF ≌即可得结论;(2)由E 为AB 中点,6AE =,得3AE BE ==,进而求得1tan 2ECB ∠=,从而有1tan 2GFD ∠=,32GD =,再证明△△AEH DGH ∽即可求解;(3)由“边边边”证明△≌△ECH FCH ,得45,ECH FCH HEC HFC ∠=∠=︒∠=∠.进而分四种情况讨论求解,①如图2,当90QPC GFC ∠=∠=︒时,②如图3,当QPC HGF ∠=∠时,③如图4,当QPC GHC ∠=∠时,进而求得DQ 的长.【详解】(1)证明: 四边形ABCD 为正方形,BC CD ∴=,90ABC BCD CDF ∠=∠=∠=︒.CF EC ⊥ ,90DCF ECD ∴∠+∠=︒,90∵ECB ECD ∠+∠=︒,ECB DCF ∴∠=∠,BCE DCF ∴≌△△,CE CF ∴=.(2)解:E 为AB 中点,6AE =,3AE BE ∴==,1tan 2ECB ∴∠=.GF EC ∥ ,90GFC ECF ∴∠=∠=︒,1tan tan tan 2GFD DCF ECB ∴∠=∠=∠=,32GD ∴=.AE GD ∥ ,AEH DGH ∴∽△△,21AE AH GD DH ∴==,123HD AD ∴==.(3)解:2,3HD DF == ,5EH FH ∴==.,EC CF CH CH == ,ECH FCH ∴△≌△,45,ECH FCH HEC HFC ∴∠=∠=︒∠=∠.①如图2,当90QPC GFC ∠=∠=︒时,可得PQ FC ∥,tan tan 2AQP AFC ∴∠=∠=.过点P 作MN AD ⊥于点MP 为中点,1322PN BE ∴==,39622PM ∴=-=,94QM ∴=,93344DQ MD QM ∴=-=-=.②如图3,当QPC HGF ∠=∠时,GF EC ∥ ,180HGF HEC ∴∠+∠=︒,180∵QPC QPE +∠=︒.QPC HGF ∠=∠,QPE HEC ∴∠=∠,HEC HFC ∠=∠ ,QPE HFC BEC ∴∠=∠=∠,PQ AB ∴∥,3DQ ∴=.③如图4,当QPC GHC ∠=∠时,2,6HD DC == ,tan 3DHC ∴∠=.QPC GHC ∠=∠ ,EHC QPE FHC ∴∠=∠=∠,45,tan 3EMP ECH QPE ∴∠=∠=︒∠=.过点M 作MN EP ⊥于点N ,∴设NP a =,则33,2a MN a EN ==.32a a +a =91,22EM MH ∴==.在QMH △中,过点Q 作QJ EH ⊥于点J ,∴设3,4,3QJ b JH b MJ b ===.117,214b b =∴=514QH ∴=,3314DQ ∴=.综上所述,DQ 的值为333,3,414.【点睛】本题主要考查了全等三角形的判定及性质、正方形的性质、相似三角形的判定及性质以及解直角三角形,掌握分类思想,构造恰当辅助线是解题的关键.23.(1)2142y x x =--(2)证明见解析(3)t =或t =【分析】(1)利用待定系数法求解即可;(2)先求出当112b c =+时,抛物线的解析式为211122y x c x c ⎛⎫=+++ ⎪⎝⎭,由此求出()()200A B c --,,,,再求出()2D c c --,,求出直线AD 的解析式为2y x =--,设直线AD 与y 轴交于点E ,则()02E -,,得到2OA OE ==,则45OAE ∠=︒,同理得45OBC ∠=︒,从而得到90AMB ∠=︒,即可证明AD BC ⊥;(3)如图所示,连接AC PQ ,,求出抛物线对称轴为直线1x =,则()20A -,,推出1tan tan 2GQP OCA ∠=∠=,求出直线BC 的解析式为4y x =-,设()21442P t t t Q s s ⎛⎫--- ⎪⎝⎭,,,,然后分当点Q 在点P 下方时,如图3-1所示,过点Q 、P 分别作x 轴的垂线,垂足分别为M 、N ,证明QMG GNP △∽△,得到24121142s s t t t --==--++,解方程即可;当点Q 在点P 上方时,如图3-2所示,过点G 作MN y ∥轴,过点P 、Q 分别作直线MN 的垂线,垂足分别为N 、M ,同理可得21421142s s t t t --==--++,解方程即可.【详解】(1)解:把()40B ,,()04C -,代入212y x bx c =++得:8404b c c ++=⎧⎨=-⎩,∴14b c =-⎧⎨=-⎩,∴抛物线解析式为2142y x x =--;(2)解:∵112b c =+,∴抛物线解析式为211122y x c x c ⎛⎫=+++ ⎪⎝⎭,令2102y x bx c =++=,则2111022x c x c ⎛⎫+++= ⎪⎝⎭,解得x c =-或2x =-,∴()()200A B c --,,,,∴抛物线对称轴为直线22c x +=-,∵CD x ∥轴,∴()2D c c --,,设直线AD 的解析式为()2y k x =+,∴()22k c c --+=,解得1k =-,∴直线AD 的解析式为()22y x x =-+=--,设直线AD 与y 轴交于点E ,∴()02E -,,∴2OA OE ==,∴45OAE ∠=︒,∵OC OB c ==,∴45OBC ∠=︒,∴90AMB ∠=︒,∴AD BC ⊥;(3)解:如图所示,连接AC PQ ,,∵抛物线解析式为()2211941222y x x x =--=--,∴抛物线对称轴为直线1x =,∴()20A -,,∴24OA OC ==,,∴1tan 2OA ACO OC ∠==;∵GQP OCA ∠=∠,∴1tan tan 2GQP OCA ∠=∠=,设直线BC 的解析式为11y k x b =+,∴111404k b b -+=⎧⎨=-⎩,∴1114k b =⎧⎨=-⎩,∴直线BC 的解析式为4y x =-,设()21442P t t t Q s s ⎛⎫--- ⎪⎝⎭,,,,当点Q 在点P 下方时,如图3-1所示,过点Q 、P 分别作x 轴的垂线,垂足分别为M 、N ,∵90QGP =︒∠,∴90MGQ MQG MGQ NGP +=︒=+∠∠∠∠,1tan 2PG GQP QG ∠==,∴MQG NGP =∠∠,又∵90QMG GNP ==︒∠∠,∴QMG GNP △∽△,∴2QM GM GQ GN PN PG===,∴24121142s s t t t --==--++,∴422s t -=-,2128s t t -=-++,∴216228t t t -+=-++,解得t =;当点Q 在点P 上方时,如图3-2所示,过点G 作MN y ∥轴,过点P 、Q 分别作直线MN 的垂线,垂足分别为N 、M ,同理可得2QM GM GQ GN PN PG ===,∴21421142s s t t t --==--++,∴422s t -=-,2128s t t -=-++,∴222128t t t +-=-++,解得t =(负值舍去);综上所述,t t =.【点睛】本题主要考查了二次函数综合,待定系数法求二次函数解析式,一次函数与几何综合,相似三角形的性质与判定,解直角三角形等等,利用分类讨论的思想求解是解题的关键.。
浙江省中考数学模拟测试卷-带参考答案与解析
浙江省中考数学模拟测试卷-带参考答案与解析一、选择题(本大题共10小题,共40.0分。
在每小题列出的选项中选出符合题目的一项)1. −2023的相反数是( )A. 2023B. −12023C. 12023D. −20232. 计算−a2⋅a的正确结果是( )A. −a2B. aC. −a3D. a33. 2022年宁波舟山港完成货物吞吐量超12.5亿吨,连续14年位居全球第一.其中12.5亿用科学记数法表示为( )A. 12.5×108B. 1.25×109C. 0.125×109D. 1.25×1084. 如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A.B.C.D.5. 学校开展航天知识竞赛活动.经过几轮筛选,本班决定从甲、乙、丙、丁四名同学中选择一名同学代表班级参加比赛,经过统计,四名同学成绩的平均数(单位:分)及方差(单位:分 2)如表所示:如果要选一名成绩好且状态稳定的同学参赛,那么应该选择( )甲乙丙丁平均数96989598方差20.40.4 1.6A. 甲B. 乙C. 丙D. 丁6. 已知圆锥的母线长8cm,底面圆的直径6cm,则这个圆锥的侧面积是( )A. 96πcm2B. 48πcm2C. 33πcm2D. 24πcm27. 如图,点D、E是△ABC边BC上的三等分点,且AD⊥BC,F为AD的中点,连接BF、EF若BF=3则AC的长为( )A. 4.5B. 6C. 7.5D. 98. 我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x,y的二元一次方程组正确的是( )A. {7x−7=y9(x−1)=y B. {7x+7=y9(x−1)=y C. {7x+7=y9x−1=y D. {7x−7=y9x−1=y9. 已知点A(x1,y1),B(x2,y2)是二次函数y=(x−3)2+3上的两点,若x1<3<x2x1+x2>6则下列关系正确的是( )A. y1<3<y2B. 3<y1<y2C. 3<y2<y1D. y2<y1<310. 将Rt△ABC的直角边BC、斜边AB按如图方式构造正方形BCED和正方形ABFG,在正方形ABFG内部构造矩形ABHI使得边H刚好过点D,则已知哪条线段的长度就可以求出图中阴影部分的面积( )A. ABB. ACC. BCD. FH二、填空题(本大题共6小题,共30.0分)11. 若√ x−1在实数范围内有意义,则x的取值范围是.12. 分解因式:2x2−8=______ .13. 如果在五张完全相同的卡片背后分别写上平行四边形、矩形、菱形、等边三角形、圆,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于______ .14. 某超市按照一种定价法则来制定商品的售价:商品的成本价a元,工商局限价b元(b>a),以及定价系数k(0≤k≤1)来确定定价c,a、b、c满足关系式c=a+k(b−a),经验表明,最佳定价系数k恰好使得c−ab−a =b−ac−a−1,据此可得,最佳定价系数k的值等于______ .15. 如图,等腰△ABC中∠ACB=120° BC=AC=8,半径为2的⊙O在射线AC上运动,当⊙O与△ABC的一边相切时,则线段CO的长度为______ .16. 如图,将矩形OABC的顶点O与原点重合,边AO、CO分别与x、y轴重合.将矩形沿DE折叠,使得点O落在边AB上的点F处,反比例函数y=kx(k>0)上恰好经过E、F两点,若B点的坐标为(2,1),则k的值为______ .三、解答题(本大题共8小题,共64.0分。
2022年浙江省杭州市中考数学模拟考试试卷附解析
2022年浙江省杭州市中考数学模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是( )2.下列事件中,是必然事件的为( ) A .我市夏季的平均气温比冬季的平均气温高;B .每周的星期日一定是晴天;C .打开电视机,正在播放动画片;D .掷一枚均匀硬币,正面一定朝上.3.如图,一个小球从A 点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均等的结果,小球最终到达 H 点的概率是( ) A .12B .14C .16D .184.已知BC ∥DE ,则下列说法不正确的是( ) C . A. 两个三角形是位似图形 B .点A 是两个三角形的位似中心 C . AE :AD 是位似比 D . 点B 与点 D ,点 C 与点E 是对应位似点5.若小唐同学掷出的铅球在场地上砸出一个直径约为10 cm 、深约为2 cm 的小坑,则该铅球的直径约为( ) A .10 cm B .14.5 cm C .19.5 cm D .20 cm 6.一个扇形的弧长是20πcm,面积是240πcm 2,那么扇形的圆心角是( )A .120°B .150°C .210°D .240°7. 一架飞机在无风的情况下每小时飞行 1200千米,若逆风飞完长为x 千米的航线用 3小时,而顺风飞完这条航线只需 2小时. 根据题意列方程,得1200120032x x-=-.这个方程所表示的意义是( )A .飞机往返一次的总时间不变A.B. C ..B .顺风与逆风飞行,飞机自身的速度不变C .飞机往返一次的总路程不变D .顺风与逆风的风速相等 8.下列说法正确的个数为( )①一个数的倒数一定小于这个数;②一个数的倒数一定大于这个数;③0 除以任何数都得0;④两个数的商为 0,只有被除数为 0. A .0 个B .1 个C .2 个D .3 个9.在样本12,8,14,6,10,13,15,9,11,16,8,12,14,9,13,5,8,11,7,10中,频率是0.3的组的范围是( )A .4.5~7.5B .7.5~10.5C .10.5~13.5D .13.5~16.5二、填空题10.如图所示,某区十二中内有一铁塔 BE ,在离铁塔 150 m 远的 D 处,用测角仪测得塔顶的仰角为α=35°,已知测角仪的高 AD =1.52m ,那么塔高 BE= m .(精确到0.1 m)11.在△ABC 中,∠C=90°,BC=4,sinA=32,则AC= . 12.若方程x 2-4x+m=0有两个相等的实数根,则m 的值是____ ___.13.图中1l 反映了某公司产品的销售收入与销售量的关系,2l 反映了该公司产品的销售成本与销售量的关系,根据图象填空: (1)分别写出1l 与2l 的函数解析式: 1l : ,2l : ;(2)当销售量 件时,该公司开始盈利(销售收入大于销售成本).14.一个不等式的解集如图所示,则这个不等式的正整数解是____________.15.在一次体育测试中,10名女生完成仰卧起坐的个数如下:48,52,47,46,50,50,51,50,45,49,则这次体育测试中仰卧起坐个数的众数是 .16.在写有1,2,3,4,5,6,7,8,9的九张卡片中随机抽取一张,是奇数的概率是 . 17. 分解因式24x -= .18.如图所示,△DEF 是△ABC 绕点O 旋转后得到的,则点C 的对应点是点 ,线段AB 的对应线段是线段 ,∠B 的对应角是 .19.观察下面的等式,①111122⨯=-;②222233⨯=-;③333344⨯=-;④444455⨯=-……第n个等式可表示为 .20.一个长方体有 条棱,有 个面,有 个顶点.21.一个班共有44人,全部报名参加了学校组织的兴趣活动小组,参加数学兴趣活动小组的有38人,参加物理兴趣活动小组的有35人,则既参加数学兴趣活动小组又参加物理兴趣活动小组的有 人.三、解答题22.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000 摸到白球的次数m 65 124 178 302 481 599 1803 摸到白球的频率m n0.650.620.5930.6040.6010.5990.601(1)请估计:当n 很大时,摸到白球的频率将会接近 .(精确到0.1) (2)假如你摸一次,你摸到白球的概率()P =白球 . (3)试估算盒子里黑、白两种颜色的球各有多少只?23.如图,用连线的方法找出图中每一物体所对应的主视图.24.如图,正方形的边长为 20,菱形的边长为5,它们相似吗?请说明理由.25.有一座抛物线型拱桥,正常水位时桥下面宽为20 m,拱顶距水面4 m(1)在如图所示的直角坐标系中求出该抛物线的解析式;(2)为了保证过往船只顺利航行,桥下水面的宽度不得小于 l8m,求水面在正常水位基础上上涨多少,就会影响过往船只?26.在四边形ABCD中,∠A,∠B,∠C,∠D的外角度数之比为4:7:5:8,求四边形各内角的度数.27..(1)已知△ABC,求作:①BC边上的中线;②BC边上的高;③∠B的平分线;(2)已知线段a,c,∠α,求作:△ABC,使BC=a,AB=c,∠ABC=∠α(不必写出作法).28.a 为何值时,分式方程311a a x +=+无解?29. 观察下列计算过程:2113131144222-=-==⨯; 2118241199333-=-==⨯;2111535111616444-=-==⨯;你能得出什么结论?用得到的结论计算:22221111(1)(1)(1)(1)2320062007----.30.有一正方形的纸片,可将它剪成如图所示的四个小正方形,用同样的方法,每一个小正方形又能剪成四个更小的正方形. 这样连续做 5 次后,共能得到多少个小正方形?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.B4.C5.B6.B7.D8.B9.C二、填空题10.106.611.52 12.413.(1)y=100x ,y=50x+200;(2)414.1,215.5016.9517. (2)(2)x x +-18.F ,DE ,∠E19.11n nn n n n ⨯=-++20. 12,6,8 21.29三、解答题 22.(1)0.6,(2)0.6,(3)白球24个,黑球16个.23.如图中虚线所示.24.不相似,因为对应角不相等.25.(1)由已知得,顶点坐标(10,4).∴可设抛物线的解析式2(10+4y a x =-), 把点 A(0,0)代入得2(010)40a -+=,∴125a =-, ∴抛物线的解析式:21(10+425y x =--)(2)由已知得,当 x=1 时,1925y =,即当水面在正常水位基础上上涨1925m 就会髟响过往船只. 26.∠A=120°,∠B=75°,∠C=105°,∠D=60°27.略28.310-==a a 或.29.21111n n n n n -+-=⨯,10042007 30.1024 个。
浙教版初中数学中考模拟卷试题卷(附答案和评分标准)
初中数学中考模拟卷试题卷:一.选择题(每题 4 分,共 48分)1. 8 的绝对值是(▲)A8B811 C D882.不等式 5x >1的解是(▲)A x <5B x >5C x < 1D x >1553.已知分式x的值为零,则 x的取值是(▲)x2 1A1B1 C 0D14.下列直角坐标系中的四个点,在函数 y 1x图象上的是(▲)2A2, 1B1,2 C 1,2D2,1 5.圆锥的侧面展开图是(▲)A圆环B扇形 C 等腰三角形D矩形6.已知 x1 , x2是方程 2x2x20的两根,则 x1 x2(▲)A1B 11D1 2C27.若关于 x的高次方程 2x34x 2ax 0只有一个实数根,则 x的取值是(▲)A a >1 B a 1 C a > 2 D a 28.“神州五号”飞船发射成功,将我国第一名航天员送上太空.按照计划,飞船在变轨前运行在近地点高度 200公里,远地点高度350 公里的椭圆形轨道上,那么远地点的高度用科学记数法表示为(▲)A 35 104米B3.5105米 C 3.5104米D 3.5 10 5米9.当1 <x< 2, 则化简 x 3x 1 2的值是(▲)A2x 4B2 C 42x D210.我国股市交易中每买、卖一次需交千分之七点五的各种费用.某投资者以每股10元的价格买入上某1000股票股,当该股票涨12到元时全部卖该投资者实际盈利(▲)A 1835元B 1910元C 1925元D 2000元11.同学甲乙丙放出风筝线长100米100米90米线与地面夹角404560身高相等的三名同、学乙甲、丙参加风筝,比三赛人放出的风筝,线长线与地面的夹角如(上假表设风筝线是拉)直,的则三人所放的风中(▲)A 甲的最高B丙的最高 C 乙的最低D丙的最低12.有左、右两个抽屉,左边抽屉有 2个红球,3个白球;右边抽屉有4个红球,1个白球.从两个抽屉各取1个恰好都是白球的概率为(▲)4B7C3D2 A20255 9二.填空题(每题 5 分,共 30 分)13.已知:a 2b3,则 a : b▲.2a b514.如图,已知DE∥BC,△ADE的面积是2cm2,梯形DBCE的面积为6cm2,则 DE:BC 的值是▲.ABDCPD E P O A CB C A DEB(第 14题)(第 16 题)(第 17 题) 15.方程 x 211的解是▲.16.如图,⊙ O内 AB 、 CD 两弦相交于点 P,若 PA4,PB3,PC2,则弦CD 的长度为▲.17.如图,菱形ABCD中,2,∠BAD60,E是AB的中点,是对角线ACAB P上的一个动点,则PE+PB 的最小值为▲.18.借助计算器可以求得,42325, 44233255, 44423332555,233 32仔细观察上面几道计题算的结果,猜想44 4▲.2004个2004 个三. 解答题 (本题有 7 小题,共 72 分.必须写出解答过程)19.(本题 8 分)21计算: 2 sin 60 +( 2cos 45 01 )3 1420.(本题 8 分)2x 21 x 2解方程:2x 21x21.(本题 8 分)国家规定,个人发表文 章、出版著作所获稿费 应缴纳税,其计算方法 是:① 稿费不高于 800元,不纳税; ② 稿费高于 800元,但不高于 4000元,应缴纳超过 800元的那一部分的 14% 的税;③ 稿费高于 4000元,应缴纳全部稿费 的11. 作获得一笔稿费,他缴 纳了 550元的税,问王教% 今知王教授出版一本著授这笔稿费有多少元22. (本题 10 分 )已知正 △ ABC 内接于 ⊙ O,D 是劣弧 BC 上一点,连结 AD,BD,CD . 求证:BD+CD=ADAOBCD23. (本题 10 分 )已知:如图,直角坐标系内的梯形 AOBC,AC ∥ OB,AC,OB 长分别是关于x 的方程 x 2 6mx m 24 0的两根,并且 S AOC : S BOC 1: 5① 求 AC 、OB 的长;② 当 BC ⊥ OC 时,求 OC 的长及 OC 所在直线的解析式;y③ 在 ② 的条件下,线段 OC 上是否存在一点 M, 过 M 点AC作 x 轴的平行线,交 y 轴于 F, 交 BC 于 D, 过 D 点作 y轴 的 平 行 线交,x 轴于 E, 使S 矩形 FOED1S 梯形AOBC. OB2若存在,请直接写出点M 的坐标(不必写过程);x若不存在,说理明由.24. (本题 12 分 )光明商场销售一批,衬平衫均每天可售20件出,每件盈40利元,为了扩大销售,增加利润,尽快 减少库存,商场决定采 取 适 当 的 降 价 措.施经市场调查发现,如果每件衬 衫每降价 1元,商场平均每天可多 售2件:① 若商场平均每天要盈利 1200元,每件衬衫应降价多少元?② 每件衬衫降价多少元时商场平均每天盈利最多 ?是多少元?25. (本题 14 分 )已知:如图,在直角坐 标系中,以 y 轴上的点 C 为圆心,1为 半径的圆与 x 轴相切于原点 O , 点 P 在 x 轴的负半轴上, PA 切 ⊙ C 于点 A ,AB 为 ⊙ C 的直径,PC 交 OA 于点 D . ① 求证:PC ⊥ OA ;② 若点 P 的坐标为2,0 ,求直线 AB 的解析式;③ 若点 P 在 x 轴的负半轴上运动,原 题的其它条件不变,设P 的坐标为 x ,0,四边形 POCA 的面积为 S, 求S 与点 P 的横坐 标 x 之间的函数关系式;④ 在 ③ 的情况下,分析并判断 是否存在这样一点 P, 使 S 四边形 POCAS AOB ,若存在,直接写出点 P 的坐标(不写 过 程);若不存在,简要说明理由 .y ACD BPOx初三数学中考模拟卷答题卷:一.选择题(每题 4 分,共48 分)题号123456789101112答案二.填空题(每题 5 分,共 30分)13.14 .15.16 .17.18 .三.解答题(本题有7 小题,共72分.必须写出解答过程)19.(本题 8 分)cos 45 ) 021号计算: 2 sin 60 +(21学3 1 4名姓20.(本题 8 分)2x21x2解方程:2x2x1级班21.(本题 8 分)22. (本题 10 分 )AOB CD23. (本题 10 分 )yA COB x 24. (本题 12 分 )25. (本题 14 分 )yACDBP Ox初三数学中考模拟卷参考答案及评分标准:一.选择题(每题 4 分,共48 分)题号123456789101112答案 A D C A B D C B D A B C 二.填空题(每题 5 分,共30 分)13. 13: 114.1: 2 15.216. 817.318.5552004 个三.解答题(本题有7 小题,共 72分.必须写出解答过程)19. (本题8 分 )解:原式 = 231 3 146分2=22分20. (本题8 分 )解:设 y 2x 2112 x,则原方程化为: yy即: y 2 2 y 1 0∴ y1y212分∴ 2x 211∴ 2x2x 1 02分x∴ x11, x212分2经检验: x11, x212分都是原方程的根.221. (本题8 分 )解: 400080014 %448元 < 550元设王教授这笔稿费有x 元1分根据题意得:11% x5504分解得x50002分答:王教授这笔稿费有5000 元.1分22. (本题10 分)证明:延长CD 到 M, 使 DM=DB,连结 BM.∵∠ ADB= ∠ ACB= 60∠ ADC= ∠ ABC= 60∴∠ BDM=602分∴△ BDM 是正三角形.∴∠ BMC= ∠ BDA=60∵∠ BAD= ∠ BCM AB=BC2分∴△ BAD ≌△ BCM1分∴ CM=AD2分∵ CM=CD+DM=CD+DB1分∴ BD+CD=AD .2分23 . (本题 10分 )解:①∵SAOC:SBOC1: 5∴AC:OB=1:5不妨设AC=k OB=5kk 5k6m1分由m24k 5km1m1不合题意,舍去1分解得1或k1k∴ AC=1OB=52分②∵∠ OAC= ∠ BCO= 90∠ ACO= ∠ BOC∴△ OBC∽△ COA1分∴ OB OC ,OC2OB ACOC OA∴ OC5或 OC 5 舍去1分∵ AC=1∴ AO=2∴ C (1,2)1分∴直线 OC 的解析式是:y = 2x1分③存在. M 1(1,1)M 23,3 .2分24224.(本题 12 分)解:①设每件衬衫应降价x 元,由题意得:1分20 x40x12002分整理得: x 230 x2000∴ x1 10 , x2202分∵要尽快减少库存,故x201分②设每件衬衫应降价x 元,商场平均每天盈利是y 元1分则可知:y20x40x2分即: y2x260x 800∴当 x15 时,y最大值1250 元.2分答:略.1分25. (本题 14 分 )解:①∵ AB 是⊙ C 的直径, PA 是切线∴PA⊥ AB∵∠ POC=90∴∠ PAC=∠ POC=90∵PA,PO 是⊙ C 的切线∴ PA=PO∵PC=PC∴△ PAC≌△ POC 2分∴∠ APC=∠ OPC 1分∴ PC⊥ OA②过点 A 作 AM ⊥ PO,垂足为 M ∵ PO=2,OC=1, ∠ POC=90∴PC= 51分∵ PC⊥ OA∴PC OD PO OC251分∴ OD5∴ AO 2OD 455∵PO 是⊙ C 的切线∴∠ AOM= ∠ ABO∵∠ AMO=∠ AOB=90∴△ AMO∽△ AOB∴AM : AO=AO : AB81分∴ AM=522458在 Rt△ AMO 中: MO=4555∴点 A 的坐标为: 4 , 81分55∵直线 AB过点 C(0,1)∴可设直线AB 的解析式为:y kx1把 A 4 , 8代入得: k31分554∴直线 AB 的解析式为:y 3 x11分4③∵△ PAC ≌△ POC∴S四边形 POCA2SPOC∵SPOC1x 1 1 x1分22∴ S x2分④存在.P1,0.2分试卷说明:一、考试采用闭卷笔答形式,试卷满分为150 分,考试时间为100 分钟;二、在结构上,容易题占70%,中等题占 20%,稍难题占10%,难度系数在 0.7 到 0.75 之间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学模拟试卷一、选择题(本题有10小题,每题3分,共30分。
请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3.00分)下列几何体中,俯视图为三角形的是()A. B.C.D.2.(3.00分)2018年5月25日,中国探月工程的“鹊桥号”中继星成功运行于地月拉格朗日L2点,它距离地球约1500000km,数1500000用科学记数法表示为()A.15×105 B.1.5×106C.0.15×107D.1.5×1053.(3.00分)2018年1~4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是()A.1月份销量为2.2万辆B.从2月到3月的月销量增长最快C.4月份销量比3月份增加了1万辆D.1~4月新能源乘用车销量逐月增加4.(3.00分)不等式1﹣x≥2的解在数轴上表示正确的是()A.B.C.D.5.(3.00分)将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A.B.C. D.6.(3.00分)用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A.点在圆内B.点在圆上C.点在圆心上D.点在圆上或圆内7.(3.00分)欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长 B.AD的长 C.BC的长D.CD的长8.(3.00分)用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()A. B.C.D.9.(3.00分)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A.1 B.2 C.3 D.410.(3.00分)某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁二、填空题(本题有6小题,每题4分,共24分)11.(4.00分)分解因式:m2﹣3m=.12.(4.00分)如图,直线l1∥l2∥l3,直线AC交l1,l2,l3于点A,B,C;直线DF交l1,l2,l3于点D,E,F,已知=,则=.13.(4.00分)小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我嬴.”小红赢的概率是,据此判断该游戏(填“公平”或“不公平”).14.(4.00分)如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为cm.15.(4.00分)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意,可列出方程:.16.(4.00分)如图,在矩形ABCD中,AB=4,AD=2,点E在CD上,DE=1,点F是边AB上一动点,以EF为斜边作Rt△EFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是.三、解答题(本题有8小题,第17~19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分)17.(6.00分)(1)计算:2(﹣1)+|﹣3|﹣(﹣1)0;(2)化简并求值()•,其中a=1,b=2.18.(6.00分)用消元法解方程组时,两位同学的解法如下:解法一:由①﹣②,得3x=3.解法二:由②得,3x+(x﹣3y)=2,③把①代入③,得3x+5=2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“ד.(2)请选择一种你喜欢的方法,完成解答.19.(6.00分)已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.20.(8.00分)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格),随机各抽取了20个样品进行检测,过程如下:收集数据(单位:mm)甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:165.5~170.5170.5~175.5175.5~180.5180.5~185.5185.5~190.5190.5~195.5甲车间245621乙车间12a b20分析数据:车间平均数众数中位数方差甲车间180********.1乙车间180********.6应用数据:(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由.21.(8.00分)小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?22.(10.00分)如图1,滑动调节式遮阳伞的立柱AC垂直于地面AB,P为立柱上的滑动调节点,伞体的截面示意图为△PDE,F为PD的中点,AC=2.8m,PD=2m,CF=1m,∠DPE=20°,当点P位于初始位置P0时,点D与C重合(图2).根据生活经验,当太阳光线与PE垂直时,遮阳效果最佳.(1)上午10:00时,太阳光线与地面的夹角为65°(图3),为使遮阳效果最佳,点P需从P0上调多少距离?(结果精确到0.1m)(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P 在(1)的基础上还需上调多少距离?(结果精确到0.1m)(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41,≈1.73)23.(10.00分)已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(,y1),D(,y2)都在二次函数图象上,试比较y1与y2的大小.24.(12.00分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.(2)问题探究:如图2,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求的值.(3)应用拓展:如图3,已知l1∥l2,l1与l2之间的距离为2.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l2上,有一边的长是BC的倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l2于点D.求CD的值.中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分。
请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3.00分)下列几何体中,俯视图为三角形的是()A. B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:A、俯视图是圆,故A不符合题意;B、俯视图是矩形,故B不符合题意;C、俯视图是三角形,故C符合题意;D、俯视图是四边形,故D不符合题意;故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.2.(3.00分)2018年5月25日,中国探月工程的“鹊桥号”中继星成功运行于地月拉格朗日L2点,它距离地球约1500000km,数1500000用科学记数法表示为()A.15×105 B.1.5×106C.0.15×107D.1.5×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1500000=1.5×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)2018年1~4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是()A.1月份销量为2.2万辆B.从2月到3月的月销量增长最快C.4月份销量比3月份增加了1万辆D.1~4月新能源乘用车销量逐月增加【分析】根据题目中的折线统计图,可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由图可得,1月份销量为2.2万辆,故选项A正确,从2月到3月的月销量增长最快,故选项B正确,4月份销量比3月份增加了4.3﹣3.3=1万辆,故选项C正确,1~2月新能源乘用车销量减少,2~4月新能源乘用车销量逐月增加,故选项D 错误,故选:D.【点评】本题考查折线统计图,解答本题的关键是明确题意,利用数形结合的思想解答.4.(3.00分)不等式1﹣x≥2的解在数轴上表示正确的是()A.B.C.D.【分析】先求出已知不等式的解集,然后表示在数轴上即可.【解答】解:不等式1﹣x≥2,解得:x≤﹣1,表示在数轴上,如图所示:故选:A.【点评】此题考查了解一元一次不等式以及在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画).在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆圈表示.5.(3.00分)将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A.B.C. D.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:由于得到的图形的中间是正方形,且顶点在原来的正方形的对角线上,故选:A.【点评】本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.6.(3.00分)用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A.点在圆内B.点在圆上C.点在圆心上D.点在圆上或圆内【分析】由于反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.由此即可解决问题.【解答】解:反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是:点在圆上或圆内.故选:D.【点评】本题主要考查了反证法的步骤,其中在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.7.(3.00分)欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长 B.AD的长 C.BC的长D.CD的长【分析】表示出AD的长,利用勾股定理求出即可.【解答】解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,设AD=x,根据勾股定理得:(x+)2=b2+()2,整理得:x2+ax=b2,则该方程的一个正根是AD的长,故选:B.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.8.(3.00分)用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()A. B.C.D.【分析】根据菱形的判定和作图根据解答即可.【解答】解:A、作图根据由作图可知,AC⊥BD,且平分BD,即对角线平分且垂直的四边形是菱形,正确;B、由作图可知AB=BC,AD=AB,即四边相等的四边形是菱形,正确;C、由作图可知AB=DC,AD=BC,只能得出ABCD是平行四边形,错误;D、由作图可知对角线AC平分对角,可以得出是菱形,正确;故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是灵活运用所学知识解决问题,属于基础题,中考常考题型.9.(3.00分)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A.1 B.2 C.3 D.4【分析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据△AOB的面积为1,即可求得k的值.【解答】解:设点A的坐标为(a,0),∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,∴点C(﹣a,),∴点B的坐标为(0,),∴=1,解得,k=4,故选:D.【点评】本题考查反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10.(3.00分)某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁【分析】直接利用已知得出甲得分为7分,2胜1平,乙得分5分,1胜2平,丙得分3分,1胜0平,丁得分1分,0胜1平,进而得出答案.【解答】解:∵甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,∴甲得分为7分,2胜1平,乙得分5分,1胜2平,丙得分3分,1胜0平,丁得分1分,0胜1平,∵甲、乙都没有输球,∴甲一定与乙平,∵丙得分3分,1胜0平,乙得分5分,1胜2平,∴与乙打平的球队是甲与丁.故选:B.【点评】此题主要考查了推理与论证,正确分析得出每人胜负场次是解题关键.二、填空题(本题有6小题,每题4分,共24分)11.(4.00分)分解因式:m2﹣3m=m(m﹣3).【分析】首先确定公因式m,直接提取公因式m分解因式.【解答】解:m2﹣3m=m(m﹣3).故答案为:m(m﹣3).【点评】本题主要考查提公因式法分解因式,准确找出公因式m是解题的关键.12.(4.00分)如图,直线l1∥l2∥l3,直线AC交l1,l2,l3于点A,B,C;直线DF交l1,l2,l3于点D,E,F,已知=,则=2.【分析】根据题意求出,根据平行线分线段成比例定理解答.【解答】解:∵=,∴=2,∵l1∥l2∥l3,∴==2,故答案为:2.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.13.(4.00分)小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我嬴.”小红赢的概率是,据此判断该游戏不公平(填“公平”或“不公平”).【分析】游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:所有可能出现的结果如下表所示:正反正(正,正)(正,反)反(反,正)(反,反)因为抛两枚硬币,所有机会均等的结果为:正正,正反,反正,反反,所以出现两个正面的概率为,一正一反的概率为=,因为二者概率不等,所以游戏不公平.故答案为:,不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.14.(4.00分)如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为cm.【分析】连接OC,利用垂径定理解答即可.【解答】解:连接OC,∵直尺一边与量角器相切于点C,∴OC⊥AD,∵AD=10,∠DOB=60°,∴∠DAO=30°,∴OE=,OA=,∴CE=OC﹣OE=OA﹣OE=,故答案为:【点评】此题考查垂径定理,关键是利用垂径定理解答.15.(4.00分)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意,可列出方程:=×(1﹣10%).【分析】根据“甲检测300个比乙检测200个所用的时间少10%”建立方程,即可得出结论.【解答】解:设设甲每小时检测x个,则乙每小时检测(x﹣20)个,根据题意得,=(1﹣10%),故答案为=×(1﹣10%).【点评】此题主要考查了分式方程的应用,正确找出等量关系是解题关键.16.(4.00分)如图,在矩形ABCD中,AB=4,AD=2,点E在CD上,DE=1,点F是边AB上一动点,以EF为斜边作Rt△EFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是0或1<AF或4.【分析】先根据圆周角定理确定点P在以EF为直径的圆O上,且是与矩形ABCD 的交点,先确定特殊点时AF的长,当F与A和B重合时,都有两个直角三角形.符合条件,即AF=0或4,再找⊙O与AD和BC相切时AF的长,此时⊙O与矩形边各有一个交点或三个交点,在之间运动过程中符合条件,确定AF的取值.【解答】解:∵△EFP是直角三角形,且点P在矩形ABCD的边上,∴P是以EF为直径的圆O与矩形ABCD的交点,①当AF=0时,如图1,此时点P有两个,一个与D重合,一个交在边AB上;②当⊙O与AD相切时,设与AD边的切点为P,如图2,此时△EFP是直角三角形,点P只有一个,当⊙O与BC相切时,如图4,连接OP,此时构成三个直角三角形,则OP⊥BC,设AF=x,则BF=P1C=4﹣x,EP1=x﹣1,∵OP∥EC,OE=OF,∴OG=EP1=,∴⊙O的半径为:OF=OP=,在Rt△OGF中,由勾股定理得:OF2=OG2+GF2,∴,解得:x=,∴当1<AF<时,这样的直角三角形恰好有两个,③当AF=4,即F与B重合时,这样的直角三角形恰好有两个,如图5,综上所述,则AF的值是:0或1<AF或4.故答案为:0或1<AF或4.【点评】本题考查了矩形的性质的运用,勾股定理的运用,三角形中位线定理的运用,圆的性质的运用,分类讨论思想的运用,解答时运用勾股定理求解是关键,并注意运用数形结合的思想解决问题..三、解答题(本题有8小题,第17~19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分)17.(6.00分)(1)计算:2(﹣1)+|﹣3|﹣(﹣1)0;(2)化简并求值()•,其中a=1,b=2.【分析】(1)首先计算绝对值、二次根式的化简、零次幂,然后再计算乘法,后算加减即可;(2)首先把分式化简,计算括号里面的减法,再算括号外的乘法,化简后,再代入a、b的值.【解答】解:(1)原式=4﹣2+3﹣1=4;(2)原式=•=a﹣b;当a=1,b=2时,原式=1﹣2=﹣1.【点评】此题主要考查了分式的化简求值和实数的计算,关键是掌握分式混合运算的顺序,掌握计算法则.18.(6.00分)用消元法解方程组时,两位同学的解法如下:解法一:由①﹣②,得3x=3.解法二:由②得,3x+(x﹣3y)=2,③把①代入③,得3x+5=2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“ד.(2)请选择一种你喜欢的方法,完成解答.【分析】(1)观察两个解题过程即可求解;(2)根据加减消元法解方程即可求解.【解答】解:(1)解法一中的解题过程有错误,由①﹣②,得3x=3“×”,应为由①﹣②,得﹣3x=3;(2)由①﹣②,得﹣3x=3,解得x=﹣1,把x=﹣1代入①,得﹣1﹣3y=5,解得y=﹣2.故原方程组的解是.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(6.00分)已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.【分析】只要证明Rt△ADE≌Rt△CDF,推出∠A=∠C,推出BA=BC,又AB=AC,即可推出AB=BC=AC;【解答】证明:∵DE⊥AB,DF⊥BC,垂足分别为点E,F,∴∠AED=∠CFD=90°,∵D为AC的中点,∴AD=DC,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF,∴∠A=∠C,∴BA=BC,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形.【点评】本题考查全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(8.00分)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格),随机各抽取了20个样品进行检测,过程如下:收集数据(单位:mm)甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:165.5~170.5170.5~175.5175.5~180.5180.5~185.5185.5~190.5190.5~195.5甲车间245621乙车间12a b20分析数据:车间平均数众数中位数方差甲车间180********.1乙车间180********.6应用数据:(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由.【分析】(1)利用所列举的数据得出甲车间样品的合格率;(2)得出乙车间样品的合格产品数进而得出乙车间样品的合格率进而得出答案;(3)利用平均数、方差的意义分别分析得出答案.【解答】解:(1)甲车间样品的合格率为:×100%=55%;(2)∵乙车间样品的合格产品数为:20﹣(1+2+2)=15(个),∴乙车间样品的合格率为:×100%=75%,∴乙车间的合格产品数为:1000×75%=750(个);(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好;②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比较稳定,所以乙车间生产的新产品更好.【点评】此题主要考查了方差以及利用样本估计总体等知识,正确利用已知数据获取正确信息是解题关键.21.(8.00分)小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?【分析】(1)根据图象和函数的定义可以解答本题;(2)①根据函数图象可以解答本题;②根据函数图象中的数据可以解答本题.【解答】解:(1)由图象可知,对于每一个摆动时间t,h都有唯一确定的值与其对应,∴变量h是关于t的函数;(2)①由函数图象可知,当t=0.7s时,h=0.5m,它的实际意义是秋千摆动0.7s时,离地面的高度是0.5m;②由图象可知,秋千摆动第一个来回需2.8s.【点评】本题考查函数图象和函数概念,解答本题的关键是明确题意,利用数形结合的思想解答.22.(10.00分)如图1,滑动调节式遮阳伞的立柱AC垂直于地面AB,P为立柱上的滑动调节点,伞体的截面示意图为△PDE,F为PD的中点,AC=2.8m,PD=2m,CF=1m,∠DPE=20°,当点P位于初始位置P0时,点D与C重合(图2).根据生活经验,当太阳光线与PE垂直时,遮阳效果最佳.(1)上午10:00时,太阳光线与地面的夹角为65°(图3),为使遮阳效果最佳,点P需从P0上调多少距离?(结果精确到0.1m)(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P 在(1)的基础上还需上调多少距离?(结果精确到0.1m)(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41,≈1.73)【分析】(1)只要证明△CFP1是等腰直角三角形,即可解决问题;(2)解直角三角形求出CP2的长即可解决问题;【解答】解:(1)如图2中,当P位于初始位置时,CP0=2m,如图3中,上午10:00时,太阳光线与地面的夹角为65°,上调的距离为P0P1.∵∠1=90°,∠CAB=90°,∠ABE=65°,∴∠AP1E=115°,∴∠CP1E=65°,∵∠DP1E=20°,∴∠CP1F=45°,∵CF=P1F=1m,∴∠C=∠CP1F=45°,∴△CP1F是等腰直角三角形,∴P1C=m,∴P0P1=CP0﹣P1C=2﹣≈0.6m,即为使遮阳效果最佳,点P需从P0上调0.6m.(2)如图4中,中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P调到P2处.∵P2E∥AB,∴∠CP2E=∠CAB=90°,∵∠DP2E=20°,∴∠CP2F=70°,作FG⊥AC于G,则CP2=2CG=1×cos70°≈0.68m,∴P1P2=CP1﹣CP2=﹣0.68≈0.7m,即点P在(1)的基础上还需上调0.7m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.23.(10.00分)已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(,y1),D(,y2)都在二次函数图象上,试比较y1与y2的大小.【分析】(1)根据顶点式解析式,可得顶点坐标,根据点的坐标代入函数解析式检验,可得答案;(2)根据待定系数法,可得二次函数的解析式,根据函数图象与不等式的关系:图象在下方的函数值小,可得答案;(3)根据解方程组,可得顶点M的纵坐标的范围,根据二次函数的性质,可得答案.【解答】解:(1)点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,∴M的坐标是(b,4b+1),把x=b代入y=4x+1,得y=4b+1,∴点M在直线y=4x+1上;(2)如图1,直线y=mx+5交y轴于点B,∴B点坐标为(0,5)又B在抛物线上,∴5=﹣(0﹣b)2+4b+1=5,解得b=2,二次函数的解析是为y=﹣(x﹣2)2+9,当y=0时,﹣(x﹣2)2+9=0,解得x1=5,x2=﹣1,∴A(5,0).由图象,得当mx+5>﹣(x﹣b)2+4b+1时,x的取值范围是x<0或x>5;(3)如图2,∵直线y=4x+1与直线AB交于点E,与y轴交于F,A(5,0),B(0,5)得直线AB的解析式为y=﹣x+5,联立EF,AB得方程组,解得,∴点E(,),F(0,1).点M在△AOB内,1<4b+1<∴0<b<.当点C,D关于抛物线的对称轴对称时,b﹣=﹣b,∴b=,且二次函数图象开口向下,顶点M在直线y=4x+1上,综上:①当0<b<时,y1>y2,②当b=时,y1=y2,③当<b<时,y1<y2.【点评】本题考查了二次函数综合题,解(1)的关键是把点的坐标代入函数解析式检验;解(2)的关键是利用函数图不等式的关系:图象在上方的函数值大;解(3)的关键是解方程组得出顶点M的纵坐标的范围,又利用了二次函数的性质:a<0时,点与对称轴的距离越小函数值越大.24.(12.00分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.(2)问题探究:如图2,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求的值.(3)应用拓展:如图3,已知l1∥l2,l1与l2之间的距离为2.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l2上,有一边的长是BC的倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l2于点D.求CD的值.【分析】(1)过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,依据∠ACB=30°,AC=6,可得AD=AC=3,进而得到AD=BC=3,即△ABC是“等高底”三角形;(2)依据△ABC是“等高底”三角形,BC是“等底”,可得AD=BC,依据△ABC关于BC所在直线的对称图形是△A'BC,点B是△AA′C的重心,即可得到BC=2BD,设BD=x,则AD=BC=2x,CD=3x,由勾股定理得AC=x,即可得到==;(3)①当AB=BC时,画出图形分两种情况分别求得CD=x=或CD=AC=2;当AC=BC时,画出图形分两种情况讨论,求得CD=AB=BC=2.【解答】解:(1)△ABC是“等高底”三角形;理由:如图1,过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴AD=AC=3,∴AD=BC=3,即△ABC是“等高底”三角形;(2)如图2,∵△ABC是“等高底”三角形,BC是“等底”,∴AD=BC,∵△ABC关于BC所在直线的对称图形是△A'BC,∴∠ADC=90°,∵点B是△AA′C的重心,∴BC=2BD,设BD=x,则AD=BC=2x,CD=3x,由勾股定理得AC=x,∴==;(3)①当AB=BC时,。