(预测题)中考数学专题22几何三大变换问题之旋转(中心对称)问题(含解析)
中考数学《旋转》专题练习含答案解析

旋转一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225° D.45°、180°、225°3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对5.下列图形中,是中心对称图形的是()A.菱形B.等腰梯形C.等边三角形D.等腰直角三角形6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(﹣3,2)二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点、旋转角是.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA PB+PC(选填“>”、“=”、“<”)10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为度,图中除△ABC外,还有等边三形是△.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.15.有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).旋转参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:既是中心对称图形又是轴对称图形的只有A.故选A.【点评】掌握好中心对称与轴对称的概念.轴对称的关键是寻找对称轴,两边图象沿对称轴折叠后可重合,中心对称是要寻找对称中心,图形旋转180度后与原图重合.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225° D.45°、180°、225°【考点】旋转的性质.【专题】计算题.【分析】根据旋转的性质,把旋转后的图形看作为正八边形,依次得到旋转的角度.【解答】解:把△ABC绕点O顺时针旋转45°,得到△HEF;顺时针旋转180°,得到△ADC;顺时针旋转225°,得到△HGF;故选D.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣【考点】旋转的性质;正方形的性质.【分析】设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.【解答】解:如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选:C.【点评】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对【考点】旋转的性质;三角形内角和定理;等边三角形的性质.【专题】计算题.【分析】将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,则AP′=AP,∠P′AP=60°,得到△AP′P是等边三角形,PP′=AP,所以△P′CP的三边长分别为PA,PB,PC;再由∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,得到∠APB=100°,∠BPC=120°,∠CPA=140°,这样可分别求出∠PP′C=∠AP′C﹣∠AP′P=∠APB ﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,即可得到答案.【解答】解:如图,将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,∵AP′=AP,∠P′AP=60°,∴△AP′P是等边三角形,∴PP′=AP,∵P′C=PB,∴△P′CP的三边长分别为PA,PB,PC,∵∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠PP′C=∠AP′C﹣∠AP′P=∠APB﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,∴∠PP′C:∠PCP′:∠P′PC=2:3:4.故选A.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等边三角形的性质.5.下列图形中,是中心对称图形的是()A.菱形B.等腰梯形C.等边三角形D.等腰直角三角形【考点】中心对称图形.【分析】旋转180°后与原图重合的图形是中心对称图形.【解答】解:菱形,等腰梯形,等边三角形,等腰直角三角形都是轴对称图形;菱形既是轴对称图形,又是中心对称图形.故选A.【点评】运用轴对称和中心对称图形概念,找出符合条件的图形.【链接】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(﹣3,2)【考点】关于原点对称的点的坐标.【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y)”解答.【解答】解:根据中心对称的性质,得点P(2,﹣3)关于原点对称的点的坐标是(﹣2,3).故选B.【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是(﹣1,).【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】已知将点P0绕着原点O按逆时针方向旋转60°得点P1,则OP1=1,P1点的坐标是(.则P2的坐标是;再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3与P2关于y轴对称,因而点P3的坐标就很容易求出.【解答】解:∵点P0绕着原点O按逆时针方向旋转60°得点P1,∴P1点的坐标是(,∴P2的坐标是,又∵点P3与P2关于y轴对称,∴点P3的坐标是(﹣1,).【点评】解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点A、旋转角是∠CAD,是90°.【考点】旋转的性质.【分析】确定图形的旋转时首先要确定旋转前后的对应点,即可确定旋转中心.【解答】解:旋转中心是点A、旋转角是∠CAD,是90°.【点评】本题主要考查了旋转的定义,正确确定旋转中的对应点,是确定旋转中心,旋转角的前提.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA<PB+PC(选填“>”、“=”、“<”)【考点】旋转的性质;三角形三边关系;等边三角形的判定.【分析】此题只需根据三角形的任意两边之和大于第三边和等边三角形的性质,进行分析即可.【解答】解:根据三角形的三边关系,得:BC<PB+PC.又AB=BC>PA,∴PA<PB+PC.【点评】本题结合旋转主要考查了三角形的三边关系:两边之和大于第三边,两边之差小于第三边.10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=45度.【考点】旋转的性质;正方形的性质.【分析】根据BE+DF=EF,则延长FD到G,使DG=BE,则FG=EF,可以认为是把△ABE 绕点A逆时针旋转90度,得到△ADG,根据旋转的定义即可求解.【解答】解:如图:延长FD到G,使DG=BE,则FG=EF,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG又∴AF=AF,GF=EF∴△AGF≌△AEF∴∠EAF=∠GAF=×90°=45°.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为60度,图中除△ABC外,还有等边三形是△AOD.【考点】旋转的性质;等边三角形的性质;等边三角形的判定.【分析】根据旋转的性质及全等三角形的性质作答.【解答】解:∵将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,∴△AOB≌△ADC,∴OA=AD,∠BAO=∠DAC,∴∠BAO+∠OAC=∠DAC+∠OAC=∠BAC=60°,即∠OAD=60°,所以旋转角为60°.∵OA=AD,∠OAD=60°,∴△AOD为等边三角形.【点评】此题主要考查了图形旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有△EPQ.【考点】旋转的性质.【分析】旋转中心是P,旋转方向为逆时针,旋转角是90度,已确定,再通过观察发现全等三角形,判断是否符合本题的旋转规律.【解答】解:根据旋转的性质可知,旋转中心是P,旋转角是90度,图中通过旋转得到的三角形还有△EPQ.【点评】本题考查旋转两相等的性质,即对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】计算题;压轴题.【分析】(1)BM+DN=MN成立,证得B、E、M三点共线即可得到△AEM≌△ANM,从而证得ME=MN.(2)DN﹣BM=MN.证明方法与(1)类似.【解答】解:(1)BM+DN=MN成立.证明:如图,把△ADN绕点A顺时针旋转90°,得到△ABE,则可证得E、B、M三点共线(图形画正确).∴∠EAM=90°﹣∠NAM=90°﹣45°=45°,又∵∠NAM=45°,∴在△AEM与△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∵ME=BE+BM=DN+BM,∴DN+BM=MN;(2)DN﹣BM=MN.在线段DN上截取DQ=BM,在△ADQ与△ABM中,∵,∴△ADQ≌△ABM(SAS),∴∠DAQ=∠BAM,∴∠QAN=∠MAN.在△AMN和△AQN中,∴△AMN≌△AQN(SAS),∴MN=QN,∴DN﹣BM=MN.【点评】本题考查了旋转的性质,解决此类问题的关键是正确的利用旋转不变量.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.【考点】正方形的性质;全等三角形的判定与性质.【专题】计算题.【分析】简单的求正方形内一个角的大小,首先从△APQ的周长入手求出PQ=DQ+BP,然后将△CDQ逆时针旋转90°,使得CD、CB重合,然后利用全等来解.【解答】解:如图所示,△APQ的周长为2,即AP+AQ+PQ=2①,正方形ABCD的边长是1,即AQ+QD=1,AP+PB=1,∴AP+AQ+QD+PB=2②,①﹣②得,PQ﹣QD﹣PB=0,∴PQ=PB+QD.延长AB至M,使BM=DQ.连接CM,△CBM≌△CDQ(SAS),∴∠BCM=∠DCQ,CM=CQ,∵∠DCQ+∠QCB=90°,∴∠BCM+∠QCB=90°,即∠QCM=90°,PM=PB+BM=PB+DQ=PQ.在△CPQ与△CPM中,CP=CP,PQ=PM,CQ=CM,∴△CPQ≌△CPM(SSS),∴∠PCQ=∠PCM=∠QCM=45°.【点评】熟练掌握正方形的性质,会运用正方形的性质进行一些简单的运算.15.有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).【考点】锐角三角函数的定义;旋转的性质.【专题】操作型.【分析】(1)根据旋转的性质可知△AFM≌△ADB,则AF=AD=BD•cos∠ADB=8×=4cm;(2)当△AFK为等腰三角形时,由于AM<AF,那么A不能是等腰△AFK的顶点,则分两种情况:①K为顶点,即AK=FK时;②F为顶点,即AF=FK.针对每一种情况,利用三角形的面积公式,可分别求出△AFK的面积.【解答】解:(1)AF=;(2)△AFK为等腰三角形时,分两种情况:①当AK=FK时,如图.过点K作KN⊥AF于N,则KN⊥AF,AN=NF=AF=2cm.在直角△NFK中,∠KNF=90°,∠F=30°,∴KN=NF•tan∠F=2cm.∴△AFK的面积=×AF×KN=;②当AF=FK时,如图.过点K作KP⊥AF于P.在直角△PFK中,∠KPF=90°,∠F=30°,∴KP=KF=2cm.∴△AFK的面积=×AF×KP=12cm2.【点评】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.注意(2)中需分情况讨论△AFK为等腰三角形时的不同分类,不要漏解.。
2020-2021中考数学压轴题专题复习——初中数学 旋转的综合及详细答案

2020-2021中考数学压轴题专题复习——初中数学旋转的综合及详细答案一、旋转1.如图1,在□ABCD中,AB=6,∠B= (60°<≤90°). 点E在BC上,连接AE,把△ABE沿AE折叠,使点B与AD上的点F重合,连接EF.(1)求证:四边形ABEF是菱形;(2)如图2,点M是BC上的动点,连接AM,把线段AM绕点M顺时针旋转得到线段MN,连接FN,求FN的最小值(用含的代数式表示).【答案】(1)详见解析;(2)FE·sin(-90°)【解析】【分析】(1)由四边形ABCD是平行四边形得AF∥BE,所以∠FAE=∠BEA,由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA,所以∠BAE=∠FEA,故有AB∥FE,因此四边形ABEF是平行四边形,又BE=EF,因此可得结论;(2)根据点M在线段BE上和EC上两种情况证明∠ENG=90°-,利用菱形的性质得到∠FEN=-90°,再根据垂线段最短,求出FN的最小值即可.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠BEA,由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA, BE=EF,∴∠BAE=∠FEA,∴AB∥FE,∴四边形ABEF是平行四边形,又BE=EF,∴四边形ABEF是菱形;(2)①如图1,当点M在线段BE上时,在射线MC上取点G,使MG=AB,连接GN、EN.∵∠AMN=∠B=,∠AMN+∠2=∠1+∠B∴∠1=∠2又AM=NM,AB=MG∴△ABM≌△MGN∴∠B=∠3,NG=BM∵MG=AB=BE∴EG=AB=NG∴∠4=∠ENG= (180°-)=90°-又在菱形ABEF中,AB∥EF∴∠FEC=∠B=∴∠FEN=∠FEC-∠4=- (90°-)=-90°②如图2,当点M在线段EC上时,在BC延长线上截取MG=AB,连接GN、EN.同理可得:∠FEN=∠FEC-∠4=- (90°-)=-90°综上所述,∠FEN=-90°∴当点M在BC上运动时,点N在射线EH上运动(如图3)当FN⊥EH时,FN最小,其最小值为FE·sin(-90°)【点睛】本题考查了菱形的判定与性质以及求最短距离的问题,解题的关键是分类讨论得出∠FEN =-90°,再运用垂线段最短求出FN的最小值.2.如图1,在Rt△ABC中,∠ACB=90°,AC=BC.点D、E分别在AC、BC边上,DC=EC ,连接DE 、AE 、BD .点M 、N 、P 分别是AE 、BD 、AB 的中点,连接PM 、PN 、MN .(1)PM 与BE 的数量关系是 ,BE 与MN 的数量关系是 .(2)将△DEC 绕点C 逆时针旋转到如图2的位置,判断(1)中BE 与MN 的数量关系结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;(3)若CB =6.CE =2,在将图1中的△DEC 绕点C 逆时针旋转一周的过程中,当B 、E 、D 三点在一条直线上时,求MN 的长度. 【答案】(1)1,22PM BE BE MN ==;(2)成立,理由见解析;(3)MN =17﹣1或17+1 【解析】 【分析】(1)如图1中,只要证明PMN V 的等腰直角三角形,再利用三角形的中位线定理即可解决问题;(2)如图2中,结论仍然成立,连接AD 、延长BE 交AD 于点H .由ECB DCA ≅V V ,推出BE AD =,DAC EBC ∠=∠,即可推出BH AD ⊥,由M 、N 、P 分别AE 、BD 、AB 的中点,推出//PM BE ,12PM BE =,//PN AD ,12PN AD =,推出PM PN =,90MPN ∠=︒,可得22222BE PM MN MN ==⨯=; (3)有两种情形分别求解即可. 【详解】 (1)如图1中,∵AM =ME ,AP =PB , ∴PM ∥BE ,12PM BE =,∵BN =DN ,AP =PB ,∴PN ∥AD ,12PN AD =, ∵AC =BC ,CD =CE , ∴AD =BE , ∴PM =PN , ∵∠ACB =90°, ∴AC ⊥BC ,∴∵PM ∥BC ,PN ∥AC , ∴PM ⊥PN ,∴△PMN 的等腰直角三角形, ∴2MN PM =,∴122MN BE =⋅, ∴2BE MN =,故答案为12PM BE =,2BE MN =. (2)如图2中,结论仍然成立.理由:连接AD 、延长BE 交AD 于点H . ∵△ABC 和△CDE 是等腰直角三角形, ∴CD =CE ,CA =CB ,∠ACB =∠DCE =90°, ∵∠ACB ﹣∠ACE =∠DCE ﹣∠ACE , ∴∠ACD =∠ECB , ∴△ECB ≌△DCA , ∴BE =AD ,∠DAC =∠EBC , ∵∠AHB =180°﹣(∠HAB +∠ABH ) =180°﹣(45°+∠HAC +∠ABH ) =∠180°﹣(45°+∠HBC +∠ABH ) =180°﹣90° =90°, ∴BH ⊥AD ,∵M 、N 、P 分别为AE 、BD 、AB 的中点,∴PM ∥BE ,12PM BE =,PN ∥AD ,12PN AD =, ∴PM =PN ,∠MPN =90°,∴22222BE PM MN MN ==⨯=. (3)①如图3中,作CG ⊥BD 于G ,则2CG GE DG ===,当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-=,∴342BE BG GE =-=-, ∴21712MN BE ==-. ②如图4中,作CG ⊥BD 于G ,则2CG GE DG ===,当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-=∴342BE BG GE =+=, ∴21712MN BE ==. 综上所述,MN 17﹣117. 【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.3.如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.【答案】(1)BF=AC,理由见解析;(2)NE=12AC,理由见解析.【解析】试题分析:(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=12 AC.试题解析:(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵DAC DBFADC BDF AD BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=12AC,理由是:如图2,由折叠得:MD=DC,∵DE∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=12 AC.4.如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D 从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C 逆时针方向旋转60°得到△BCE,连结DE.(1)求证:△CDE是等边三角形;(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.【答案】(1)见解析(2)见解析(3)存在【解析】试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D于点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2,于是得到t=2÷1=2s;③当6<t<10s 时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.试题解析:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD cm,∴△BDE的最小周长=CD;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;③当6<t<10s时,由∠DBE=120°>90°,∴此时不存在;④当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14s.综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:在不带坐标的几何动点问题中求最值,通常是将其表达式写出来,再通过几何或代数的方法求出最值;像第三小问这种探究性的题目,一定要多种情况考虑全面,控制变量,从某一个方面出发去分类.5.如图①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=120°.(1)求证:△ABD≌△ACE;(2)把△ADE绕点A逆时针方向旋转到图②的位置,连接CD,点M、P、N分别为DE、DC、BC的中点,连接MN、PN、PM,判断△PMN的形状,并说明理由;(3)在(2)中,把△ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出△PMN周长的最小值与最大值.【答案】(1)证明见解析;(2)△PMN是等边三角形.理由见解析;(3)△PMN周长的最小值为3,最大值为15.【解析】分析:(1)由∠BAC=∠DAE=120°,可得∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS即可判定△ABD≌△ADE;(2)△PMN是等边三角形,利用三角形的中位线定理可得PM=12CE,PM∥CE,PN=12BD,PN∥BD,同(1)的方法可得BD=CE,即可得PM=PN,所以△PMN是等腰三角形;再由PM∥CE,PN∥BD,根据平行线的性质可得∠DPM=∠DCE,∠PNC=∠DBC,因为∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,所以∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,再由∠BAC=120°,可得∠ACB+∠ABC=60°,即可得∠MPN=60°,所以△PMN是等边三角形;(3)由(2)知,△PMN是等边三角形,PM=PN=12BD,所以当PM最大时,△PMN周长最大,当点D在AB上时,BD最小,PM最小,求得此时BD的长,即可得△PMN周长的最小值;当点D在BA延长线上时,BD最大,PM的值最大,此时求得△PMN周长的最大值即可.详解:(1)因为∠BAC=∠DAE=120°,所以∠BAD=∠CAE,又AB=AC,AD=AE,所以△ABD≌△ADE;(2)△PMN是等边三角形.理由:∵点P,M分别是CD,DE的中点,∴PM=12CE,PM∥CE,∵点N,M分别是BC,DE的中点,∴PN=12BD,PN∥BD,同(1)的方法可得BD=CE,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CE,∴∠DPM=∠DCE,∵PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC =∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=120°,∴∠ACB+∠ABC=60°,∴∠MPN=60°,∴△PMN是等边三角形.(3)由(2)知,△PMN是等边三角形,PM=PN=12 BD,∴PM最大时,△PMN周长最大,∴点D在AB上时,BD最小,PM最小,∴BD=AB-AD=2,△PMN周长的最小值为3;点D在BA延长线上时,BD最大,PM最大,∴BD=AB+AD=10,△PMN周长的最大值为15.故答案为△PMN周长的最小值为3,最大值为15点睛:本题主要考查了全等三角形的判定及性质、三角形的中位线定理、等边三角形的判定,解决第(3)问,要明确点D在AB上时,BD最小,PM最小,△PMN周长的最小;点D在BA延长线上时,BD最大,PM最大,△PMN周长的最大值为15.6.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x=上时停止旋转,旋转过程中,AB边交直线y x=于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设MBN∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析【解析】试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.试题解析:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,∴OA旋转了45°.∴OA在旋转过程中所扫过的面积为24523602ππ⨯=.(2)∵MN∥AC,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM.∴BM=BN.又∵BA=BC,∴AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON=12(∠AOC-∠MON)=12(90°-45°)=22.5°.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.证明:延长BA交y轴于E点,则∠AOE=45°-∠AOM,∠CON=90°-45°-∠AOM=45°-∠AOM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.∴△OAE≌△OCN.∴OE=ON,AE=CN.又∵∠MOE=∠MON=45°,OM=OM,∴△OME≌△OMN.∴MN=ME=AM+AE.∴MN=AM+CN,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC的过程中,p值无变化.考点:旋转的性质.7.在Rt△ACB和△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.特殊发现:如图1,若点E、F分别落在边AB,AC上,则结论:PC=PE成立(不要求证明).问题探究:把图1中的△AEF 绕点A 顺时针旋转.(1)如图2,若点E 落在边CA 的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F 落在边AB 上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由; (3)记ACBC=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 3CPE V 总是等边三角形 【解析】 【分析】(1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有EM FPMC PB=,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据AC k BC =,ACBC=tan30°,求出当△CPE 总是等边三角形时,k 的值是多少即可. 【详解】解:(1)PC=PE 成立,理由如下:如图2,过点P 作PM ⊥CE 于点M ,∵EF ⊥AE ,BC ⊥AC ,∴EF ∥MP ∥CB ,∴EM FPMC PB=,∵点P 是BF 的中点,∴EM=MC ,又∵PM ⊥CE ,∴PC=PE ;(2)PC=PE 成立,理由如下:如图3,过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,∵∠DAF=∠EAF ,∠FDA=∠FEA=90°,在△DAF 和△EAF 中 ,∵∠DAF=∠EAF ,∠FDA=∠FEA ,AF=AF , ∴△DAF ≌△EAF (AAS ), ∴AD=AE ,在△DAP 和△EAP 中, ∵AD=AE ,∠DAP=∠EAP ,AP=AP , ∴△DAP ≌△EAP (SAS ), ∴PD=PE ,∵FD ⊥AC ,BC ⊥AC ,PM ⊥AC , ∴FD ∥BC ∥PM , ∴DM FPMC PB=, ∵点P 是BF 的中点, ∴DM=MC ,又∵PM ⊥AC , ∴PC=PD ,又∵PD=PE , ∴PC=PE ;(3)如图4,∵△CPE 总是等边三角形, ∴∠CEP=60°, ∴∠CAB=60°, ∵∠ACB=90°,∴∠CBA=90°﹣∠ACB=90°﹣60°=30°, ∵AC k BC =,ACBC=tan30°,∴k=tan30°=3,3∴当k为3时,△CPE总是等边三角形.3【点睛】考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.8.已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD.探究下列问题:(1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD= ;(2)如图2,当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD= ;(3)如图3,当∠ACB变化,且点D与点C位于直线AB的两侧时,求 CD的最大值及相应的∠ACB的度数.【答案】(1);(2);(3)当∠ACB=120°时,CD有最大值是a+b.【解析】【分析】(1)a=b=3,且∠ACB=60°,△ABC是等边三角形,且CD是等边三角形的高线的2倍,据此即可求解;(2)a=b=6,且∠ACB=90°,△ABC是等腰直角三角形,且CD是边长是6的等边三角形的高长与等腰直角三角形的斜边上的高的差;(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b.【详解】(1)∵a=b=3,且∠ACB=60°,∴△ABC是等边三角形,∴OC=,∴CD=3;(2)3;(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,∴CD=ED,∠CDE=60°,AE=CB=a,∴△CDE为等边三角形,∴CE=CD.当点E、A、C不在一条直线上时,有CD=CE<AE+AC=a+b;当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b;只有当∠ACB=120°时,∠CAE=180°,即A、C、E在一条直线上,此时AE最大∴∠ACB=120°,因此当∠ACB=120°时,CD有最大值是a+b.【点睛】本题主要考查了等边三角形的性质,以及轴对称的性质,正确理解CD有最大值的条件,是解题的关键.9.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).(1)当点N落在边BC上时,求t的值.(2)当点N到点A、B的距离相等时,求t的值.(3)当点Q沿D→B运动时,求S与t之间的函数表达式.(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)t=1或【解析】试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;(3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.试题解析:(1)∵△PQN与△ABC都是等边三角形,∴当点N落在边BC上时,点Q与点B重合.∴DQ=3∴2t=3.∴t=;(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,∴PD=DQ,当0<t<时,此时,PD=t,DQ=2t∴t=2t∴t=0(不合题意,舍去),当≤t<3时,此时,PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t当点M在BC边上时,∴MN=BQ∵PQ=MN=3t,BQ=3﹣2t∴3t=3﹣2t∴解得t=如图①,当0≤t≤时,S△PNQ=PQ2=t2;∴S=S菱形PQMN=2S△PNQ=t2,如图②,当≤t≤时,设MN、MQ与边BC的交点分别是E、F,∵MN=PQ=3t,NE=BQ=3﹣2t,∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,∵△EMF是等边三角形,∴S△EMF=ME2=(5t﹣3)2.;(4)MN、MQ与边BC的交点分别是E、F,此时<t<,t=1或.考点:几何变换综合题10.如图1,在Rt△ABC中,∠ACB=90°,E是边AC上任意一点(点E与点A,C不重合),以CE为一直角边作Rt△ECD,∠ECD=90°,连接BE,AD.(1)若CA=CB,CE=CD①猜想线段BE,AD之间的数量关系及所在直线的位置关系,直接写出结论;②现将图1中的Rt△ECD绕着点C顺时针旋转锐角α,得到图2,请判断①中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由;(2)若CA=8,CB=6,CE=3,CD=4,Rt△ECD绕着点C顺时针转锐角α,如图3,连接BD,AE,计算的值.【答案】(1)①BE=AD,BE⊥AD;②见解析;(2)125.【解析】试题分析:根据三角形全等的判定与性质得出BE=AD,BE⊥AD;设BE与AC的交点为点F,BE与AD的交点为点G,根据∠ACB=∠ECD=90°得出∠ACD=∠BCE,然后结合AC=BC,CD=CE得出△ACD≌△BCE,则AD=BE,∠CAD=∠CBF,根据∠BFC=∠AFG,∠BFC+∠CBE=90°得出∠AFG+∠CAD=90°,从而说明垂直;首先根据题意得出△ACD∽△BCE,然后说明∠AGE=∠BGD=90°,最后根据直角三角形的勾股定理将所求的线段转化成已知的线段得出答案.试题解析:(1)①解:BE=AD,BE⊥AD②BE=AD,BE⊥AD仍然成立证明:设BE与AC的交点为点F,BE与AD的交点为点G,如图1.∵∠ACB=∠ECD=90°,∴∠ACD=∠BCE ∵AC=BC CD=CE ∴△ACD≌△BCE∴AD=BE ∠CAD=∠CBF ∵∠BFC=∠AFG ∠BFC+∠CBE=90°∴∠AFG+∠CAD=90°∴∠AGF=90°∴BE⊥AD(2)证明:设BE与AC的交点为点F,BE的延长线与AD的交点为点G,如图2.∵∠ACB=∠ECD=90°, ∴∠ACD=∠BCE ∵AC=8,BC=6,CE=3,CD=4 ∴△ACD ∽△BCE ∴∠CAD=∠CBE ∵∠BFC=∠AFG ∠BFC+∠CBE=90° ∴∠AFG+∠CAD=90° ∴∠AGF=90° ∴BE ⊥AD ∴∠AGE=∠BGD=90° ∴,.∴.∵,,∴考点:三角形全等与相似、勾股定理.11.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。
【专项】中考数学复习几何旋转解答题专题练习(含解析)

中考数学复习几何旋转解答题专题练习1.如图,在△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°能与△DEC重合,点F是边AC中点.(1)求证:△CFD≌△ABC;(2)连接BE,求证:四边形BEDF是平行四边形.2.如图,在Rt△ABC中,∠C=90°,将△ABC绕着点B逆时针旋转得到△FBE,点C,A 的对应点分别为E,F.点E落在BA上,连接AF.(1)若∠BAC=40°,求∠BAF的度数;(2)若AC=8,BC=6,求AF的长.3.如图①,△ABC和△ECD都是等边三角形.(1)若B、C、E在同一条直线上,AC与BD相交于点N,AE与CD相交于点M,BD 与AE相交于点O,试判断AE与BD的数量关系为;∠AOB度数为;(2)将△ECD绕点C顺时针旋转,B、C、E不在一条直线上时,如图②,则(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.4.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A,B的对应点分别是点D,E.(1)如图①,当点E恰好在AC边上时,连接AD,求∠ADE的度数;(2)如图②,当α=60°时,若点F为AC边上的动点,当∠FBC为何值时,四边形BFDE 为平行四边形?请说出你的结论并加以证明.5.如图,在△ABC中,AB=,BC=3,∠B=45°,将△ABC绕点A按顺时针旋转一定角度得到△ADE.当点B的对应点D恰好落在BC边上时,求CD的长.6.如图,矩形ABCD中,BC=4,将矩形ABCD绕点C顺时针旋转得到矩形A'B'C'D'.当点B'恰好落在边AD上时,旋转角为α,连接BB'.若∠AB'B=75°,求旋转角α及AB的长.7.如图,在Rt△ABC中,∠C=90°,∠CBA=32°,如果△ABC绕点B顺时针旋转至△EBD,使点D落在AB边上,连接AE,求∠EAB的度数.8.如图,在正方形ABCD中,射线AE与边CD交于点E,将射线AE绕点A顺时针旋转,与CB的延长线交于点F,BF=DE,连接FE.(1)求证:AF=AE;(2)若∠DAE=30°,DE=2,直接写出△AEF的面积.9.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C′的位置,使得CC′∥AB,求∠CC'A的度数.10.如图,将△ABC绕点A逆时针旋转30°得到△AB′C′,且B′,C′两点分别与B,C两点对应,延长BC与B′C′边交于点E,求∠CEC′的度数.11.如图,Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转得到△AED,且点D在边BC上.(1)若∠DAC=50°,则∠ABE=度;(2)求证:BE⊥BC;(3)若点D是BC的中点,AC=2,求BE的值.12.如图,正方形ABCD的边长为4,连接对角线AC,点E为BC边上一点,将线段AE 绕点A逆时针旋转45°得到线段AF,点E的对应点F恰好落在边CD上,过F作FM⊥AC 于点M.(1)求证:BE=FM;(2)求BE的长度.13.如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,CQ,求证:AP=CQ.14.正方形ABCD中,点F为正方形ABCD内的点,△BFC绕着点B按逆时针方向旋转90°后与△BEA重合.(1)如图①,若正方形ABCD的边长为2,BE=1,FC=,求证:AE∥BF.(2)如图②,若点F为正方形ABCD对角线AC上的点(点F不与点A、C重合),试探究AE、AF、BF之间的数量关系并加以证明.15.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,连接AD,AC,DE相交于点P.(1)求证:△ADB是等边三角形;(2)直接写出∠APD的度数.16.已知:如图1,∠AOB=30°,∠BOC=∠AOC.(1)求∠AOC的度数;(2)如图2,若射线OP从OA开始绕点O以每秒旋转10的速度逆时针旋转,同时射线OQ从OB开始绕点O以每秒旋转6°的速度逆时针旋转;其中射线OP到达OC后立即改变运动方向,以相同速度绕O点顺时针旋转,当射线OQ到达OC时,射线OP,OQ同时停止运动,设旋转的时间为t秒,当∠POQ=10°时,试求t的值;(3)如图3,若射线OP从OA开始绕O点逆时针旋转一周,作OM平分∠AOP,ON 平分∠COP,试求在运动过程中,∠MON的度数是多少?(请直接写出结果)17.将两块全等的三角板按如图1所示摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图1中的△ABC按顺时针方向旋转45°得图2,A1C与AB交于点P1,A1B1与BC 交于点Q,求证:CP1=CQ;(2)在图2中,若AP1=2,求CQ的长.18.如图,将Rt△AOB绕直角顶点O顺时针旋转得到Rt△COD,使点A的对应点C落在AB边上,过点D作DE∥AB,交AO的延长线于点E,求证:∠BCO=∠E.19.如图①,在矩形ABCD中,AB=6,BC=8,四边形EFGH是正方形,EH与BD重合,将图①中的正方形EFGH绕着点D逆时针旋转.(1)旋转至如图②位置,使点G落在BC的延长线上,DE交BC于点L.已知旋转开始时,即图①位置∠CDG=37°,求正方形EFGH从图①位置旋转至图②位置时,旋转角的度数.(2)旋转至如图③位置,DE交BC于点L.延长BC交FG于点M,延长DC交EF于点N.试判断DL、EN、GM之间满足的数量关系,并给予证明.20.将正方形ABCD的边AB绕点A逆时针旋转至AB1,记旋转角为α,连接BB1,过点D 作DE垂直于直线BB1,垂足为点E,连接DB1,CE.(1)如图1,当α=60°时,△DEB1的形状为,连接BD,可求出的值为;(2)当0°<α<360°且α≠90°时,(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由.21.如图,在矩形ABCD中,AD=8,AB=6,将△ADC绕点A按顺时针旋转到△AEF(A,B,E在同一直线上),连接CF,求CF的大小.22.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,若AE=1,BE=.(1)求EF的长;(2)当EC=时,求∠AEB的度数.23.如图,在△ABC中,BA=BC,∠ABC=40°,将△ABC绕点B按逆时针方向旋转100°,得到△DBE,连接AD,CE交于点F.(1)求证:△ABD≌△CBE;(2)求∠AFC的度数.24.如图①,在等边三角形ABC中,点D、E分别在边AB、AC上,AD=AE,连接BE、CD,点M、N、P分别是BE、CD、BC的中点,连接DE、PM、PN、MN.(1)观察猜想:图①中△PMN是三角形(填“等腰”或“等边”);(2)探究证明:如图②,△ADE绕点A按逆时针方向旋转,其他条件不变,则△PMN 的形状是否发生改变?并说明理由.25.如图,将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,点B与点E对应,点E恰好落在AD边上,BH⊥CE交于点H,求证:CG=BH.26.如图,等边三角形ABC的外部有一点P,且∠BP A=30°,将AP绕点B逆时针旋转60°得到CQ,连接BQ.(1)求证:△ABP≌△CBQ;(2)若AP=4,BP=3,求P,C两点之间的距离.27.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,求BD的长.28.如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.(1)求证:GE=FE;(2)若DF=3,求BE的长为.29.如图,△ABC是等腰三角形,其中AB=BC,将△ABC绕顶点B逆时针旋转50°到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别相交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=50°时,判断四边形A1BCE的形状并说明理由.30.在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,猜想P A和DC的数量关系并说明理由;(2)如图2,当α=120°时,猜想P A和DC的数量关系并说明理由.31.如图1,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠EDF=36°,∠ABC =40°,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,记∠ADF为α(0<α<180°),在旋转过程中:(1)如图2,当∠α=时,DE∥BC,当∠α=时,DE⊥BC;(2)如图3,当顶点C在△DEF内部时,边DF、DE分别交BC、AC的延长线于点M、N.①此时∠α的度数范围是;②∠1与∠2度数的和是否变化?若不变,求出∠1与∠2度数和;若变化,请说明理由.③若使得∠2≥2∠1,求∠α的度数范围.32.如图1,将三角板ABC与三角板ADE摆放在一起;如图2,其中∠ACB=30°,∠DAE =45°,∠BAC=∠D=90°.固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,记旋转角∠CAE=α(0°<α<180°).操作发现:(1)在旋转过程中,当α为度时,AD∥BC,当α为度时,AD⊥BC;(2)当△ADE的一边与△ABC的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;拓展应用:当0°<α<45°时,连接BD,利用图3探究∠BDE+∠CAE+∠DBC值的大小变化情况,并说明理由.33.在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点B逆时针旋转一个角度α后得到△DBE,点A,C的对应点分别为点D,E.(1)如图1,若点D恰好落在边BC的延长线上,连接CE,求∠DEC的度数.(2)如图2,若α=60°,F为BD的中点,连接CD,CF,EF,请判断四边形CDEF是什么特殊的四边形,并说明理由.34.如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,连接OD,OA.(1)求∠ODC的度数;(2)试判断AD与OD的位置关系,并说明理由;(3)若OB=2,OC=3,求AO的长(直接写出结果).参考答案1.如图,在△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°能与△DEC重合,点F是边AC中点.(1)求证:△CFD≌△ABC;(2)连接BE,求证:四边形BEDF是平行四边形.【解答】证明:(1)∵点F是边AC中点,∴CF=AC,∵∠BCA=30°,∴BA=AC,∠A=60°,∴AB=CF,∵将△ABC绕点C顺时针旋转60°得到△DEC,∴AC=CD,∠ACD=60°,∴∠ACB=∠DCE,在△CFD和△ABC中,,∴△CFD≌△ABC(SAS);(2)延长BF交CE于点G,由(1)得,FC=BF,∴∠BCF=∠FBC=30°,∵∠BCE=60°,∴∠BCE+∠CBG=∠BGE=90°,∵∠DEC=∠ABC=90°∴∠BGE=∠DEC,∴BF∥ED,∵BF=AC=AB,AB=DE,∴BF=DE,∴四边形BEDF是平行四边形.2.如图,在Rt△ABC中,∠C=90°,将△ABC绕着点B逆时针旋转得到△FBE,点C,A 的对应点分别为E,F.点E落在BA上,连接AF.(1)若∠BAC=40°,求∠BAF的度数;(2)若AC=8,BC=6,求AF的长.【解答】解:(1)在Rt△ABC中,∠C=90°,∠BAC=40°,∴∠ABC=50°,∵将△ABC绕着点B逆时针旋转得到△FBE,∴∠EBF=∠ABC=50°,AB=BF,∴∠BAF=∠BF A=(180°﹣50°)=65°;(2)∵∠C=90°,AC=8,BC=6,∴AB=10,∵将△ABC绕着点B逆时针旋转得到△FBE,∴BE=BC=6,EF=AC=8,∴AE=AB﹣BE=10﹣6=4,∴AF===4.3.如图①,△ABC和△ECD都是等边三角形.(1)若B、C、E在同一条直线上,AC与BD相交于点N,AE与CD相交于点M,BD 与AE相交于点O,试判断AE与BD的数量关系为AE=BD;∠AOB度数为60°;(2)将△ECD绕点C顺时针旋转,B、C、E不在一条直线上时,如图②,则(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.【解答】解:(1)∵△ABC是等边三角形,∴AC=BC,∠BAC=∠ACB=60°,∵△ECD是等边三角形,∴CE=CD,∠DCE=60°,∴∠ACB=∠DCE=60°,∴∠ACB+∠BCE=∠DCE+∠BCE,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,在△ABO中,∠AOB=180°﹣(∠BAO+∠ABO)=180°﹣(∠BAO+∠CBO+∠ABC)=180°﹣(∠BAC+∠ABC)=180°﹣(60°+60°)=60°,∴∠AOB=60°,故答案为:AE=BD,60°;(2)成立.证明:∵△ABC和△ECD都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,又∵∠ANO=∠BNC,∴180°﹣∠CAE﹣∠ANO=180°﹣∠CBD﹣∠BNC,∴∠AOB=∠ACB=60°.4.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A,B的对应点分别是点D,E.(1)如图①,当点E恰好在AC边上时,连接AD,求∠ADE的度数;(2)如图②,当α=60°时,若点F为AC边上的动点,当∠FBC为何值时,四边形BFDE 为平行四边形?请说出你的结论并加以证明.【解答】解:(1)∵将△ABC绕点C顺时针旋转一定的角度α得到△DEC,E点在AC 上,∴CA=CD,∠ECD=∠BCA=30°,∴∠CAD=∠CDA==75°,又∵∠DEC=∠ABC=90°,∴∠ADE=90°﹣75°=15°;(2)∠FBC=30°时,四边形BFDE为平行四边形,∴∠FBC=∠ACB=30°,∴∠ABF=∠A=60°,∴BF=CF=AF,∴△ABF是等边三角形,∴BF=AB,∵将△ABC绕点C顺时针旋转60°得到△DEC,∴DE=AB,△BCE是等边三角形,∠DEC=∠ABC=90°,∴∠CBE=∠BEC=60°,∴∠EBF=∠EBC﹣∠FBC=30°,∴∠DEB+∠EBF=180°,∴DE=BF,DE∥BF,∴四边形BFDE为平行四边形.5.如图,在△ABC中,AB=,BC=3,∠B=45°,将△ABC绕点A按顺时针旋转一定角度得到△ADE.当点B的对应点D恰好落在BC边上时,求CD的长.【解答】解:∵由旋转的性质可知AD=AB=,∴∠B=∠BDA=45°.∴∠DAB=90°.∴DB==2.∴CD=BC﹣DB=3﹣2=1,故DC的长为1.6.如图,矩形ABCD中,BC=4,将矩形ABCD绕点C顺时针旋转得到矩形A'B'C'D'.当点B'恰好落在边AD上时,旋转角为α,连接BB'.若∠AB'B=75°,求旋转角α及AB的长.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠CBB'=∠AB'B=75°,由旋转的性质得:CB=CB',∴∠CB'B=∠CBB'=75°,∴∠BCB'=180°﹣75°﹣75°=30°,即旋转角α为30°;作B'E⊥BC于E,如图所示:则AB=B'E=CB'=2.7.如图,在Rt△ABC中,∠C=90°,∠CBA=32°,如果△ABC绕点B顺时针旋转至△EBD,使点D落在AB边上,连接AE,求∠EAB的度数.【解答】解:由旋转可知:∠EBA=∠CBA=32°,AB=EB,∴∠EAB=∠AEB=(180°﹣32°)=74°.8.如图,在正方形ABCD中,射线AE与边CD交于点E,将射线AE绕点A顺时针旋转,与CB的延长线交于点F,BF=DE,连接FE.(1)求证:AF=AE;(2)若∠DAE=30°,DE=2,直接写出△AEF的面积.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠D=∠BAD=90°,∴∠ABF=90°,在△ABF与△ADE中,,∴△ABF≌△ADE(SAS),∴AF=AE;(2)解:由(1)知,△ABF≌△ADE,∴∠BAF=∠DAE,∴∠BAF+∠BAE=∠DAE+∠BAE=90°,∴∠F AE=90°,∴△AEF是等腰直角三角形,在Rt△ADE中,∠D=90°,∠DAE=30°,DE=2,∴AE=2DE=4,∴△AEF的面积=×4×4=8.9.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C′的位置,使得CC′∥AB,求∠CC'A的度数.【解答】解:∵CC′∥AB,∴∠ACC′=∠BAC=70°,∵△ABC绕点A旋转到△AB'C′的位置,∴AC′=AC,∴∠CC′A=∠ACC′=70°,10.如图,将△ABC绕点A逆时针旋转30°得到△AB′C′,且B′,C′两点分别与B,C两点对应,延长BC与B′C′边交于点E,求∠CEC′的度数.【解答】解:设BE与AB′交于F,∵将△ABC绕点A逆时针旋转30°得到△AB′C′,∴∠B′=∠B,∠BAB′=30°,∵∠AFB=∠B′FE,∴∠BEB′=∠BAB′=30°,∴∠CEC′=180°﹣∠BEB′=150°.11.如图,Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转得到△AED,且点D在边BC上.(1)若∠DAC=50°,则∠ABE=65度;(2)求证:BE⊥BC;(3)若点D是BC的中点,AC=2,求BE的值.【解答】解:(1)∵将△ABC绕点A顺时针旋转得到△AED,∴AB=AE,∠DAE=∠CAB,∴∠AEB=∠ABE,∠EAB=∠CAD=50°,∴∠ABE==65°,故答案为:65;(2)证明:∵将△ABC绕点A顺时针旋转得到△AED,∴AD=AC,∴∠ADC=∠C=x,∴∠DAC=180°﹣2x,由旋转的性质得∠EAB=∠DAC=180°﹣2x,AE=AB,∴∠EBA=,∵∠BAC=90°,∴∠ABC=90°﹣x,∴∠EBC=∠EBA+∠ABC=x+(90°﹣x)=90°,即BE⊥BC;(3)由旋转的性质得AD=AC=2,∵∠BAC=90°,点D是BC的中点,∴BD=DC=AD=2,∴BC=4,∵DE=BC=4,∴BE==2.12.如图,正方形ABCD的边长为4,连接对角线AC,点E为BC边上一点,将线段AE 绕点A逆时针旋转45°得到线段AF,点E的对应点F恰好落在边CD上,过F作FM⊥AC 于点M.(1)求证:BE=FM;(2)求BE的长度.【解答】(1)证明:∵将线段AE绕点A逆时针旋转45°得到线段AF,∴AE=AF,∠EAF=∠CAB=45°,∴∠F AC=∠EAB,在△ABE和△AMF中,∴△ABE≌△AMF(AAS),∴BE=FM;(2)∵四边形ABCD是正方形,∴AC=AB=4,∠ACD=45°,∵将线段AE绕点A逆时针旋转45°得到线段AF,∴AM=AB=4,∴CM=4﹣4,∵FM⊥AC,∠ACD=45°,∴∠ACD=∠CFM,∴FM=CM=4﹣4,∴BE=4﹣4.13.如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,CQ,求证:AP=CQ.【解答】证明:∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵将BP绕点B顺时针旋转90°到BQ,∴BP=BQ,∠PBQ=90°,∴∠PBQ=∠ABC,∴∠ABP=∠CBQ,在△ABP和△CBQ中,,∴△ABP≌△CBQ(SAS),∴AP=CQ.14.正方形ABCD中,点F为正方形ABCD内的点,△BFC绕着点B按逆时针方向旋转90°后与△BEA重合.(1)如图①,若正方形ABCD的边长为2,BE=1,FC=,求证:AE∥BF.(2)如图②,若点F为正方形ABCD对角线AC上的点(点F不与点A、C重合),试探究AE、AF、BF之间的数量关系并加以证明.【解答】(1)证明:∵△BFC绕着点B按逆时针方向旋转90°后与△BEA重合,∴△BFC≌△BEA,∴BE=BF=1,∠EBF=∠ABC=90°,∠AEB=∠BFC,∵,BC2=22=4,∴BF2+FC2=BC2,∴∠BFC=90°=∠AEB,∴∠AEB+∠EBF=180°,∴AE∥BF;(2)解:AE2+AF2=2BF2,理由如下:∵AC是正方形ABCD的角平分线,∴∠BCA=∠BAC=45°,∴∠EAF=45°+45°=90°,∴AE2+AF2=EF2,∵△BFC绕着点B按逆时针方向旋转90°后与△BEA重合,∴BE=BF,∠EBF=90°,∴2BF2=EF2,∴AE2+AF2=2BF2.15.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,连接AD,AC,DE相交于点P.(1)求证:△ADB是等边三角形;(2)直接写出∠APD的度数60°.【解答】解:(1)∵将△ABC绕点B顺时针旋转60°得△DBE,∴AB=DB,∠ABD=60°,∴△ADB是等边三角形;(2)如图:∵点C的对应点E恰好落在AB的延长线上,∴∠ABD=∠BDE+∠E,由(1)知△ADB是等边三角形,∴∠BDE+∠E=∠ABD=60°,∵将△ABC绕点B顺时针旋转60°得△DBE,∴∠BDE=∠BAP,∴∠BAP+∠E=60°,∴∠APD=∠BAP+∠E=60°;故答案为:60°.16.已知:如图1,∠AOB=30°,∠BOC=∠AOC.(1)求∠AOC的度数;(2)如图2,若射线OP从OA开始绕点O以每秒旋转10的速度逆时针旋转,同时射线OQ从OB开始绕点O以每秒旋转6°的速度逆时针旋转;其中射线OP到达OC后立即改变运动方向,以相同速度绕O点顺时针旋转,当射线OQ到达OC时,射线OP,OQ同时停止运动,设旋转的时间为t秒,当∠POQ=10°时,试求t的值;(3)如图3,若射线OP从OA开始绕O点逆时针旋转一周,作OM平分∠AOP,ON 平分∠COP,试求在运动过程中,∠MON的度数是多少?(请直接写出结果)【解答】解:(1)∠BOC=∠AOC,∠BOC+∠AOB=∠AOC,∴∠AOB=∠AOC,∵∠AOB=30°,∴∠AOC=120°;(2)由(1)知,∠AOC=120°,∠BOC=90°,①OP逆时针运动时,即0≤t≤12时,由OP,OQ的运动可知,∠AOP=10°t,∠BOQ=6°t,OP,OQ相遇前,如图2(1),∠AOQ=∠AOP+∠POQ=∠AOB+∠BOQ,即10°t+10°=30°+6°t,解得t=5,OP,OQ相遇后,如图2(2),∠AOP=∠AOB+∠BOQ+∠POQ,即10°t=30°+6°t+10°,解得t=10;②OP顺时针旋转时,∠COP=10°t﹣120°,∠BOQ=6°t,OP,OQ相遇前,如图(3),∠BOC=∠COP+∠BOQ+∠POQ,即90°=10°t﹣120°+6°t+10°,解得t=12.5,OP,OQ相遇后,如图(4),∠BOC=∠COP+∠BOQ﹣∠POQ,即90°=10°t﹣120°+6°t ﹣10°,解得t=13.75,综上,当t的值为5,10,12.5或13.75时,∠POQ=10°.(3)由(1)知∠AOC=120°,根据射线OP的运动,需要分四种情况,①当射线OP与OA重合前,如图3(1),∵OM平分∠AOP,ON平分∠COP,∴∠POM=∠AOP,∠PON=∠COP,∴∠MON=∠POM+∠PON=∠AOP+∠COP=∠AOC=60°;②当射线OP与OA重合后,∠AOP=180°前,如图3(2),∵OM平分∠AOP,ON平分∠COP,∴∠POM=∠AOP,∠PON=∠COP,∴∠MON=∠POM﹣∠PON=∠AOP﹣∠COP=∠AOC=60°;③∠CON=180°前,如图3(3),∵OM平分∠AOP,ON平分∠COP,∴∠POM=∠AOP,∠PON=∠COP,∴∠MON=∠POM+∠PON=∠AOP+∠COP=(360°﹣∠AOC)=120°;④OP与OQ重合前,如图3(4),∵OM平分∠AOP,ON平分∠COP,∴∠POM=∠AOP,∠PON=∠COP,∴∠MON=∠PON﹣∠POM=∠COP+∠AOP=∠AOC=60°;综上,∠MON的度数为60°或120°.17.将两块全等的三角板按如图1所示摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图1中的△ABC按顺时针方向旋转45°得图2,A1C与AB交于点P1,A1B1与BC 交于点Q,求证:CP1=CQ;(2)在图2中,若AP1=2,求CQ的长.【解答】(1)证明:∵∠B1CB=45°,∠B1CA1=90°,∴∠B1CQ=∠BCP1=45°;又B1C=BC,∠B1=∠B,∴△B1CQ≌△BCP1(ASA),∴CQ=CP1;(2)解:如图:作P1D⊥AC于D,∵∠A=30°,∴P1D=AP1;∵∠P1CD=45°,∴=sin45°=,∴CP1=P1D=AP1;又AP1=2,CQ=CP1,∴CQ=.18.如图,将Rt△AOB绕直角顶点O顺时针旋转得到Rt△COD,使点A的对应点C落在AB边上,过点D作DE∥AB,交AO的延长线于点E,求证:∠BCO=∠E.【解答】证明:∵将Rt△AOB绕直角顶点O顺时针旋转得到Rt△COD,∴AO=CO,∴∠A=∠ACO,∵AB∥DE,∴∠A+∠E=180°,又∵∠ACO+∠BCO=180°,∴∠BCO=∠E.19.如图①,在矩形ABCD中,AB=6,BC=8,四边形EFGH是正方形,EH与BD重合,将图①中的正方形EFGH绕着点D逆时针旋转.(1)旋转至如图②位置,使点G落在BC的延长线上,DE交BC于点L.已知旋转开始时,即图①位置∠CDG=37°,求正方形EFGH从图①位置旋转至图②位置时,旋转角的度数.(2)旋转至如图③位置,DE交BC于点L.延长BC交FG于点M,延长DC交EF于点N.试判断DL、EN、GM之间满足的数量关系,并给予证明.【解答】解:(1)由图①知,∠ADB=∠DBC=37°,如图②,连接BD,则BD=DG,∴∠DGB=∠DBG=37°,∴∠CDG=90°﹣∠DGC=90°﹣37°=53°,∴旋转角为:53°﹣37°=16°;(2)DL=EN+GM,理由如下:过点G作GK∥BM,交DE于K,∵四边形EFGD是正方形,∴∠DEF=∠GDE,DE=DG,∴∠EDN=∠DGK,∴△DKG≌△END(ASA),∴EN=DK,∵GK∥ML,KL∥GM,∴四边形KLMG是平行四边形,∴GM=KL,∴DL=EN+GM.20.将正方形ABCD的边AB绕点A逆时针旋转至AB1,记旋转角为α,连接BB1,过点D 作DE垂直于直线BB1,垂足为点E,连接DB1,CE.(1)如图1,当α=60°时,△DEB1的形状为等腰直角三角形,连接BD,可求出的值为;(2)当0°<α<360°且α≠90°时,(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由.【解答】解:(1)如图1,∵AB绕点A逆时针旋转至AB′,∴AB=AB',∠BAB'=α=60°,∴△ABB'是等边三角形,∴∠BB'A=60°,∴∠DAB'=∠BAD﹣∠BAB'=90°﹣60°=30°,∵AB'=AB=AD,∴∠AB'D=∠ADB',∴∠AB'D==75°,∴∠DB'E=180°﹣60°﹣75°=45°,∵DE⊥B'E,∴∠B'DE=90°﹣45°=45°,∴△DEB'是等腰直角三角形;连接BD,∵四边形ABCD是正方形,∴∠BDC=45°,∴,同理,∴,∵∠BDB'+∠B'DC=45°,∠EDC+∠B'DC=45°,∴∠BDB'=∠EDC,∴△BDB'∽△CDE,∴==,故答案为:等腰直角三角形,;(3)(1)中的两个结论仍然成立.理由如下:连接BD,∵AB=AB',∠BAB'=α,∴∠AB'B=90°﹣,∵∠B'AD=α﹣90°,AD=AB',∴∠AB'D=135°﹣,∴∠EB'D=∠AB'D﹣∠AB'B=135°﹣﹣(90°﹣)=45°,∵DE⊥BB',∴∠EDB'=∠EB'D=45°,∴△DEB'是等腰直角三角形;∴=,∵四边形ABCD是正方形,∴,∠BDC=45°,∴,∵∠EDB'=∠BDC,∴∠EDB'+∠EDB=∠BDC+∠EDB,即∠B'DB=∠EDC,∴△B'DB∽△EDC,∴==,21.如图,在矩形ABCD中,AD=8,AB=6,将△ADC绕点A按顺时针旋转到△AEF(A,B,E在同一直线上),连接CF,求CF的大小.【解答】解:∵AD=8,AB=6,∠D=90°,∴AC===10,∵△ADC按逆时针方向绕点A旋转到△AEF,∴∠EAF=∠DAC,AF=AC=10,∴∠EAF+∠EAC=∠DAC+∠EAC,∴∠F AC=∠BAD,又∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠F AC=90°,∴△F AC是等腰直角三角形,∴CF=AC=10.22.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,若AE=1,BE=.(1)求EF的长;(2)当EC=时,求∠AEB的度数.【解答】解:(1)∵△ABE绕点B顺时针旋转90°得到△CBF,∴△ABE≌△CBF,∴BE=BF=,AE=CF=1,∠EBF=90°,∠AEB=∠BFC,∴△BEF为等腰直角三角形,∴EF=BE=2;(2)在△CEF中,CE=,CF=1,EF=2,∵CF2+EF2=12+22=5,CE2=5,∴CF2+EF2=CE2,∴△CEF为直角三角形,∴∠EFC=90°,∴∠BFC=∠BFE+∠CFE=135°,∴∠AEB=135°.23.如图,在△ABC中,BA=BC,∠ABC=40°,将△ABC绕点B按逆时针方向旋转100°,得到△DBE,连接AD,CE交于点F.(1)求证:△ABD≌△CBE;(2)求∠AFC的度数.【解答】(1)证明:∵△ABC绕点B按逆时针方向旋转100°,∴∠ABC=∠DBE=40°,∴∠ABD=∠CBE=100°,又∵BA=BC,∴AB=BC=BD=BE,在△ABD与△CBE中,,∴△ABD≌△CBE(SAS).(2)解:∵∠ABD=∠CBE=100°,BA=BC=BD=BE,∴∠BAD=∠ADB=∠BCE=∠BEC=40°.∵∠ABE=∠ABD+∠DBE=140°,∴∠AFE=360°﹣∠ABE﹣∠BAD﹣∠BEC=140°,∴∠AFC=180°﹣∠AFE=40°.24.如图①,在等边三角形ABC中,点D、E分别在边AB、AC上,AD=AE,连接BE、CD,点M、N、P分别是BE、CD、BC的中点,连接DE、PM、PN、MN.(1)观察猜想:图①中△PMN是等边三角形(填“等腰”或“等边”);(2)探究证明:如图②,△ADE绕点A按逆时针方向旋转,其他条件不变,则△PMN 的形状是否发生改变?并说明理由.【解答】解:(1)结论:△PMN是等边三角形.理由:如图1中,∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,∵AD=AE,∴BD=EC,∵PB=PC,CN=ND,BM=EM,∴PN∥BD,PM∥EC,PN=BD,PM=EC,∴PM=PN,∠NPC=∠ABC=60°,∠MPB=∠ACB=60°,∴∠MPN=60°,∴△PMN是等边三角形,故答案为等边.(2)△PMN的形状不发生改变,仍为等边三角形,理由如下:如图2中,连接BD,CE.由旋转可得∠BAD=∠CAE,∵△ABC是等边三角形,∴AB=AC,∠ACB=∠ABC=60°又∵AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵M是BE的中点,P是BC的中点,∴PM是△BCE的中位线,∴PM=CE,且PM∥CE.同理可证PN=BD且PN∥BD,∴PM=PN,∠MPB=∠ECB,∠NPC=∠DBC,∴∠MPB+∠NPC=∠ECB+∠DBC=(∠ACB+∠ACE)+(∠ABC﹣∠ABD)=∠ACB+∠ABC=120°,∴∠MPN=60°,∴△PMN是等边三角形.25.如图,将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,点B与点E对应,点E恰好落在AD边上,BH⊥CE交于点H,求证:CG=BH.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,AB=CD,∴∠DEC=∠BCH,∵∠D=90°,BH⊥AC,∴∠D=∠BHC,由旋转得,CE=CB,CD=CG,在△EDC和△CHB中,,∴△EDC≌△CHB(AAS),∴BH=CD=CG.26.如图,等边三角形ABC的外部有一点P,且∠BP A=30°,将AP绕点B逆时针旋转60°得到CQ,连接BQ.(1)求证:△ABP≌△CBQ;(2)若AP=4,BP=3,求P,C两点之间的距离.【解答】解:(1)设CQ与AP交于D点,AB与CQ交于E点,∵将AP绕点B逆时针旋转60°得到CQ,∴AP=CQ,∠ADC=60°,∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠ADC=∠ABC,∵∠AED=∠BEC,∴∠BAP=∠BCQ,在△ABP与△CBQ中,∴△ABP≌△CBQ(SAS),(2)连接PQ,PC,由△ABP≌△CBQ得:PB=BQ,∠PBA=∠CBQ,∠BP A=∠BQC=30°,QC=AP=4,∴∠QBP=∠ABC=60°,∴△PBQ为等边三角形,∴∠PQB=60°,PQ=BQ=3,∴∠PQC=∠PQB+∠BQC=60°+30°=90°,∴PC2=PQ2+QC2,∴PC===5.27.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,求BD的长.【解答】解:∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD==.∴BD的长为.28.如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.(1)求证:GE=FE;(2)若DF=3,求BE的长为2.【解答】(1)证明:∵将△ADF绕点A顺时针旋转90°得到△ABG,∴△ADF≌△ABG,∴DF=BG,∠DAF=∠BAG,∵∠DAB=90°,∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠BAG+∠EAB=45°,∴∠EAF=∠EAG,在△EAG和△EAF中,,∴△EAG≌△EAF(SAS),∴GE=FE,(2)解:设BE=x,则GE=BG+BE=3+x,CE=6﹣x,∴EF=3+x,∵CD=6,DF=3,∴CF=3,∵∠C=90°,∴(6﹣x)2+32=(3+x)2,解得,x=2,即BE=2,29.如图,△ABC是等腰三角形,其中AB=BC,将△ABC绕顶点B逆时针旋转50°到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别相交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=50°时,判断四边形A1BCE的形状并说明理由.【解答】(1)证明:∵AB=BC,∴∠A=∠C,∵△A1BC1是由△ABC绕顶点B逆时针旋转而得,∴∠A=∠A1=∠C,∠A1BD=∠CBC1,AB=A1B,在△BCF和△BA1D中,,∴△BCF≌△BA1D(ASA);(2)解:四边形A1BCE是菱形.∵△ABC是等腰三角形,∠C=50°,∴∠A=∠C1=∠C=50°,又∵△BCF≌△BA1D,∴∠CBF=∠A1BD=50°,∴∠C1=∠CBF,∠A=∠A1BD,∴A1E∥BC,A1B∥EC,即四边形A1BCE是平行四边形,又∵A1B=BC,∴四边形A1BCE是菱形.30.在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,猜想P A和DC的数量关系并说明理由;(2)如图2,当α=120°时,猜想P A和DC的数量关系并说明理由.【解答】(1)解:P A=DC,理由如下:如图1中,∵将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,∴PB=PD,∵AB=AC,PB=PD,∠BAC=∠BPD=60°,∴△ABC,△PBD是等边三角形,∴∠ABC=∠PBD=60°,∴∠PBA=∠DBC,在△PBA和△DBC中,,∴△PBA≌△DBC(SAS),∴P A=DC;(2)解:CD=P A;理由如下:如图2中,∵AB=AC,PB=PD,∠BAC=∠BPD=120°,∴BC=2BA•cos30°=BA,BD=2BP•cos30°=BP,∴,∵∠ABC=∠PBD=30°,∴∠ABP=∠CBD,∴△CBD∽△ABP,∴=,∴CD=P A.31.如图1,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠EDF=36°,∠ABC =40°,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,记∠ADF为α(0<α<180°),在旋转过程中:(1)如图2,当∠α=4°时,DE∥BC,当∠α=94°时,DE⊥BC;(2)如图3,当顶点C在△DEF内部时,边DF、DE分别交BC、AC的延长线于点M、N.①此时∠α的度数范围是49°<α<85°;②∠1与∠2度数的和是否变化?若不变,求出∠1与∠2度数和;若变化,请说明理由.③若使得∠2≥2∠1,求∠α的度数范围.【解答】解:(1)当DE∥BC时,如图(1),∵DE∥BC,∴∠EDA=∠B=40°,∵∠FDE=36°,∴∠α=∠EDA﹣∠FDE=40°﹣36°=4°,∴∠α=4°时,DE∥BC.当DE⊥BC时,如图(2),∵DE⊥BC,∴∠BGD=90°,∵∠B=40°,∠GDA是△GDB的一个外角,∴∠GDA=∠B+∠BGD=40°+90°=130°,∵∠EDF=36°,∴∠α=∠GDA﹣∠FDE=130°﹣36°=94°,∴∠α=94°时,DE⊥BC.故答案为:4°;94°.(2)①∵∠ACB=90°,CD平分∠ACB,∴∠BCD=45°,∵∠ABC=40°,∴∠ADC=∠ABC+∠BCD=40°+45°=85°,当ED经过点C时,∠α=∠ADC﹣∠EDF=85°﹣36°=49°,当FD经过点C时,∠α=∠ADC=85°,∴顶点C在△DEF内部时,49°<α<85°.∠1与∠2度数的和不发生变化,理由如下:延长DC至点H,∵∠NCH、∠MCH分别是△NCD和△MCD的外角,∴∠NCH=∠2+∠NDC,∠MCH=∠1+∠MDC,∴∠NCH+∠MCH=∠2+∠1+∠NDC+∠MDC,∴∠NCM=∠1+∠2+∠NDM,∵∠NCM=∠ACB=90°,∠NDM=∠FDE=36°,∴90°=∠1+∠2+36°,∴∠1+∠2=54°.③∵∠ABC=40°,∠ACB﹣90°,∴∠A=180°﹣40°﹣90°=50°,∵∠ADF是△MBD的外角∴∠α=∠ABC+∠1=40°+∠1,∵∠2≥2∠1,∠1+∠2=54°,∴54°﹣∠1≥2∠1,∴∠1≤18°,∴α≤58°,又∵49°<α<85°,∴49°<α≤58°.32.如图1,将三角板ABC与三角板ADE摆放在一起;如图2,其中∠ACB=30°,∠DAE =45°,∠BAC=∠D=90°.固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,记旋转角∠CAE=α(0°<α<180°).操作发现:(1)在旋转过程中,当α为15度时,AD∥BC,当α为105度时,AD⊥BC;(2)当△ADE的一边与△ABC的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;拓展应用:当0°<α<45°时,连接BD,利用图3探究∠BDE+∠CAE+∠DBC值的大小变化情况,并说明理由.【解答】解:(1)如图(1),记DE与AC的交点为点F,DE与BC的交点为点G,∵AD∥BC,∴∠DAF=∠C=30°,∵∠DAE=45°,∴∠CAE=15°,即α=15°,如图(2),记AD与BC的交点为F,∵AD⊥BC,∴∠ADF=90°,∴∠DAC=180°﹣∠AFC﹣∠C=180°﹣90°﹣30°=60°,∴∠CAE=∠DAC+∠EAD=60°+45°=105°,即α=105°,故答案为:15,105.(2)①当AD∥BC时,如图1所示,由(1)得,α=15°;②当DE∥BC时,如图2所示,由(1)得,AD⊥BC,∴∠AFC=90°,∵∠ADE=90°,∴DE∥BC,∴α=105°;③当DE∥AB时,如图3所示,α=45°;④当DE∥AC时,如图4所示,α=∠EAD+∠BAC=45°+90°=135°;⑤∠EAC+∠C=180°,∵∠C=30°,∴∠EAC=150°,即α=150°;综上所述:旋转角α的所有可能的度数是:15°,45°,105°,135°,150°.拓展应用:当0°<α<45°,∠BDE+∠CAE+∠DBC=105°,保持不变,理由如下:如图6,设BD分别交AC、AE于点M、N,在△AMN中,∠AMN+∠CAE+∠ANM=180°,∵∠ANM=∠E+∠BDE,∠AMN=∠C+∠DBC,∴∠E+∠BDE+∠CAE+∠C+∠DBC=180°,∵∠C=30°,∠E=45°,∴∠BDE+∠CAE+∠DBC=105°.33.在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点B逆时针旋转一个角度α后得到△DBE,点A,C的对应点分别为点D,E.(1)如图1,若点D恰好落在边BC的延长线上,连接CE,求∠DEC的度数.(2)如图2,若α=60°,F为BD的中点,连接CD,CF,EF,请判断四边形CDEF是什么特殊的四边形,并说明理由.【解答】解:(1)如图1,∵∠ACB=90°,∠ABC=30°,∴∠A=60°,由旋转得∠D=∠A=60°,BE=BC,∠DBE=∠ABC=30°,∴∠BCE=∠BEC=(180°﹣30°)=75°,∴∠DEC=∠BCE﹣∠D=75°﹣60°=15°.(2)四边形CDEF是菱形,理由如下:如图2,∵△ABC绕点B逆时针旋转一个角度α得到△DBE,∴∠CBE=α=60°,∠DBE=∠ABC=30°,∠DEB=∠ACB=90°,∴∠DBC=30°,∴∠DBE=∠DBC,∵BD=BD,BE=BC,∴△DBE≌△DBC(SAS),∴∠BED=∠BCD=90°,∴CD=BD,ED=BD,∵F为BD的中点,∴CF=BD,EF=BD,∴CD=ED=CF=EF,∴四边形CDEF是菱形.34.如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,连接OD,OA.(1)求∠ODC的度数;(2)试判断AD与OD的位置关系,并说明理由;(3)若OB=2,OC=3,求AO的长(直接写出结果).【解答】解:(1)由旋转的性质得,CD=CO,∠ACD=∠BCO,∴∠ACD+∠ACO=∠BCO+∠ACO,即∠DCO=∠ACB,∵三角形ABC是等边三角形,∴∠ACB=60°,∴∠DCO=60°,∴△OCD为等边三角形,∴∠ODC=60°;(2)AD与OD的位置关系是:AD⊥OD,理由如下:由(1)知∠ODC=60°,∵将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,∴∠ADC=∠BOC=150°,∴∠ADO=∠ADC﹣∠ODC=90°,∴AD⊥OD;(3)由旋转的性质得,AD=OB=2,∵△OCD为等边三角形,∴OD=OC=3,在Rt△AOD中,由勾股定理得:AO===.。
【复习专题】中考数学复习:三大变换—旋转作图(二)

三大变换之 -- 旋转作图(二)知识梳理1、中心对称 : 把一个图形绕着某个定点旋转180°,假如它能和另一个图形重合,那么这两个图形对于这个定点对称或中心对称。
这个定点叫做对称中心,两个图形中对应点叫做对于对称中心的对称点。
2、中心对称的性质:(1)对应点的连线都经过对称中心,而且被对称中心均分,即对称中心是两个对称点所连线段的中点。
(2)对应线段平行或共线。
教课重、难点作业达成状况典题研究1.如图,在直角坐标平面内,已知点 A 的坐标(﹣ 5, 0),(1)图中 B 点的坐标是;(2)点 B 对于原点对称的点 C 的坐标是;点 A 对于 y 轴对称的点 D的坐标是;(3)△ ABC的面积是;(4)在直角坐标平面上找一点E,能知足 S△ADE=S△ABC的点 E 有个;(5)在 y 轴上找一点 F,使 S△ADF=S△ABC,那么点 F 的全部可能地点是;(用坐标表示,并在图中画出)2.如图,在直角坐标系中,矩形纸片ABCD的点 B 坐标为( 9,3),若把图形按要求折叠,使B、D两点重合,折痕为EF.( 1)△ DEF能否为等腰三角形?(不要说明原因)( 2)图形中能否存在成中心对称的两个图形?假如存在请说明原因;假如不存在,也请说明原因.(图中实线、虚线同样对待)( 3)求折痕EF 的长及所在直线的分析式.3.我们知道,在平面内,假如一个图形绕着一个定点旋转必定的角度后能与自己重合,那么就称这个图形是旋转对称图形,转的这个角称为这个图形的一个旋转角.比如,正方形绕着它的对角线的交点旋转90°后能与自己重合因此正方形是旋转对称图形,它有一个旋转角为90°.( 1)判断以下说法能否正确(在相应横线里填上“对”或“错”)①正五边形是旋转对称图形,它有一个旋转角为144°.②长方形是旋转对称图形,它有一个旋转角为180°.( 2)填空:以下图形中时旋转对称图形,且有一个旋转角为120°的是.(写出全部正确结论的序号)①正三角形②正方形③正六边形④正八边形( 3)写出两个多边形,它们都是旋转对称图形,都有一个旋转角为72°,此中一个是轴对称图形,但不是中心对称图形;另一个既是轴对称图形,又是中心对称图形.4.某校园内有一人行道上镶嵌着如图①所示的水泥方砖,砖面上的小沟槽(如图②) EA、HD、GC、 FB 分别是方砖 TPQR四边的中垂线,四边形 HEFG是正方形,现请你依据上述信息解答以下问题.(1)方砖 TPQR面上的图案 _________A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形( 2)若要使方砖 TPQR的面积是正方形 HEFG面积的 9 倍,求当方砖边长为 24 厘米时,小沟槽 EA的长是多少.操练方阵A 档(稳固专练)1.设点M(1, 2)对于原点的对称点为M′,则M′的坐标为_________.2.在平面直角坐标系中,O是原点,A 是x 轴上的点,将射线OA绕点O旋转,使点A 与双曲线y=上的点 B 重合,若点 B 的纵坐标是1,则点 A 的横坐标是_________.3.如图,将一朵小花搁置在平面直角坐标系第一象限内,先将它向下平移 4 个单位后,再将它绕原点O 旋转 180°,则小花极点 A 的对应点A′的坐标为 _________.4.在平面直角坐标系中,点P( 5,﹣ 3)对于原点对称的点的坐标是_________.5.如图,在平面直角坐标系中,将△ABC绕点 P 旋转 180°获得△ DEF,则点 P 的坐标为 _________.6.函数的图象以下图,对于该函数,以下结论正确的选项是_________(填序号).①函数图象是轴对称图形;②函数图象是中心对称图形;③当函数图象上;⑤当 x< 1 或x>0 时,函数有最小值;④点(x> 3 时, y> 4.1, 4)在7.永州市新田县的龙家大院到现在已有 930 多年历史,因该村拥有保留完满的“三堂九井二十四巷四十八栋”明清建筑,而申报为中国历史文假名村.如图是龙家大院的一个窗花图案,它拥有很好的对称美,这个图案是由:①正六边形;②正三角形;③等腰梯形;④直角梯形等几何图形组成,在这四种几何图形中既是轴对称图形又是中心对称图形的是_________(只填序号).8.如图,在平面直角坐标系中,对△ ABC进行周而复始的轴对称或中心对称变换,若本来点 A 坐标是( a,b),则经过第 2011 次变换后所得的 A 点坐标是 _________ .9.在中国的园林建筑中,好多建筑图形拥有对称性.如图是一个损坏花窗的图形,请把它补画成中心对称图形._________.10.在平面直角坐标系xOy 中,已知A(﹣ 1, 5), B( 4, 2), C(﹣ 1,0)三点.(1)点 A 对于原点 O的对称点 A′的坐标为 _________,点 B 对于 x 轴的对称点 B′的坐标为 _________,点 C对于 y 轴的对称点 C 的坐标为 _________.(2)求( 1)中的△ A′B′ C′的面积.B档(提高精练)11.如图,△ABO与△ CDO对于O点中心对称,点E、F 在线段AC上,且AF=CE.求证: FD=BE.12.如图,在平面直角坐标系中,O为坐标原点,每个小方格的边长为 1 个单位长度.正方形ABCD极点都在格点上,此中,点 A 的坐标为( 1, 1).(1)若将正方形 ABCD绕点 A 顺时针方向旋转 90°,点 B 抵达点 B1,点 C 抵达点 C1,点 D 抵达点 D1,求点 B1、 C1、 D1的坐标.( 2)若线段AC1的长度与点D1的横坐标的差恰巧是一元二次方程x2+ax+1=0 的一个根,求 a 的值.13.如图,在直角坐标系中,OA=2,OB=1.将 Rt △ AOB绕点Rt △ AOB的两条直角边OA, OB分别在 x 轴的负半轴, y 轴的负半轴上,且O按顺时针方向旋转90°,再把所得的像沿x 轴正方向平移 1 个单位,得△CDO.(1)写出点 A, C 的坐标;(2)求点 A 和点 C之间的距离.14.如图,图形中每一小格正方形的边长为1,已知△ ABC.(1) AC的长等于 _________;(2)先将△ ABC向右平移 2 个单位获得△ A′ B′ C′,则 A 点的对应点 A′的坐标是 _________;(3)再将△ ABC绕点 C按逆时针方向旋转 90°后获得△ A1B1C1,则 A 点对应点 A1的坐标是 _________.15.如图,平面直角坐标系中,△ABC为等边三角形,此中点A、B、 C 的坐标分别为(﹣3,﹣ 1)、(﹣ 3,﹣3)、(﹣ 3+ ,﹣ 2).现以 y 轴为对称轴作△ ABC的对称图形,得△ A1B1C1,再以 x 轴为对称轴作△A1B1C1的对称图形,得△ A2B2C2.(1)直接写出点 C1、 C2的坐标;(2)可否经过一次旋转将△ ABC旋转到△ A2B2C2的地点?你若以为能,请作出必定的回答,并直接写出所旋转的度数;你若以为不可以,请作出否认的回答(不用说明原因);( 3)设当△ ABC的地点发生变化时,△A2B2C2、△ A1B1C1与△ ABC之间的对称关系一直保持不变.①当△ ABC向上平移多少个单位时,△A1B1C1与△ A2 B2C2完整重归并直接写出此时点C的坐标;②将△ ABC绕点 A 顺时针旋转α°(0≤α≤ 180),使△ A1B1C1与△ A2B2C2完整重合,此时α的值为多少点C的坐标又是什么?16.如图①,在△AOB中,∠ AOB=90°, OA=3, OB=4.将△ AOB沿 x 轴挨次以点A、B、 O为旋转中心顺时针旋转,分别获得图②、图③、,则旋转获得的图⑩的直角极点的坐标为_________.17.课外兴趣小组活动时,老师提出了以下问题:( 1)如图 1,在△ ABC中,若 AB=5, AC=3,求 BC边上的中线AD的取值范围.小明在组内经过合作沟通,获得了以下的解决方法:延伸AD到 E,使得 DE=AD,再连结 BE(或将△ ACD 绕点 D 逆时针旋转180°获得△ EBD),把 AB、AC、 2AD集中在△ ABE中,利用三角形的三边关系可得2<AE<8,则 1<AD< 4.[ 感悟 ] 解题时,条件中若出现“中点”“中线”字样,能够考虑结构以中点为对称中心的中心对称图形,把分别的已知条件和所求证的结论集中到同一个三角形中.( 2)解决问题:遇到(1)的启迪,请你证明以下命题:如图2,在△ ABC中, D 是 BC边上的中点, DE⊥DF, DE交 AB于点 E, DF交 AC于点 F,连结 EF.求证: BE+CF> EF,若∠ A=90°,研究线段BE、CF、 EF 之间的等量关系,并加以证明.18.在平面直角坐标系中,O为坐标原点.( 1)已知点A( 3, 1),连结 OA,作以下研究:研究一:平移线段OA,使点 O落在点 B.设点 A 落在点 C,若点 B 的坐标为( 1,2),请在图 1 中作出 BC,点 C 的坐标是 _________;研究二:将线段OA绕点 O逆时针旋转90 度,设点 A 落在点 D.则点 D 的坐标是 _________;( 2)已知四点 O( 0,0), A( a, b), C,B( c, d),按序连结O, A, C, B.①若所获得的四边形为平行四边形,则点 C 的坐标是 _________;②若所获得的四边形是正方形,请直接写出 a, b,c, d 应知足的关系式.P 挨次落在点P1,19.如图,将边长为 1 的等边△ OAP按图示方式,沿x 轴正方向连续翻转2007 次,点P2, P3, P4,, P2007的地点.试写出P1, P3, P100, P2007的坐标.20.如图,在平面直角坐标系xOy 中,把矩形COAB绕点 C 顺时针旋转α度的角,获得矩形CFED,设 FC与 AB交于点 H,且 A( 0, 4)、 C( 8, 0).(1)当α =60°时,△ CBD的形状是 _________.(2)当 AH=HC时,求直线 FC的分析式.成长踪迹课后检测三大变换之 -- 旋转作图(二)参照答案典题研究例 1 解:( 1)依据图告知,点 B 的坐标为(﹣3,4); ?( 2)由( 1)知, B(﹣ 3, 4),∴点 B 对于原点对称的点C的坐标是( 3,﹣ 4);∵点 A 的坐标(﹣ 5, 0),∴点 A 对于 y 轴对称的点D的坐标是( 5, 0);(3)由勾股定理求得, AB=2 , AC=4 ,BC=10,∴AB2+AC2=BC2,∴ AB⊥ AC,∴ S△ABC=AB? AC=× 2× 4=20;(4)∵ S△ADE=S△ABC,∴△ ADE与△ ABC的一条边的边长,和这条边上的高都相等,∵在该表格中,切合条件的点 E 由无数个;∴能知足S△ADE=S△ABC的点 E 有无数个;( 5)∵ AD=10,∴ S△ADF=AD? OF=20,∴ OF=4,∴点 F 的全部可能地点是(0,4)或( 0,﹣ 4);故答案是:(1)(﹣ 3, 4);(2)( 3,﹣ 4);( 5, 0);(3) 20;(4)无数.(每格 1 分)( 5)( 0, 4)或( 0,﹣ 4).( 2 分)例 2 解:(1)△ DEF为等腰三角形.( 2 分)(2)连结 BD交 EF于 M,∵ B、 D对于 EF对称,∴BM=DM, EM⊥BD,易证 EM=FM,∴E、 F 对于 M成中心对称, B、 D 对于 M成中心对称,又 M为 BD的中点,∴A、 C对于 M成中心对称,∴四边形AEFD与四边形CFEB对于 M成中心对称.( 6 分)(3)设 BE=OE=x,则 AE=9﹣x,222在直角三角形AED中,( 9﹣ x) +3 =x ,解得 x=5,EF=,(9 分)直线 EF 的分析式为y=﹣ 3x+15.( 12 分)例 3 解:( 1)①=72°,∴正五边形是旋转对称图形,它有一个旋转角为144°,说法正确;②=90°,∴长方形是旋转对称图形,它有一个旋转角为180°,说法正确;( 2)①正三角形的最小旋转角为=120°;②正方形的最小旋转角为=90°;③正六边形的最小旋转角为=60°;④正八边形的最小旋转角为=45°;则有一个旋转角为120°的是①③.( 3)=72°,则正五边形是知足有一个旋转角为 72°,是轴对称图形,但不是中心对称图形;正十边形有一个旋转角为 72°,既是轴对称图形,又是中心对称图形.例 4 解:( 1)经过图象察看和题意 EA、 HD、 GC、 FB分别是方砖 TPQR四边的中垂线,且四边形 HEFG是正方形就能够得出方砖 TPQR面上的图案是轴对称图形,又是中心对称图形.(2)设小沟槽 EA 的长是 xcm,则 EG的长度为 24﹣2x .∵四边形 HEFG是正方形,∴HE=HG,∠ GHE=90°,222∴ HE+HG=EG.∴ 2HE2=( 24﹣ 2x)2,2 2∴HE=2x ﹣ 48x+288.∵,∴,解得: x1=12+4(舍去),x2=12﹣4.∴EA=12﹣ 4 .故答案为: C.操练方阵A档(稳固专练)1、解:点M( 1, 2)对于原点的对称点M′的坐标为(﹣1,﹣ 2),故答案为:(﹣1,﹣ 2).2、解:以下图:∵点 A 与双曲线y=上的点B重合,点 B 的纵坐标是1,∴点 B 的横坐标是,∴ OB==2,∵ A 点可能在x 轴的正半轴也可能在负半轴,∴A 点坐标为:( 2,0),(﹣ 2,0).故答案为: 2 或﹣ 2.3、解:由平面直角坐标系可得A( 3,1),向下平移4 个单位后可得对应点的坐标为(3,﹣ 3),再将它绕原点O旋转 180°可得对应点坐标为 A′(﹣ 3, 3),故答案为:(﹣3, 3).4、解:点 P(5,﹣ 3)对于原点对称的点的坐标是(﹣5, 3).故答案为:(﹣5, 3).5、解:连结AD,∵将△ ABC绕点 P 旋转 180°获得△ DEF,∴点 A 旋转后与点D重合,∵由题意可知A( 0, 1), D(﹣ 2,﹣ 3)∴对应点到旋转中心的距离相等,∴线段 AD的中点坐标即为点P 的坐标,∴点 P 的坐标为(,),即P(﹣1,﹣1).故答案为:(﹣ 1,﹣ 1).6、解:①②当x 变成﹣ x 时, y 变成﹣ y,可见,( x,y)对应点为(﹣x,﹣ y),可见,函数图象是中心对称图形,不是轴对称图形,故②正确,①错误;③当 x> 0 时,函数图象有最低点,故函数有最小值,故本选项正确;④将点( 1, 4)代入分析式,等式建立,点(1,4)在函数图象上,故本选项正确:⑤当 x=1 和 x=3 时, y=4,可见, 0< x< 1 或 x>3 时, y> 4,故本选项错误;故答案为②③④.7、解:∵①此图形是中心对称图形,也是轴对称图形,故此选项正确;②此图形不是中心对称图形,可是轴对称图形,故此选项错误;③此图形不是中心对称图形,可是轴对称图形,故此选项错误;④此图形不是中心对称图形,也不是轴对称图形,故此选项错误.故答案为:①.8、解:∵ 2011÷ 3=670 1,第一次变换是各对应点对于x 轴对称,点 A 坐标是( a, b),∴经过第2011 次变换后所得的 A 点坐标是( a,﹣ b).故答案为( a,﹣ b).9、解:10、解:( 1)∵ A(﹣ 1, 5),∴点 A 对于原点O的对称点A′的坐标为( 1,﹣ 5).∵ B( 4, 2),∴点 B 对于 x 轴的对称点B′的坐标为( 4,﹣ 2).∵ C(﹣ 1,0),∴点 C 对于 y 轴的对称点C′的坐标为( 1, 0).故答案分别是:( 1,﹣ 5),(4,﹣ 2),( 1, 0).( 2)如图,∵ A′( 1,﹣ 5), B′( 4,﹣ 2),C′( 1,0).∴A′ C′ =| ﹣ 5﹣ 0|=5 , B′ D=|4 ﹣ 1|=3 ,∴ S△A′B′C′ =A′ C′ ? B′ D=× 5× 3=7.5 ,即( 1)中的△ A′ B′ C′的面积是7.5 .11、证明:∵△ABO与△ CDO对于 O点中心对称,∴OB=OD, OA=OC,∵ AF=CE,∴OF=OE,∵在△ DOF和△ BOE中∴△ DOF≌△ BOE( SAS),∴FD=BE.12、解:( 1)如图, B1、 C1、 D1的坐标分别为:B1(2,﹣ 1), C1( 4, 0), D1( 3, 2);( 2)依据勾股定理,AC1==,∴线段 AC1的长度与点D1的横坐标的差是﹣3,∴(﹣ 3)2+(﹣ 3) a+1=0,整理, 10﹣6+9+(﹣ 3) a+1=0,∴(﹣ 3) a=﹣ 20+6,解得 a=﹣ 2.故答案为:( 1) B1( 2,﹣ 1), C1( 4, 0), D1( 3, 2);( 2) a=﹣ 2.13、解:( 1)点 A 的坐标是(﹣ 2, 0),点 C 的坐标是( 1, 2).(2)连结 AC,在 Rt△ ACD中, AD=OA+OD=3, CD=2,22222∴ AC=CD+AD=2 +3 =13,∴AC=.14、解:( 1)依据图形,可得出 A 的坐标为(﹣ 1,2),C 的坐标为( 0,﹣ 1),故 AC的长等于=;( 2)依据图形,可得出 A 的坐标为(﹣ 1, 2),B 的坐标为( 3, 1),C的坐标为( 0,﹣ 1),将△ ABC向右平移2个单位获得△ A'B'C',则A点的对应点A' 的坐标是( 1, 2);(3)依据旋转的规律,把△ OAB的绕点 O按逆时针方向旋转 90°,就是把它上边的各个点按逆时针方向旋转90°,可得 A1的坐标为(﹣ 3,﹣ 2).15、解:( 1)点 C 、 C 的坐标分别为( 3﹣,﹣ 2)、(3﹣, 2).12( 2)能经过一次旋转将△ABC旋转到△ A2B2C2的地点,所旋转的度数为180°;( 3)①当△ ABC向上平移 2 个单位时,△ A B C 与△ A B C 完整重合,此时点 C的坐标为(﹣ 3+,0)(如111222图 1);②当α =180 时,△A1B1C1与△ A2B2C2完整重合,此时点 C 的坐标为(﹣ 3﹣,0)(如图 2).16、解:∵∠ AOB=90°, OA=3, OB=4,∴ AB===5,依据图形,每 3 个图形为一个循环组, 3+5+4=12,因此,图⑨的直角极点在x 轴上,横坐标为12× 3=36,因此,图⑨的极点坐标为(36,0),又∵图⑩的直角极点与图⑨的直角极点重合,∴图⑩的直角极点的坐标为( 36, 0).故答案为:(36, 0).17、解:( 1)延伸 FD到 G,使得 DG=DF,连结 BG、 EG.(或把△ CFD绕点 D逆时针旋转180°获得△ BGD),∴CF=BG=DF=DG,∵ DE⊥ DF,∴EF=EG.在△ BEG中, BE+BG> EG,即 BE+CF> EF.(2)若∠ A=90°,则∠ EBC+∠ FCB=90°,由( 1)知∠ FCD=∠ DBG, EF=EG,∴∠ EBC+∠DBG=90°,即∠ EBG=90°,222∴在 Rt △ EBG中, BE+BG=EG,∴BE2+CF2=EF2.18、解:( 1)研究一:∵点 A( 3, 1),连结 OA,平移线段OA,使点 O落在点 B.设点 A 落在点 C,若点 B 的坐标为( 1, 2),则 C 的坐标为( 4, 3),如图 1 所示:研究二:∵将线段OA绕点 O逆时针旋转90 度,设点 A 落在点 D.则点 D 的坐标是(﹣ 1, 3),如图 2 所示;( 2)∵四点O( 0,0), A(a, b), C, B( c,d),按序连结O, A, C, B.①若所获得的四边形为平行四边形,那么 OA∥ CB,∴ OA平移到 OB的地点,点 C 的坐标为( a+c, b+d);②若所获得的四边形是正方形,那么依据正方形的性质能够获得a=d 且b=﹣ c或b=c 且a=﹣ d.19、解: P1(1, 0);倍,∵等边△OAP的高为边长的∴ P3(,);∵从 P1开始,依据图形的旋转可得每三次翻转后和本来的状态同样,∴100=3× 33+1,∴P100的纵坐标为 0,横坐标为 100,∴P100(100, 0);∵2007=3×669,∴ P2007的纵坐标为,横坐标 =2005+1.5=2006.5 .∴ P(2006.5 ,).200720、解:( 1)∵矩形 COAB绕点 C 顺时针旋转60 度的角,获得矩形CFED,∴∠ BCD=60°, CB=CD,∴△ CBD为等边三角形;(2)∵ A(0, 4)、 C( 8,0),∴ OA=BC=4, OC=AB=8,设 AH=HC=x,则 BH=8﹣ x, CB=4,在 Rt △ CBH中,222∵ CH=BH+BC,∴x2=( 8﹣ x)2+42,解得 x=5,∴H 点的坐标为( 5, 4),设直线 FC的分析式为 y=kx+b ,把 C( 8, 0)、 H( 5, 4)代入得,解得,∴直线 FC的分析式为.。
九年级图形的旋转中心对称题型大全(含解答)

弧长和扇形面积 练习第1题. 一条弧所对的圆心角是90 ,半径是R ,则这条弧的长是.答案:12R π第2题. 若的长为所 AB 对的圆的直径长,则所对的圆 AB 周角的度数为.答案:180π第3题. 如图,AB 是半圆的直O 径,以O 为圆心,OE 为半径的半圆交AB 于E ,F 两点,弦是小半圆AC 的切线,D 为切点,若4OA =,2OE =,则图中阴影部分的面积为.答案:43π+第4题. 如果一条弧长等于l ,它的半径等于R ,这条弧所对的圆心角增加1,则它的弧长增加( ) A.ln B.180Rπ C.180lRπ D.360l答案:B第5题. 在半径为3的O 中,弦3AB =,则AB 的长为( )A.π2B.πC.32π D.2π答案:B第6题. 扇形的周长为16,圆心角为360π,则扇形的面积是()A.16 B.32C.64D.16π答案:A第7题. 如图,扇形的圆心OAB 角为90 ,且半径为R ,分别以OA ,OB 为直径在扇形内作半圆,P 和分别表示Q 两个阴影部分的面积,那么和的大P Q 小关系是()A.P Q = B.P Q >C.P Q <D.无法确定答案:A第8题. 如图,矩形ABCD 中,1AB =,BC =,以的中点为BC E 圆心的与相 MPNAD 切,则图中的阴影部分的面积为() A.23π B.34πC.D.π3M答案:D第9题. 如图所示,正方形是以ABCD 金属丝围成的,其边长1AB =,把此正方形的金属丝重新围成扇形的ADC ,使A D A D=,DC DC =不变,问正方形面积与扇形面积谁大?大多少?由计算得出结果.答案:1S =正方形,121122ADC S lR 1==⨯⨯=扇形,∴面积没有变化.第10题. 如图,O 的半径为1,C 为O 上一点,以C 为圆心,以1为半径作弧与相交O 于A ,B 两点,则图中阴影部分的面积为.CAD答案:2π3第11题. 如图,△ABC 中,105A ∠= ,45B ∠=,AB =AD BC ⊥,D 为垂足,以A 为圆心,以为半径画AD 弧 EF ,则图中阴影部分的面积为()A.76πB.76π+2C.56πD.56π+2答案:B第12题. 如图,半径为的与r 1O 半径为的外3r 2O 切于P 点,AB 是两圆的外公切线,切点分别为A ,B ,求AB 和 PA , PB 所围成的阴影部分的面积.答案:连结2O B ,1O A ,过1O 作12O H O B ⊥,垂足为H ,则得矩形1ABHO ,1BH O A r ∴==,1AB O H =.在Rt △21O HO 中,2232O H O B BH r r r =-=-=,CDBE AF122134OO O P O P r r r=+=+=,1O H ==, 2211221cos 42O H r HO O O O r ∠===,2160HO O ∴∠= ,1120AO P ∠= .21212111()(3)22ABO O S O A O B O H r r =+=+= 梯形, 26033606BO PO B r r S 222π()π(3)π===2 2扇形, 122120AO PO A S r π()π==3603扇形、,212122223ABO O BO P AO P S S S S r r ππ=--=--=23阴影梯形扇形扇形.第13题. 圆周角是90,占整个周角的90360,因此它所对的弧长是圆周长的 . 答案:14第14题. 圆心角是45,占整个周角的 ,因此它所对的弧长是圆周长的 . 答案:45360,18第15题. 圆心角是1,占整个周角的 ,因此它所对的弧长是圆周长的 . 答案:1360,1360第16题. 扇形的圆心角为210,弧长是28π,求扇形的面积.答案:336π第17题. 一个扇形的半径等于一个圆的半径的2倍,且面积相等.求这个扇形的圆心角.答案:90第18题. 一服装厂里有大量形状为等腰直角三角形的边角布料(如图),现找出其中的一种,测得90C ∠= ,4AC BC ==.今要从这种三角形中剪出一种扇形,做成不同形状的玩具,使扇形的边缘半径恰好都在的边上ABC △,且扇形的弧与的其他边ABC △相切,请设计出所有可能符合题意的方案示意图,并求出扇形的半径(只要求画出图形,并直接写出扇形半径). 答案:第19题. 圆心角为90,半径为的弧R 长为( ) A.2R πB.3R πC.4R πD.6R π答案:A第20题. 已知一条弧长为l ,它所对圆心角的度数为n,则这条弦所在圆的半径为(42r =24r =1r =).A.180n lπ B.180ln πC.360ln πD.180lnπ答案:B第21题. 半径为的圆6cm 中,60 的圆周角所对的弧的弧长为.答案:4cm π第22题. 半径为的圆9cm 中,长为的一条12cm π弧所对的圆心角的度数为.答案:240第23题. 已知圆的面积为281c m π,若其圆周上一段弧长为3cm π,则这段弧所对的圆心角的度数为 .答案:60第24题. 若扇形的圆心角为120,弧长为6cm π,则这个扇形的面积为 .答案:227cm π第25题. 弯制管道时,先按中心线计算其“展直长度”,再下料.根据如图所示的图形可算得管道的展直长度为.(单位:m m ,精确到1mm )答案:389mm第26题. 如图,在Rt △ABC 中,90C ∠= ,60A ∠=,AC =,将△ABC 绕点旋转至B △A BC ''的位置,且使点A ,B ,C '三点在同一直线上,则点经过的A 最短路线长是cm .答案:3π第27题. 一块等边三角形的木板,边长为1,若将木板沿水平线翻滚(如图),则点从开始B 至结束走过的路径长度为().A.3π2B.4π3C.4D.322+π答案:B第28题. 如图,扇形的圆心AOB 角为60 ,半径为6cm ,C ,D 是的三等分 AB 点,则图中阴影部分的面积和是 .答案:22cm π第29题. 如图,已知在扇形AOB 中,若45AOB ∠=,4cm AD =,3cm CD =π,则图中阴影部分的面积是 .答案:214cm π第30题. 如图4,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为 .答案:14.2π.图4图形的旋转有疑问的题目请发在“51加速度学习网”上,让我们来为你解答51加速度学习网整理一、本节学习指导本节我们重点了解旋转、平移性质,除外还有一个重点是点的对称变换。
【中考专项】2023年中考数学转向练习之选择题04 几何变换之旋转问题

【选择题】必考重点04 几何变换之旋转问题几何变换中的旋转问题,江苏省各地考查频率较高且考查难度较高,综合性较强,通常有线段的旋转、三角形及四边形的旋转问题,在解决此类问题时,要牢牢把握旋转的性质,即旋转前后的图形全等,对应角相等,对应边相等,结合几何图形本身的性质,找到旋转过程中变化的量和不变的量,运用三角形全等或相似的有关知识,求解有关角、线段及面积问题。
0,2,点B是x轴正半轴上的一点,将线段AB绕点A 【2022·江苏苏州·中考母题】如图,点A的坐标为()m,则m的值为()按逆时针方向旋转60°得到线段AC.若点C的坐标为(),3A B C D.3【考点分析】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度.【思路分析】过C作CD⊥x轴于D,CE⊥y轴于E,根据将线段AB绕点A按逆时针方向旋转60°得到线段AC,可得△ABC是等边三角形,又A(0,2),C(m,3),即得AC BC AB==,可得=,即可解得BD OB mm =. 【2022·江苏扬州·中考母题】如图,在ABC ∆中,AB AC <,将ABC 以点A 为中心逆时针旋转得到ADE ,点D 在BC 边上,DE 交AC 于点F .下列结论:①AFE DFC △△;②DA 平分BDE ∠;③CDF BAD ∠=∠,其中所有正确结论的序号是( )A .①②B .②③C .①③D .①②③ 【考点分析】本题考查了性质的性质,等边对等角,相似三角形的性质判定与性质,全等三角形的性质,掌握以上知识是解题的关键.【思路分析】根据旋转的性质可得对应角相等,对应边相等,进而逐项分析判断即可求解.【2020·江苏宿迁·中考母题】如图,在平面直角坐标系中,Q 是直线y=﹣12x+2上的一个动点,将Q 绕点P(1,0)顺时针旋转90°,得到点Q ',连接OQ ',则OQ '的最小值为( )A B C D 【考点分析】本题考查了一次函数图象上点的坐标特征,一次函数的性质,三角形全等的判定和性质,坐标与图形的变换-旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键.【思路分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.1.(2022·江苏·九年级专题练习)如图将△ABC 绕点C 逆时针旋转得到△A ’B ’C ,点B 恰好落在A ’B ’上,若∠A =25°,∠BCA ’=45°,则∠A ’CA = ( )A.30°B.35°C.40°D.45°2.(2022·江苏泰州·九年级专题练习)在正方形ABCD中,AB=8,若点E在对角线AC上运动,将线段DE绕点D逆时针旋转90°得到线段DF,连接EF、CF.点P在CD上,且CP=3PD.给出以下几个结论①222=+,②EF=,③线段PF的最小值是CFE的面积最大是16.其中EF AE CE正确的是()A.①②④B.②③④C.①②③D.①③④3.(2022·江苏苏州·一模)如图,直角三角形ACB中,两条直角边AC=8,BC=6,将△ACB绕着AC中点M旋转一定角度,得到△DFE,点F正好落在AB边上,DE和AB交于点G,则AG的长为()A.1.4B.1.8C.1.2D.1.64.(2022·江苏徐州·二模)如图,△ABC中,∠ABC=45°,BC=8,tan∠ACB=3,AD⊥BC于D,若将△ADC绕点D逆时针方向旋转得到△FDE,当点E恰好落在AC上,连接AF.则AF的长为()A B C .D .45.(2022·江苏盐城·一模)如图,在AOB 中,2AO =,3BO AB ==.将AOB 绕点O 逆时针方向旋转90°,得到A OB ''△,连接AA '.则线段AA '的长为( )A.2 B .3 C .D .6.(2022·江苏·宜兴外国语学校一模)如图,在矩形ABCD 中,AB =3,BC =4,P 是对角线AC 上的动点,连接DP ,将直线DP 绕点P 顺时针旋转使∠DPE =∠DAC ,且过D 作DE ⊥PE ,连接CE ,则CE 最小值为( )A .65B .3625C .3225D .857.(2022·江苏扬州·模拟)如图,将矩形ABCD 绕点B 按顺时针方向旋转一定角度得到矩形A B C D ''''.此时点A 的对应点A '恰好落在对角线AC 的中点处.若AB =3,则点B 与点D 之间的距离为( )A.3B.6C.D.8.(2022·江苏·九年级专题练习)如图所示,已知ABC是等边三角形,点D是BC边上一个动点(点D不与,B C重合),将ADC绕点A顺时针旋转一定角度后得到AFB△,过点F作BC的平行线交AC于点E,②为等边三角形;③四边形BCEF为平行四边形;连接DF,下列四个结论中:①旋转角为60︒;ADF=④.其中正确的结论有()BF AEA.1B.2C.3D.49.(2022·江苏南京·模拟)如图,在Rt ABC中,∠ACB=90°,BC=2,∠BAC=30°,将ABC绕顶点C逆时针旋转得到△A'B'C',M是BC的中点,P是A'B'的中点,连接PM,则线段PM的最大值是()A.4B.2C.3D.10.(2022·江苏苏州·二模)如图,将ABC绕点A顺时针旋转角α,得到ADE,若点E恰好在CB的延长线上,则BED∠等于()A .2αB .23αC .αD .180α︒-11.(2022·江苏·阳山中学一模)如图,在△ABC 中,∠BAC =45°,AC =8,动点E 从点A 出发沿射线AB 运动,连接CE ,将CE 绕点C 顺时针旋转45°得到CF ,连接AF ,则△AFC 的面积变化情况是( ).A .先变大再变小B .先变小再变大C .逐渐变大D .不变12.(2022·江苏·南通市启秀中学九年级阶段练习)如图,点E 是正方形ABCD 的边DC 上一点,把ADE ∆绕点A 顺时针旋转90︒到ABF ∆的位置.若四边形AECF 的面积为20,DE=2,则AE 的长为( )A .4B .C .6D .13.(2022·江苏·九年级专题练习)如图1,在Rt ABC 中,AC BC =,90C ∠=︒,点D 为AB 边的中点,90EDF ∠=︒,将EDF ∠绕点D 旋转,它的两边分别交AC 、CB 所在直线于点E 、F ,有以下4个结论:①CE BF =;②180DEC DFC ∠+∠=︒;③222EF DE =;④如图2,当点E 、F 落在AC 、CB 的延长线上时,12DEF CEF ABC S S S -=△△△,在旋转的过程中上述结论一定成立的是( )A .①②B .②③C .①②③D .①③④14.(2022·江苏扬州·三模)如图,已知正方形ABCD 的边长为4,点E 是AB 边上一动点,连接ED ,将ED 绕点E 顺时针旋转90°到EF ,连接DF ,CF ,则DF +CF 的最小值是( )A .B .C .D .15.(2022·江苏南京·一模)在平面直角坐标系中,点A 的坐标是()2,3-,将点A 绕点C 顺时针旋转90°得到点B .若点B 的坐标是()5,1-,则点C 的坐标是( )A .()0.5, 2.5--B .()0.25,2--C .()0, 1.75-D .()0, 2.75-16.(2022·江苏南京·模拟)如图,在Rt ABC 中,AB =AC =10,∠BAC =90°,等腰直角三角形ADE 绕点A 旋转,∠DAE =90°,AD =AE =4,连接DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,连接MP 、PN 、MN.①PMN 为等腰直角三角形;②MN ≤PMV 面积的最大值是494;④PMN 周长的最小值为6+ )A.4个B.3个C.2个D.1个17.(2022·江苏无锡·一模)如图,已知直线AB与y轴交于点(0,A,与x轴的负半轴交于点B,且∠ABO=60°,在x轴正半轴上有一点C,点C坐标为()1,0,将线段AC绕点A逆时针旋转120°,得线段AD,连接BD.则BD的长度为()A.B.4C D.15 218.(2022·江苏·无锡市积余实验学校一模)如图1,在Rt△ABC中,90A∠=︒,AB AC=,点D,E分别在边AB,AC上,AD AE=,连接DC,点M、P、N分别为DE、DC、BC的中点.将△ADE绕点A在平面内自由旋转(如图2),若4=AD,10AB=,则△PMN面积的最大值是()A.494B.18C.492D.25219.(2022·江苏·无锡市天一实验学校一模)如图,扇形OAB中,90AOB∠=︒,将扇形OAB绕点B逆时针旋转,得到扇形BDC,若点O刚好落在弧AB上的点D处,则ADAC的值为()A B C D 20.(2022·江苏·苏州市平江中学校二模)如图,在BAC 中,90BAC ∠=︒,2AB AC =,将BAC 绕点A 顺时针旋转至DAE △,点D 刚好落在BC 直线上,则BDE 的面积为( )A .24BD B .22BC C .4BC BD ⋅ D .22AB 21.(2022·江苏·淮安市浦东实验中学九年级开学考试)如图,直线1y x =+与x 轴、y 轴分别相交于点A 、B ,过点B 作BC AB ⊥,使2BC BA =.将 ABC ∆绕点O 顺时针旋转,每次旋转90︒.则第2022次旋转结束时,点C 的对应点C '落在反比例函数k y x=的图象上,则k 的值为( )A .4-B .4C .6-D .622.(2022·江苏无锡·九年级期末)如图,在Rt △ABC 中,90BAC ∠=︒,6AB AC ==,点D 、E 分别是AB 、AC 的中点.将△ADE 绕点A 顺时针旋转60°,射线BD 与射线CE 交于点P ,在这个旋转过程中有下列结论:①△AEC ≌△ADB ;②CP 存在最大值为3+BP 存在最小值为3;④点P 运动的路.其中,正确的( )A .①②③B .①②④C .①③④D .②③④23.(2022·江苏无锡·模拟)如图,在正方形ABCD 中,6AB =,点H 为BC 中点,点E 绕着点C 旋转,且4CE =,在DC 的右侧作正方形DEFG ,则线段FH 的最小值是( )A .9-B .8- C .9-D .10-24.(2022·江苏·常州市金坛区水北中学二模)如图,在矩形ABCD 中,5AB =,BC =P 在线段BC 上运动(含B 、C 两点),连接AP ,以点A 为中心,将线段AP 逆时针旋转60°到AQ ,连接DQ ,则线段DQ 的最小值为( )A .52B .CD .325.(2022·江苏南京·模拟)如图,在ABC ∆中,5,AB AC BC ===,D 为边AC 上一动点(C 点除外),把线段BD 绕着点D 沿着顺时针的方向旋转90°至DE ,连接CE ,则CDE ∆面积的最大值为( )A .16B .8C .32D .10【选择题】必考重点04 几何变换之旋转问题几何变换中的旋转问题,江苏省各地考查频率较高且考查难度较高,综合性较强,通常有线段的旋转、三角形及四边形的旋转问题,在解决此类问题时,要牢牢把握旋转的性质,即旋转前后的图形全等,对应角相等,对应边相等,结合几何图形本身的性质,找到旋转过程中变化的量和不变的量,运用三角形全等或相似的有关知识,求解有关角、线段及面积问题。
核心考点01图形的旋转与中心对称 (解析版)

核心考点01图形的旋转与中心对称目录考点一:生活中的旋转现象考点二:旋转的性质考点三:旋转对称图形考点四:中心对称考点五:中心对称图形考点六:作图-旋转变换一.生活中的旋转现象(1)旋转的定义:在平面内,把一个图形绕着某一个点O 旋转一个角度的图形变换叫做旋转.点O 叫做旋转中心,转动的角叫做旋转角,如果图形上的点P 经过旋转变为点P ′,那么这两个点叫做对应点.(2)注意:①旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.②旋转中心是点而不是线,旋转必须指出旋转方向. ③旋转的范围是平面内的旋转,否则有可能旋转成立体图形,因而要注意此点. .二.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心; ②旋转方向; ③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.三.旋转对称图形(1)旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.(2)常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.考点考向四.中心对称(1)中心对称的定义把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点..(2)中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.五.中心对称图形(1)定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.(2)常见的中心对称图形平行四边形、圆形、正方形、长方形等等.六.作图-旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.一.生活中的旋转现象(共1小题)1.(2022春•泰州月考)下列图案中,可以由一个“基本图案”连续旋转45°得到的是( )A .B .C .D .【分析】因为45°×8=360°,整个图形应由8个基本图形组成.【解答】解:根据旋转的性质可知,可以由一个“基本图案”连续旋转45°,考点精讲即经过8次旋转得到的是B.故选:B.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.二.旋转的性质(共11小题)2.(2022春•姑苏区校级月考)如图,在正方形网格中,△EFG绕某一点旋转某一角度得到△RPQ.则旋转中心可能是( )A.点A B.点B C.点C D.点D【分析】连接ER、FP、GQ,作FP的垂直平分线,作ER的垂直平分线,作GQ的垂直平分线,交点为旋转中心.【解答】解:如图,∵△EFG绕某一点旋转某一角度得到△RPQ,∴连接ER、FP、GQ,作FP的垂直平分线,作ER的垂直平分线,作GQ的垂直平分线,∴三条线段的垂直平分线正好都过C,即旋转中心是C.故选:C.【点评】本题考查了学生的理解能力和观察图形的能力,注意:旋转时,对应顶点到旋转中心的距离应相等且旋转角也相等,对称中心在连接对应点线段的垂直平分线上.3.(2022春•梁溪区校级期中)如图,将△AOB绕点O按逆时针方向旋转50°后得到△A'OB',若∠AOB=15°,则∠AOB'的度数是 35° .【分析】根据旋转的性质可知,旋转角等于60°,从而可以得到∠BOB′的度数,由∠AOB=15°可以得到∠AOB′的度数.【解答】解:∵△AOB绕点O按逆时针方向旋转50°后得到△A′OB′,∴∠BOB′=50°.∵∠AOB=15°,∴∠AOB′=∠BOB′﹣∠AOB=50°﹣15°=35°.故答案为:35°.【点评】本题考查旋转的性质,解题的关键明确旋转角是什么,对应边旋转前后的夹角是旋转角.4.(2022春•邗江区校级月考)如图,△ABC绕着顶点A逆时针旋转到△ADE,∠B=40°,∠E=60°,AB∥DE,求∠DAC的度数.【分析】根据旋转的性质得∠C=∠E=60°,∠D=∠B=40°,再根据平行线的性质的∠BAD=∠D=40°,从而得出答案.【解答】解:∵△ABC绕着顶点A逆时针旋转到△ADE,∴△ABC≌△ADE,∴∠C=∠E=60°,∠D=∠B=40°,∵∠B=40°,∴∠BAC=180°﹣40°﹣60°=80°,∵AB∥DE,∴∠BAD=∠D=40°,∴∠DAC=∠BAC﹣∠BAD=80°﹣40°=40°,∴∠DAC的度数为40°.【点评】本题主要考查了旋转的性质,平行线的性质,三角形内角和定理等知识,熟练掌握旋转的性质是解题的关键.5.(2022春•沭阳县月考)如图,在四边形ABCD中,AB∥CD,BC⊥CD,垂足为点C,E是AD的中点,连接BE并延长交CD的延长线于点F.(1)图中△EFD可以由△ EBA 绕着点 E 旋转 180 度后得到;(2)写出图中的一对全等三角形 △EBA≌△EFD ;(3)若AB=4,BC=5,CD=6.求△BCF的面积.【分析】(1)由已知条件可证明△EBA≌△EFD,所以△EFD可以由△EBA绕点E旋转180°后得到;(2)由(1)可得出答案;(3)由(1)可知△EBA≌△EFD,所以求△BCF的面积可转化为求梯形ABCD的面积,根据梯形的面积公式计算即可.【解答】解:(1)∵AB∥CD,∴∠ABE=∠F,∠A=∠FDE,∵E是AD的中点,∴AE=CE,在△EBA和△EFD中,,∴△EBA≌△EFD(AAS),∴△EFD可以由△EBA绕点E旋转180°后得到,故答案为:EBA,E,180°;(2)由(1)可知△EBA ≌△EFD ,故答案为:△EBA ≌△EFD ;(3)∵△EBA ≌△EFD ,∴S △BCF =S 梯形ABCD ==25.【点评】本题考查了全等三角形的判定、梯形的面积公式,旋转的性质,熟练掌握旋转的性质是解题的关键.6.(2022春•沭阳县月考)如图,点O 是等边三角形ABC 内的一点,∠BOC =150°,将△BOC 绕点C 按顺时针旋转得到△ADC ,连接OD ,OA .(Ⅰ)求∠ODC 的度数;(Ⅱ)若OB =2,OC =3,求AO 的长.【分析】(Ⅰ)根据旋转的性质得到三角形ODC 为等边三角形即可求解;(Ⅱ)在Rt △AOD 中,由勾股定理可求得AO 的长,再在直角△AOD 中利用三角函数的定义即可求解.【解答】解:(Ⅰ)由旋转的性质得,CD =CO ,∠ACD =∠BCO ,∵∠ACB =60°,∴∠DCO =60°,∴△OCD 为等边三角形,∴∠ODC =60°;(Ⅱ)由旋转的性质得,AD =OB =2,∵△OCD 为等边三角形,∴OD =OC =3,∵∠BOC =150°,∠ODC =60°,∴∠ADO =90°,在Rt △AOD 中,由勾股定理得:AO ==.【点评】本题主要考查了旋转的性质以及三角函数的定义,正确求得AO的长是解题的关键.7.(2022春•铜山区校级月考)如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边三角形BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,若AB=5,AC=3,求:(1)∠BAD的度数;(2)AD的长.【分析】(1)由旋转的性质可得AD=DE,BC=CD,AB=CE,∠ADE=∠BDC=60°,∠ABD=∠DCE,可证△ADE是等边三角形,可得∠DAE=60°,AD=AE,即可求解;(2)由等边三角形的性质可求AD=AE的长.【解答】解:(1)∵把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴AD=DE,BC=CD,AB=CE,∠ADE=∠BDC=60°,∠ABD=∠DCE,∵∠BAC+∠BDC=180°,∴∠ABD+∠ACD=180°,∴∠ACD+∠DCE=180°,∴点A,点C,点E三点共线,又∵AD=DE,∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAD=60°;(2)∵AB=5=CE,AC=3,∴AE=AC+CE=8,∴AD=AE=8.【点评】本题考查了旋转的性质,全等三角形的性质,等边三角形的判定和性质,证明点A,点C,点E三点共线是解题的关键.8.(2022春•东海县期末)如图,用四根木条钉成矩形框ABCD,把边BC固定在地面上,向右推动矩形框,矩形框的形状会发生改变(四边形具有不稳定性).(1)通过操作观察可知,线段EB由AB旋转得到,所以EB=AB.同理可得FC=CD,EF= AD ;(2)进一步观察,我们还会发现EF∥AD,请证明这一结论;(3)已知BC=30cm,DC=80cm,若BE恰好经过原矩形DC边的中点H,求此时四边形BCFE的面积.【分析】(1)由推动矩形框时,矩形ABCD的各边的长度没有改变,可求解;(2)通过证明四边形BEFC是平行四边形,可得结论;(3)由勾股定理可求BH的长,由面积法可求CG的长,即可求解.【解答】(1)解:∵把边BC固定在地面上,向右边推动矩形框,矩形的形状会发生改变,∴矩形ABCD的各边的长度没有改变,∴AB=BE,EF=AD,CF=CD,故答案为:AD;(2)证明:∵四边形ABCD是矩形,∴AD∥BC,AB=CD,AD=BC,∵AB=BE,EF=AD,CF=CD,∴BE=CF,EF=BC,∴四边形BEFC是平行四边形,∴EF∥BC,∴EF∥AD;(3)解:如图,过点C作CG⊥BE于G,∵DC=AB=BE=80cm,点H是CD的中点,∴CH=DH=40cm,在Rt△BHC中,BH===50(cm),=×BC×CH=×BH×CG,∵S△BCH∴30×40=50×CG,∴CG=24,∴四边形BCFE的面积=BE×CG=80×24=1920(cm2).【点评】本题考查了旋转的性质,矩形的性质,平行四边形的判定和性质,勾股定理,相似三角形的判定和性质等知识,灵活运用这些性质解决问题是解题的关键.9.(2022•溧阳市模拟)已知:如图,将△ABC绕点C旋转一定角度得到△EDC,若∠ACE=2∠ACB.(1)求证:△ADC≌△ABC;(2)若AB=BC=5,AC=6,求四边形ABCD的面积.【分析】(1)根据旋转的性质得到∠ACB=∠DCE,BC=CD,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AB=AD,推出四边形ABCD是菱形,根据菱形的性质得到AC⊥BD,设AC,BD交于O,根据勾股定理得到BO===4,求得BD=8,根据菱形的面积公式即可得到结论.【解答】(1)证明:∵将△ABC绕点C旋转一定角度得到△EDC,∴∠ACB=∠DCE,BC=CD,∵∠ACE=2∠ACB,∴∠ACE=2∠DCE,∴∠ACD=∠DCE=∠ACB,在△ADC与△ABC中,,∴△ADC≌△ABC(SAS);(2)解:由(1)知,△ADC≌△ABC,∴AB=AD,∵AB=BC,BC=CD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴AC⊥BD,设AC,BD交于O,∴AO=AC=3,∴BO===4,∴BD=8,∴四边形ABCD的面积=AC•BD=6×8=24.【点评】本题考查了旋转的性质全等三角形的判定和性质,菱形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.10.(2022春•滨海县月考)如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,连接OD,OA.(1)求∠ODC的度数;(2)试判断AD与OD的位置关系,并说明理由;(3)若OB=2,OC=3,求AO的长(直接写出结果).【分析】(1)根据旋转的性质得到三角形ODC为等边三角形即可求解;(2)将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,可知∠ADC=∠BOC=150°,即得∠ADO=∠ADC﹣∠ODC=90°,故AD⊥OD;(3)在Rt△AOD中,由勾股定理即可求得AO的长.【解答】解:(1)由旋转的性质得,CD=CO,∠ACD=∠BCO,∴∠ACD+∠ACO=∠BCO+∠ACO,即∠DCO=∠ACB,∵三角形ABC是等边三角形,∴∠ACB=60°,∴∠DCO=60°,∴△OCD为等边三角形,∴∠ODC=60°;(2)AD与OD的位置关系是:AD⊥OD,理由如下:由(1)知∠ODC=60°,∵将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,∴∠ADC=∠BOC=150°,∴∠ADO=∠ADC﹣∠ODC=90°,∴AD⊥OD;(3)由旋转的性质得,AD=OB=2,∵△OCD为等边三角形,∴OD=OC=3,在Rt△AOD中,由勾股定理得:AO===.【点评】本题考查等边三角形中的旋转变换,涉及直角三角形判定、勾股定理等知识,解题的关键是掌握旋转的性质,旋转不改变图形的大小和形状.11.(2022春•相城区校级期末)如图,在△ABC中,∠BAC=50°,将△ABC绕点A按逆时针方向旋转后得△AB1C1.当B1B∥AC时,求∠BAC1的度数.【分析】先依据平行的性质可求得∠ABB1的度数,然后再由旋转的性质得到△AB1B为等腰三角形,∠B1AC1=50°,再求得∠BAB1的度数,最后依据∠BAC1=∠BAB1﹣∠C1AB1求解即可.【解答】解:∵B1B∥AC,∴∠ABB1=∠BAC=50°.∵由旋转的性质可知:∠B1AC1=∠BAC=50°,AB=AB1.∴∠ABB1=∠AB1B=50°.∴∠BAB1=80°∴∠BAC1=∠BAB1﹣∠C1AB1=80°﹣50°=30°.【点评】本题主要考查的是旋转的性质、平行线的判断,求得∠BAB1的度数是解题的关键.12.(2022春•南京期中)已知:如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边三角形BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,且A、C、E三点共线,若AB=3,AC=2,求∠BAD的度数与AD的长.【分析】由旋转的性质可得出∠ADE=60°、DA=DE,进而可得出△ADE为等边三角形以及∠DAE=60°,由点A、C、E在一条直线上可得出∠BAD=∠BAC﹣∠DAE=60°;由点A、C、E在一条直线上可得出AE=AC+CE,根据旋转的性质可得出CE=AB,结合AB=3、AC=2可得出AE的长度,再根据等边三角形的性质即可得出AD的长度.【解答】解:∵△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴∠ADE=60°,DA=DE,∴△ADE为等边三角形,∴∠DAE=60°.∵点A、C、E在一条直线上,∴∠BAD=∠BAC﹣∠DAE=120°﹣60°=60°.∵点A、C、E在一条直线上,∴AE=AC+CE.∵△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴CE=AB,∴AE=AC+AB=2+3=5.∵△ADE为等边三角形,∴AD=AE=5.【点评】本题考查了旋转的性质以及等边三角形的判定与性质,根据旋转的性质结合旋转角度为60°找出△ADE为等边三角形是解题的关键.三.旋转对称图形(共3小题)13.(2022春•东台市月考)正方形至少旋转 90 度才能与自身重合.【分析】正方形可以被其对角线平分成4个全等的部分,则旋转的角度即可确定.【解答】解:正方形可以被其对角线平分成4个全等的部分,则旋转至少360÷4=90度,能够与本身重合.故答案为:90.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.注意基础概念的熟练掌握.14.(2022春•常州期末)如图,用六个全等的等边三角形可以拼成一个六边形,三角形的公共顶点为O,则该六边形绕点O至少旋转 60 °后能与原来的图形重合.【分析】根据旋转角及旋转对称图形的定义作答.【解答】解:∵360°÷6=60°,∴该六边形绕中心至少旋转60度后能和原来的图案互相重合.故答案为:60.【点评】本题考查了旋转角的定义及求法,对应点与旋转中心所连线段的夹角叫做旋转角.15.(2022春•洪泽区校级月考)等边三角形绕一点至少旋转 120 °与自身完全重合.【分析】等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,求旋转角即可.【解答】解:因为等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,所以,旋转角为360°÷3=120°,故至少旋转120度才能与自身重合.故答案为:120.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.四.中心对称(共5小题)16.(2022春•张家港市校级月考)如图,菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,将△BOC绕着点C旋转180°得到△BOC,则点A与点B'之间的距离为( )A.6B.8C.10D.12【分析】根据菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,可得AC⊥BD,所以∠BOC=90°,根据△BOC绕着点C旋转180°得到△B′O′C,所以∠CO′B′=∠BOC=90°,AO′=6,OB′=8,再根据勾股定理即可求出点A与点B′之间的距离.【解答】解:∵菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,∴AC⊥BD,∴∠BOC=90°,∵△BOC绕着点C旋转180°得到△B′O′C,∴∠CO′B′=∠BOC=90°,∴O′C=OC=OA=AC=2,∴AO′=6,∵OB=OD=O′B′=BD=8,在Rt△AO′B′中,根据勾股定理,得:AB′===10.则点A与点B′之间的距离为10.故选:C.【点评】本题考查了中心对称、旋转的性质,菱形的性质,勾股定理等知识,解决本题的关键是掌握旋转的性质.17.(2022春•相城区校级期中)如图,菱形ABCD的对角线AC、BD交于点O,将△BOC绕着点C旋转180°得到△B'O'C,若AC=2,AB′=5,则菱形ABCD的边长是( )A.3B.4C.D.【分析】根据菱形的性质、旋转的性质,得到OA=OC=O'C=1、OB⊥OC、O'B'⊥O'C、BC=B′C,根据AB′=5,利用勾股定理计算O'B',再次利用勾股定理计算B'C即可.【解答】解:∵四边形ABCD是菱形,且△BOC绕着点C旋转180°得到△B'O'C,AC=2,∴OA=OC=O'C=1,OB⊥OC,BC=B′C,∴O'B'⊥O'C,O'A=AC+O'C=2+1=3,∵AB′=5,∴,∴,∴,即菱形ABCD的边长是,故选:D.【点评】本题考查了菱形的性质、旋转的性质以及勾股定理等知识,熟练掌握菱形的基本性质并灵活运用勾股定理是解题的关键.18.(2022春•涟水县校级月考)如图,在平面直角坐标系xOy中,△ABC经过中心对称变换得到△A′B′C′,那么对称中心的坐标为( )A.(0,0)B.(﹣1,0)C.(﹣1,﹣1)D.(0,﹣1)【分析】根据点A与点A'关于(﹣1,0)对称,点B与点B'关于(﹣1,0)对称,点C与点C′关于(﹣1,0)对称,得出△ABC与△A′B′C′关于点(﹣1,0)成中心对称.【解答】解:由图可知,点A与点A'关于(﹣1,0)对称,点B与点B'关于(﹣1,0)对称,点C与点C′关于(﹣1,0)对称,所以△ABC与△A′B′C′关于点(﹣1,0)成中心对称,故选:B.【点评】本题考查了坐标与图形变化﹣旋转,准确识图,观察出两三角形成中心对称,对称中心是(﹣1,0)是解题的关键.19.(2022春•江阴市校级月考)平面直角坐标系中,点P(3,﹣2)关于点Q(1,0)成中心对称的点的坐标是 (﹣1,2) .【分析】连接PQ并延长到点P′,使P′Q=PQ,设P′(x,y),则x<0,y>0.过P作PM⊥x轴于点M,过P′作PN⊥x轴于点N.利用AAS证明△QP′N≌△QPM,得出QN=QM,P′N=PM,即1﹣x=3﹣1,y=2,求出x=﹣1,y=2,进而得到P′的坐标.【解答】解:如图,连接PQ并延长到点P′,使P′Q=PQ,设P′(x,y),则x<0,y>0.过P作PM⊥x轴于点M,过P′作PN⊥x轴于点N.在△QP′N与△QPM中,,∴△QP′N≌△QPM(AAS),∴QN=QM,P′N=PM,∴1﹣x=3﹣1,y=2,∴x=﹣1,y=2,∴P′(﹣1,2).故答案为(﹣1,2).【点评】本题考查了坐标与图形变化﹣旋转,全等三角形的判定与性质,准确作出点P(3,﹣2)关于点(1,0)对称的点P′是解题的关键.20.(2022春•铜山区校级月考)如图,AB⊥BC,AB=BC=2cm,弧OA与弧OC关于点O中心对称,则AB、BC、弧CO、弧OA所围成的面积是 2 cm2.【分析】由弧OA与弧OC关于点O中心对称,根据中心对称的定义,如果连接AC,则点O为AC的中点,则题中所求面积等于△BAC的面积.【解答】解:连接AC.∵与关于点O中心对称,∴点O为AC的中点,∴AB、BC、弧CO、弧OA所围成的面积=△BAC的面积==2cm2.故答案为:2.【点评】根据中心对称的性质,把所求的不规则图形转化为规则图形即△BAC的面积,是解决本题的关键.五.中心对称图形(共2小题)21.(2022春•南京期末)下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;B.是中心对称图形,不是轴对称图形,故此选项不合题意;C.不是中心对称图形,是轴对称图形,故此选项不合题意;D.既是中心对称图形,也是轴对称图形,故此选项符合题意;故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.22.(2022春•泰兴市期末)江苏省第二十届运动会将于今年8月28日在泰州举行,运动会会徽依据“江苏•泰州”首字母为原型进行设计.下列字母中,是中心对称图形的有( )个.A.1B.2C.3D.4【分析】根据中心对称图形的概念判断.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【解答】解:“J”、“T”都不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,“S”、“Z”能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,故选:B.【点评】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.六.作图-旋转变换(共6小题)23.(2022春•通州区期末)如图,在平面直角坐标系中,A(4,3),B(1,4),C(1,1),将△ABC绕点O逆时针旋转90°,得到△A'B'C'.(1)请在图中画出△A'B'C',并求出△A'B'C'的面积;(2)若△ABC内一点M(a,b),则在△A'B'C'内与M相对应的点M'的坐标是 (﹣b,a) .【分析】(1)根据旋转的性质找出对应点即可求解;再由面积公式求得△A'B'C'的面积;(2)由旋转的性质可得答案.【解答】解:(1)如图所示,△A'B'C'即为所求;∴△A'B'C'的面积=;(2)在△A'B'C'内与M相对应的点M'的坐标是(﹣b,a),故答案为:(﹣b,a).【点评】本题主要考查了作图﹣旋转变换,三角形的面积等知识,熟练掌握旋转的性质是解题的关键.24.(2022春•涟水县校级月考)按下列要求分别画出与四边形ABCD成中心对称的四边形:(1)以顶点A为对称中心的四边形AB1C1D1(2)以BC的中点O为对称中心的四边形A2B2C2D2【分析】(1)连接CA并延长至C1,使得AC1=CA,则就是点A的对称点(将各点与对称中心相连,并延长至相等长度,得该点的对称点);同理作出其它各点的对称点,连接成四边形即可;(2)方法同(1),连接AO并延长至A2,使AO=A2O,则A2就是点A的对称点(将各点与对称中心相连,并延长至相等长度,得该点的对称点);同理作出其它各点的对称点,连接成四边形即可.【解答】解:(1)连接CA并延长至C1,使得AC1=CA,则就是点A的对称点(将各点与对称中心相连,并延长至相等长度,得该点的对称点);同理作出其它各点的对称点,连接成四边形;如图,四边形AB1C1D1即为所求.(2)连接AO并延长至A2,使AO=A2O,则A2就是点A的对称点(将各点与对称中心相连,并延长至相等长度,得该点的对称点.);同理作出其它各点的对称点,连接成四边形,如图所示,四边形A2B2C2D2即为所求,【点评】本题考查了画中心对称图形,掌握中心对称的性质是解题的关键.25.(2022春•天宁区校级期中)正方形网格中(每个小正方形边长是1,小正方形的顶点叫做格点),△ABC 的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)画出△ABC绕点B逆时旋转90°的△A1BC1.(2)画出△ABC关于点O的中心对称图形△A2B2C2.(3)△A1BC1可由△A2B2C2绕点M旋转得到,请写出点M的坐标.【分析】(1)将点A、C分别绕点B逆时针旋转90°得到其对应点,再首尾顺次连接即可;(2)分别作出三个顶点关于原点的对称点,再首尾顺次连接即可;(3)作C1C2、BB1中垂线,交点即为所求.【解答】解:(1)如图所示,△A1BC1即为所求.(2)如图所示,△A2B2C2即为所求.(3)如图所示,点M即为所求,其坐标为(0,﹣1).【点评】本题主要考查作图—旋转变换,解题的关键是掌握旋转变换的定义与性质.26.(2022春•阜宁县期中)方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)试作出△ABC以C为旋转中心,沿顺时针方向旋转90°后的图形△A1B1C;(2)以原点O为对称中心,再画出与△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标 (﹣4,1) .【分析】(1)根据题意所述的旋转三要素,依此找到各点旋转后的对应点,顺次连接可得出△A1B1C;(2)根据中心对称点平分对应点连线,可找到各点的对应点,顺次连接可得△A2B2C2,结合直角坐标系可得出点C2的坐标.【解答】解:根据旋转中心为点C,旋转方向为顺时针,旋转角度为90°,所作图形如下:.(2)所作图形如下:结合图形可得点C2坐标为(﹣4,1).【点评】此题考查了旋转作图的知识,解答本题关键是仔细审题,找到旋转的三要素,另外要求我们掌握中心对称点平分对应点连线,难度一般.27.(2022春•锡山区期末)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,在10×10的网格中,有一格点三角形ABC(说明:顶点都在网格线交点处的三角形叫做格点三角形).将△ABC绕点C旋转180°,得到△A′B′C,请直接画出旋转后的△A′B′C.(2)在图1中,作出AC边上的高BF,则BF的长为 .(3)如图2,已知四边形ABCD是平行四边形,E为BC上任意一点,请只用直尺(不带刻度)在边AD上找点F,使DF=BE.【分析】(1)利用旋转变换的性质分别作出A,B的对应点A′,B′;(2)利用面积法求出BF,可得结论,(3)连接AC,BD交于点O,连接EO,延长EO交AD于点F,点F即为所求.【解答】解:(1)如图,△A′B′C即为所求;=3×3﹣×2×3﹣×1×3﹣×1×1=4,(2)∵AC==,S△ABC∴×AC×BF=4,∴BF=.故答案为:.(3)如图2,点F即为所求.【点评】本题考查作图﹣旋转变换,平行四边形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.28.(2022春•鼓楼区校级期中)(1)如图1,已知△ABC的顶点A、B、C在格点上,画出将△ABC绕点O 顺时针方向旋转90°后得到的△A1B1C1.(2)如图2,在平面直角坐标系中,将线段AB绕平面内一点P旋转得到线段A′B′,使得A′与点B重合,B′落在x轴负半轴上.请利用无刻度直尺与圆规作出旋转中心P.(不写作法,但要保留作图痕迹)【分析】(1)利用旋转变换的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)作出线段AB,A′B′的垂直平分线的交点P即可.【解答】解:(1)如图1中,△A1B1C1即为所求;(2)如图2,点P即为旋转中心.【点评】本题考查作图﹣旋转变换,解题的关键是掌握旋转变换的性质,属于中考常考题型.一、单选题1.(2022春·江苏·八年级专题练习)如图所示的五个四边形全等,不能由四边形ABCD 经过平移或旋转得到的是( )A .B .C .D .【答案】A【分析】根据平移或者旋转的性质逐一分析即可.【详解】A.经过平移和旋转可得,符合题意;巩固提升B.经过旋转可得,不符合题意;C.经过平移可得,不符合题意;D.经过旋转可得,不符合题意;故选A.【点睛】本题考查了图形的平移和旋转,掌握平移和旋转的性质是解题的关键.2.(2022秋·江苏盐城·八年级校考期中)下列运动属于旋转的是()A.篮球的运动B.气球升空的运动C.钟表钟摆的摆动D.一个图形沿某直线对折的过程【答案】C【分析】根据旋转的定义进行判断即可.【详解】解:A.篮球的运动不一定是旋转,故A不符合题意;B.气球升空的运动属于平移,不属于旋转,故B不符合题意;C.钟表钟摆的摆动属于旋转,故C符合题意;D.一个图形沿某直线对折的过程是轴对称,不属于旋转,故D不符合题意.故选:C.【点睛】本题主要考查了旋转的定义,解题的关键是熟练掌握旋转的定义.3.(2023春·江苏·八年级专题练习)如图,△ABC绕点C旋转,点B转到点E的位置,则下列说法正确的是( )A.点B与点D是对应点B.∠BCD等于旋转角C.点A与点E是对应点D.△ABC≌△DEC【答案】D【分析】利用旋转的性质即可求解【详解】解:∵△ABC绕点C旋转,点B转到点E的位置,∴△ABC≌△DEC,点B与点E是对应点,点A与点D是对应点,∠ACD与∠BCE是旋转角,。
专题22 几何三大变换问题之旋转问题(压轴题)

《中考压轴题》专题22:几何三大变换问题之旋转(中心对称)问题一、选择题1.如图,已知△ABC 中,∠C=90°,AC=BC=,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B 的长为A .22-B .32C .31-D .12.如图,△AOB 为等腰三角形,顶点A 的坐标为(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A'O'B ,点A 的对应点A'在x 轴上,则点O'的坐标为A .(203,103)B .(163,453)C .(203,453)D .(163,43)3.在平面直角坐标系中,函数y=x 2﹣2x (x≥0)的图象为C 1,C 1关于原点对称的图象为C 2,则直线y=a (a 为常数)与C 1、C 2的交点共有A.1个B.1个或2个C.个或2个或3个D.1个或2个或3个或4个4.如图,矩形ABCD 的长为6,宽为3,点O 1为矩形的中心,⊙O 2的半径为1,O 1O 2⊥AB 于点P ,O 1O 2=6.若⊙O 2绕点P 按顺时针方向旋转360°,在旋转过程中,⊙O 2与矩形的边只有一个公共点的情况一共出现A .3次B .4次C .5次D .6次5.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为A.30°B.60°C.90°D.150°6.如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为A.122π+B.12π+C.1π+D.3-7.如图,直线y=2x与双曲线2yx=在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为A.(1.0)B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)8.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是A.45°B.60°C.90°D.120°9.如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1 C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移3二、填空题1.如图,△ABC绕点A顺时针旋转45°得到△A'B'C',若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于.2.如图,在在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2014OB2014,则点A2014的坐标为.3.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+2;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=.4.如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2014的长度为.5.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是.6.如图,已知∠AOB=90°,点A绕点O顺时针旋转后的对应点A1落在射线OB上,点A绕点A1顺时针旋转后的对应点A2落在射线OB上,点A绕点A2顺时针旋转后的对应点A3落在射线OB上,…,连接AA1,AA2,AA3…,依次作法,则∠AA n A n+1等于度.(用含n的代数式表示,n为正整数)7.如图(1),有两个全等的正三角形ABC和ODE,点O、C分别为△ABC、△DEO的重心;固定点O,将△ODE顺时针旋转,使得OD经过点C,如图(2),则图(2)中四边形OGCF与△OCH面积的比为.8.如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1,B2,B3,…,则B2014的坐标为.9.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(53,0),B(0,4),则点B2014的横坐标为.10.通过对课本中《硬币滚动中的数学》的学习,我们知道滚动圆滚动的周数取决于滚动圆的圆心运动的路程(如图①).在图②中,有2014个半径为r的圆紧密排列成一条直线,半径为r的动圆C从图示位置绕这2014个圆排成的图形无滑动地滚动一圈回到原位,则动圆C自身转动的周数为.11.如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是.=上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点12.如图,平面直角坐标系中,已知直线y xP顺时针旋转900至线段PD,过点D作直线AB⊥x轴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
o,四边形 CHGK是旋转过程中两块三角板的重叠部分(如图
2).
( 1)在上述旋转过程中, ①BH与 CK有怎样的数量关系?②四边形 现的结论.
CHGK的面积是否发生变化?并证明你发
5 ( 2)如图, 连接 KH,在上述旋转过程中, 是否存在某一 位置使△ GKH的面积恰好等于△ ABC面积的 18 ?若
2
135 22 135 =
23 =。
360
360
4
三 . 四边形旋转问题 5. 如图 1,把边长分别是为 4 和 2 的两个正方形纸片 OABC和 OD′E′F′叠放在一起.
( 1)操作 1:固定正方形 OABC,将正方形 OD′E′F′绕点 O按顺时针方向 旋转 45 °得到正方形 ODEF,如 图 2,连接 AD、 CF,线段 AD与 CF 之间有怎样的数量关系?试证明你的结论; ( 2)操作 2,如图 2,将正 方形 ODEF沿着射线 DB以每秒 1 个单位的速度平移,平移后的正 方形 ODEF设为 正方形 PQM,N 如图 3,设正方形 PQMN移动的时间为 x 秒,正方形 PQMN与正方形 OABC的重叠部分面积为 y, 直接写出 y 与 x 之间的函数解析式; ( 3)操作 3:固定正方形 OABC,将正方形 OD′E′F′绕点 O按顺时针方向旋转 90°得到正方形 OHKL,如 图 4,求△ ACK 的面积.
②∵ l 4 与 l 5 的夹角是为 900,∴ l 5 与 x 轴的夹角是为 300。
设 l 5 的解析式为 y k 2x b2 ( k 2≠ 0),
∵直线 l 5 与 x 轴的正方向所成的角为钝角,∴
k 2=-tan30 0=
3 。
3
又∵直线 l 5 经过点( 1, 0),∴ 0
3 3 b2 ,即 b2
中考压轴题中旋转问题,包括直线(线段)的旋转问题;三角形的旋转问题;四边形旋转问题;其它
图形的问题。 一 . 直线(线段)的旋转问题
1. 如图,直线 l : y
3 x 3 与 y 轴交于点 A,将直线 l 绕点 A 顺 时针旋转 75o 后,所得直线的解
析式为【
】
A. y 3 x 3 【答案】 B。
,待定系数法的应用,直线上点的
坐标与方程的关系,锐角三角函数定义,特殊角的三角函数值。
二 . 三角形的旋转问题
3. 有两个全等的等腰直角三角板 ABC和 EFG其直角边长均为 6(如图 1 所示)叠放在一起,使三角板 EFG
的直角顶点 G与三角板 ABC的斜边中点 O重合.现将三角板 EFG绕 O点顺时针旋转,旋转角满足 0<o< 90
3 。
3
∴直线 l 5 的函数表达式为 y
3
3
x
。
3
3
( 3)通过观察( 1)( 2)中的两个函数表达式可知,当两直线互相垂直时,它们的函数表达式中
自变量的系数互为负倒数关系,
11 ∴过点( 1, 1)且与直线 y x 垂直的直线 l 6 的函数表达式为 y
55
5x 6 。
【考点】 一次函数综合题,旋转问题,探索规律题(图形的变化类)
D. 7 周
故选 B。 8. 已知抛物线 C: y ax2 bx c a < 0 过原点,与 x 轴的另一个交点为 B(4 , 0) , A 为抛物线 C 的顶
点,直线 OA的解析式为 y 式。
3 x ,将抛物线 C 绕原点 O 旋转 180 °得到抛物线 C1,求抛物线 C、 C1 的解析
3
【答案】 如图,过 A 作 AE⊥ OB于 E,
存在,请求出此时 KC的长度;若不存在,请说明理由. 【答案】 (1) ① BH=CK,②不变;( 2)x=2 或 x=4 【解析】
试题分析:( 1)先由 ASA 证出△ CGK≌△ BGH,再根据全等三角形的性质得出
BH=CK,根据全等得出四边形
CKGH的面积等于三角形 ACB面积一半;
S△ GHK
∴ 抛物线 C 的解析式为 y
3 (x
2) 2
23 ,即 y
6
3
又∵抛物线 C1 是由抛物线 C绕原点 O旋转 180°得到,
∴ 抛物线 C、 C1 关于原点对称。
3 x2
23 x。
6
3
23
∴抛物线 C1 的顶点坐标 A1 为 Nhomakorabea( 2,
)。
3
∴抛物线 C1 的解析式为 y
3 (x 2) 2 2 3 ,即 y
针方向旋转 90°,此时,点 O运动到了点 O1 处(即点 B 处),点 C 运动到了点 C1 处,点 B 运动到了点 B1 处,
又将正方形纸片 AO1C1B1 绕 B1 点,按顺时针方向旋转 90°…,按上述方法经过 4 次旋转后,顶点 O经过的总
路程为
,经过 61 次旋转后,顶点 O经过的总路程为
特别地,中心对称也是旋转对称的一种的特别形式。
把一个图形绕着某一点旋转
180°,如果
它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,
这两个图形的对应点叫做关于中心的对称点。
如果把一个图形绕某一点旋转
180 度后能与自身重合,
这个图形是中心对称图形。
在初中数学以及日常生活中有着大量的旋转变换的知识,是中考数学的必考内容。
CQGZ的面积,即等于△ ACB面
5 ( 2)假设存在使△ GKH的面积恰好等于△ ABC面积的 18 的位置.
设 BH=x,由题意及( 1)中结论可 得, CK=BH=,x CH=CB-BH=6-x,
S△ CKH
1 CH CK
3x 1 x2
2
2,
S△ GHK
S四边形 CKGH
S△ CKH
1 x2 3x 9
B .y x 3
C .y x 3 D .y x 3
【考点】 旋转的性质,待定系数法,直线上点的坐标与方程的关系,锐角三角函数定义,特殊角的三 角函数值。
【分析】 如图,由已知,可求直线 y
3 x 3 与 x 、 y 轴的交点分别为 B( 1, 0), A( 0, 3 ),
2. 根据要求,解答下列问题: ( 1)已知直线 l 1 的函数表达式为 y x 1 ,直接写出:①过原点且与 l 1 垂直的直线 l 2 的函数表达式;②过
( 3)分别观察( 1)( 2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的
系数之间有何关系?请根据猜想结论直接写出过点
11 ( 1,1)且与直线 y x 垂直的直线 l 6 的函数表达式。
55
【答案】( 1)① y ②y
x。 x 1。
( 2)①设直线 l 4 的函数表达式为 y k1 x b1 ( k1≠ 0),
专题 22 几何三大变换问题之旋转(中心对称)问题
轴对称、平移、旋转是平面几何的三大变换。旋转变换是指在同一平面内,将一个图形(含点、线、
面)整体绕一固 定点旋转一个定角,这样的图形变换叫做图形的旋转变换,简称旋转。旋转由旋转中心、
旋转的方向和角度决定。经过旋转,旋转前后图形的形状、大小不变,只是位置发生改变;旋转前、后图
.
【答案】
,
四 . 其它图形的问题
7. 如图,正六边形的边长为 π,半径是 1 的⊙ O 从与 AB 相切于点 D 的位置出发,在正六边形外部按
顺时针方向沿正六边形滚动,又回 到与 AB相切于点 D的位置,则⊙ O自转了【
】
A. 4 周
B. 5 周
C. 6 周
【答案】 B。
【考点】 多边形内角和定理,直线与圆的位置关系。
6
3
3 x2 2 3 x 。
6
3
【考点】 二次函数图象的对称性,待定系数法,曲线上点的坐标与
方程的 关系,旋转的性质。
2
,
4. 如图,在 Rt△ ABC中,∠ C=90°,∠ A=45°, AB=2.将△ ABC绕顶点 A 顺时针方向旋转至△ AB′C′
的位置, B, A,C′三点共线,则线段 BC扫过的区域面积为
.
【答案】 3 。 4
【考点】 扇形面积的计算,旋转的性质,等腰直角三角形的性质,转换思想的应用。 【分析】 先根据 Rt △ABC中,∠ C=90°,∠ A=30°, AB=2求出 BC及 AC的长,再根据线段 BC扫过的区 域面积为:
( 2)根据面积公式得出
S四边形 CKGH
S△ CKH
1 x 2 3x 9
2
,根据△ GKH 的面积恰好等于△ ABC
5 面积的 18 ,代入得出方程即可求得结果.
( 1) BH与 CK的数量关系: BH=CK,理由是: 连接 OC,由直角三角形斜边上中线性质得出 OC=BG,
四边形 CHGK的面积的变化情况:四边形 CHGK的面积不变,始终等于四边形 积的一半,等于 9;
点( 1, 0)且与 l 1 垂直的直线 l 2 的函数表达式; ( 2)如图,过点( 1,0)的直线 l 4 向上的方 向与 x 轴的正方 向所成的角为 600,①求直线 l 4 的函数表达式; ②把直线 l 4 绕点( 1,0)按逆时针方向旋转 900 得到的直线 l 5,求直线 l 5 的函数表达式;
【答案】(1)相等 见解析 【解析】解: ( 1)相等
( 2)见解析
( 3) 8
( 3)连接 OK,
∵∠ COK∠= ACO=4°5 , ∴OK∥AC, ∴S△ACK=S△AOC=8.
6. 把边长为 1 的正方形纸片 OABC放在直线 m上, OA边在直线 m上,然后将正方形纸片绕着顶点 A 按顺时
形的对应点到旋转中心的距离相等,
即旋转中心在对应点所连线段的垂直平分线上;
旋转前、 后 的
图形对应点与旋转中心所连线段的夹角等于旋转角。