数学建模论文 饮酒驾车模型

合集下载

最新数学建模-饮酒驾车

最新数学建模-饮酒驾车

第九篇饮酒驾车者三思2004年 C题饮酒驾车据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例。

针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫升),血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车(原标准是大于或等于100毫克/百毫升)。

大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢?请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题:1.对大李碰到的情况做出解释;2.在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答:⑴酒是在很短时间内喝的;⑵酒是在较长一段时间(比如2小时)内喝的。

3.怎样估计血液中的酒精含量在什么时间最高;4.根据你的模型论证:如果天天喝酒,是否还能开车?5.根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。

参考数据1.人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。

2.体重约70kg的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克/百毫升),得到数据如表9-1。

表9-1 喝两瓶啤酒后的时间的血液中酒精含量(毫克/百毫升)时间(小时) 0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5酒精含量30 68 75 82 82 77 68 68 58 51 50 41时间(小时) 6 7 8 9 10 11 12 13 14 15 16酒精含量38 35 28 25 18 15 12 10 7 7 4饮酒驾车者三思*摘要:本文讨论了不同饮酒方式、饮酒数量情况下血液中酒精含量的变化规律。

11557-数学建模-2004年C题《饮酒驾车》题目、论文、点评

11557-数学建模-2004年C题《饮酒驾车》题目、论文、点评

2004年C题《饮酒驾车》题目、论文、点评现实生活的数学描述-饮酒与驾车王强本文说明了“饮洒与驾车”问题的命题动因,以及面向现实生活的工作方向。

针对参赛论文的各种不足之处,着重讲述了数学模型的一般属性和模型假设的重要地位。

现实生活的数学描述-饮酒与驾车.pdf (97.06 KB)饮酒驾车的优化模型王毅李妃...本文通过分析啤酒中酒精在人体体内胃肠(含肝脏)与体液(含血液一)之间的交换机理,分别建立了在短时间内喝酒和长时间喝酒两种情况下,胃肠和体液(含血液)中的酒精含量的微分方程模型。

对给出的数据,利用非线性最小二乘数据拟合及高斯-牛顿算法,确定了酒精含量以及酒精从胃肠进入血液的速度系数和酒精从血液渗透出体外的速度系数。

继而,对不同喝酒方式下,血液中酒精尝试进行分析:该模型可以预测喝酒后任一时刻血液中的酒精渡。

对于第一问假设大李在第一次检查后半小时间喝酒,由于体液中有残留的酒精,故第二次检查时酒精浓度为20.2448毫克/百毫升饮酒驾车的优化模型.pdf (214.13 KB)饮酒与驾车的关系李蒙赫黄二梅...本文针对酒后驾车问题,建立了一个反映体液中酒精含量变化的微分方程模型,接下来用常数变易法对模型进行求解,用最小二乘法并借助于Matlab软件对数据进行了拟合,得到了模型的具体解。

然后我们利用Mathematica软件对题目中的各个问题一一做出了解答:(1)很好地解释了大李碰到的问题;(2)饮酒后分别在11.6341小时、12.7169小时内驾车就会违反国家新标准;(3)对两种饮酒方式分别在饮酒后1.35067小时和2.62436小时时体液中酒精含量达到最大值;(4)如果天天饮酒,则酒精涉入量的极限安全值为8288.93毫克,相当于0.382瓶啤酒所含的酒精最。

此外,我们还对一般模型进行了误差和灵敏度分析,利用微分方程的稳定性理论严格的证明了微分方程对初值和非齐次项都是渐进稳定的。

饮酒与驾车的关系.pdf (155.24 KB)酒精代谢的数学分析方信兵苏丽本文从生物学角度出发,根据微分方程理论,结合给定的数据,经过合理的假设,建立了血液中酒精的浓度随时间变化的基础模型。

酒后驾车问题

酒后驾车问题

《数学模型》课程结业论文酒后驾车问题任务书[要求]1、将所给的问题翻译成汉语;2、给论文起个题目(名字或标题)3、根据任务来完成数学模型论文;4、论文书写格式要求按给定要求书写;5、态度要认真,要独立思考,独立完成任务;6、论文上交时间:6月1日前(要求交纸质论文和电子文档)。

7、严禁抄袭行为,若发现抄袭,则成绩记为“不及格”。

[任务]据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例。

针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫升),血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车(原标准是大于或等于100毫克/百毫升)。

大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢?请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题:1. 对大李碰到的情况做出解释;2. 在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答:1)酒是在很短时间内喝的;2)酒是在较长一段时间(比如2小时)内喝的。

3. 怎样估计血液中的酒精含量在什么时间最高。

4. 根据你的模型论证:如果天天喝酒,是否还能开车?5. 根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。

参考数据1. 人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。

数学建模论文2004年饮酒驾车

数学建模论文2004年饮酒驾车

第九篇饮酒驾车者三思2004年 C题饮酒驾车据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例。

针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫升),血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车(原标准是大于或等于100毫克/百毫升)。

大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢?请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题:1.对大李碰到的情况做出解释;2.在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答:⑴酒是在很短时间内喝的;⑵酒是在较长一段时间(比如2小时)内喝的。

3.怎样估计血液中的酒精含量在什么时间最高;4.根据你的模型论证:如果天天喝酒,是否还能开车?5.根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。

参考数据1.人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。

2.体重约70kg的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克/百毫升),得到数据如表9-1。

表9-1 喝两瓶啤酒后的时间的血液中酒精含量(毫克/百毫升)时间(小时) 0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5酒精含量30 68 75 82 82 77 68 68 58 51 50 41时间(小时) 6 7 8 9 10 11 12 13 14 15 16酒精含量38 35 28 25 18 15 12 10 7 7 4109 / 10饮酒驾车者三思*摘要:本文讨论了不同饮酒方式、饮酒数量情况下血液中酒精含量的变化规律。

数学建模论文++饮酒驾车的数学模型

数学建模论文++饮酒驾车的数学模型

一、问题重述关键词:微分方程、模型。

本问题主要是分析驾驶员在喝过一定量的酒后,血液中酒精含量上升,影响司机驾车,所以司机饮酒后需经过一段时间后才能安全驾车,国家标准新规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车,血液中酒精含量大于或等于80毫克/百毫升为醉酒驾车,司机大李在中午12点喝下一瓶啤酒,6小时后检查符合新标准,晚饭地其又喝了一瓶啤酒,他到凌晨2点驾车,被检查时定为饮酒驾车,为什么喝相同量的酒,两次结果不一样?讨论问题:1. 对大李碰到的情况做出解释;2. 在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答:1)酒是在很短时间内喝的;2)酒是在较长一段时间(比如2小时)内喝的。

3. 怎样估计血液中的酒精含量在什么时间最高。

4. 根据你的模型论证:如果天天喝酒,是否还能开车?5. 根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。

参考数据1. 人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。

2. 体重约70kg的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克/百毫升),得到数据如下:二、模型假设1、酒精从胃转移到体液的速率与胃中的酒精浓度成正比。

2、酒精从体液转移到体外的速率与体液中的酒精浓度成正比。

3、酒精从胃转移到体液的过程中没有损失,且不考虑误差。

三、符号说明k:酒精从体外进入胃的速率;f(t):酒精从胃转移到体液的速率;1f(t):酒精从体液转移到体外的速率;2X(t):胃里的酒精含量;Y(t):体液中酒精含量;V 0:体液的容积;K 1:酒精从胃转移到体液的速率系数;K 2:酒精从体液转移到体外的速率系数;C(t):体液中的酒精浓度。

0D :短时间喝酒情况下进入胃中的初始酒精量。

2004年中国大学生数学建模竞赛C题饮酒驾车问题

2004年中国大学生数学建模竞赛C题饮酒驾车问题

2004年中国大学生数学建模竞赛C题饮酒驾车问题2004年全国大学生数学建模竞赛C题及建模论文C题饮酒驾车据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例。

针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克,百毫升,小于80毫克,百毫升为饮酒驾车(原标准是小于100毫克,百毫升),血液中的酒精含量大于或等于80毫克,百毫升为醉酒驾车(原标准是大于或等于100毫克,百毫升)。

大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢,请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题:1.对大李碰到的情况做出解释;2.在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答:1) 酒是在很短时间内喝的;) 酒是在较长一段时间(比如2小时)内喝的。

23.怎样估计血液中的酒精含量在什么时间最高。

4.根据你的模型论证:如果天天喝酒,是否还能开车,5.根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。

参考数据1.人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。

2.体重约70kg的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克,百毫升),得到数据如下:时间(小0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 时)酒精含量 30 68 75 82 82 77 68 68 58 51 50 41 时间(小6 7 8 9 10 11 12 13 14 15 16 时)酒精含量 38 35 28 25 18 15 12 10 7 7 4酒后不开车摘要近年来,因饮酒、醉酒驾车而造成的交通事故频发,且呈逐年上升趋势。

大学生数学建模:饮酒驾车问题0802最终稿

大学生数学建模:饮酒驾车问题0802最终稿

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):××××年高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):饮酒驾车问题摘要本文在历年交通事故频发的背景下研究饮酒驾车的问题,通过饮酒后血液中酒精含量与时间变化关系进行分析研究。

对于问题一,本文结合给出的数据对大李的这一实际案例进行分析。

本文将原始数据进行作图可将 1.5t =作为分段基准点分析,并结合酒精在进入体内之后动态的实际情况: 1.5t ≤时,酒精由口腔、肠胃进入血液,此时进入血液的酒精速度远大于分解速度,故血液中的酒精浓度急剧上升;在 1.5t >时血液中酒精分解速度大于进入速度,假设此时体内酒精已基本进入血液,故酒精进入血液的速度很小,可忽略不计,从而建立酒精浓度-时间模型,得到两者关系式,并使用MATLAB 对式子进行拟合得到式子如下,并对大李的情况进行解释说明:()()-0.6276-0.99320.1767502.2868() t 1.5() 108.3977 t>1.5t t t e e z t e-⎧-≤⎪=⎨⎪⎩ 对于问题二,本文分别对两个小问进行讨论。

数学建模论文-饮酒驾车的优化模型

数学建模论文-饮酒驾车的优化模型

饮酒驾车的优化模型摘要酒后驾车发生事故给人身安全造成极大的伤害,在全世界引起了广泛的关注。

本文通过分析啤酒中酒精在人体体内胃肠(含肝脏)与体液(含血液)之间的交换机理,分别建立了在短时间内喝酒和长时间喝酒两种情况下,胃肠和体液(含血液)中的酒精含量的微分方程。

对给出的数据,利用非线性最小二乘数据拟合及高斯-牛顿算法,确定了一瓶啤酒中的酒精含量以及酒精从胃肠进入血液的速度系数和酒精从血液渗透出体外的速度系数。

继而,对不同喝酒方式下,血液中酒精浓度进行分析。

该模型不仅能很好地解释大李在中午12:00时喝了一瓶啤酒后,在下午6:00时检查时符合驾车标准,紧接着再喝一瓶啤酒后,在次日凌晨2:00时检查却被判为饮酒驾车这一现象,而且可以预测喝酒后任一时刻血液中的酒精浓度.利用所建立的模型,我们可得到以下结果:1.大李在第一次检查时血液酒精浓度为19.9616毫克/百毫升。

第二次检查时血液酒精浓度为20.2448毫克/百毫升,这是由于第一次喝酒在体液中残留的酒精所导致。

2.在短时间内,喝三瓶啤酒或喝半斤低度白酒分别在12.25小时和13.6小时内驾车会违反驾车新标准规定;在2小时间内喝3瓶啤酒或喝半斤低度白酒分别在13.28小时和14.63小时内驾车会违反驾车新标准规定。

3. 短时间喝酒,无论喝多少酒,血液中的酒精含量达到最高所用时间均为1.3255 小时。

长时间也与所喝酒精的量无关,只与喝酒所持续时间有关,我们得到喝酒持续时间与酒精含量到达最高点的时间的关系如下:4. 如果天天喝酒,只要适当控制好喝酒量与喝酒以后到开车的间隔时间还是可以开车的。

比如:一个70公斤,喝2瓶啤酒需间隔10小时以上。

该模型能较精确的预测时间与血液中酒精浓度的关系,其解具有较好的稳定性,为定量研究饮酒与驾车的关系提供了科学的依据。

同时,它具有很好的推广和应用价值,模型可推广到医学,化学等方面。

一、问题的重述酒后驾车引起的死亡事故占全国交通事故相当大的比例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

饮酒驾车模型摘要交通事故是目前危害人类生命的第一杀手,而酒后驾车已经成为引发交通事故的重要原因之一,并日益凸现为社会问题,因此必须加强有效防控,以保障交通安全和秩序.长期以来,我国酒后驾车现象一直处于较快增长的态势,由酒后驾车引发的交通事故屡见不鲜,酒后驾车成为备受社会关注的热点问题. 本文主要讨论了在两种饮酒方式下血液中酒精含量如何变化的问题.通过建立了胃、肠和体液里酒精浓度的微分方程,综合分析了饮酒量、饮酒方式和饮酒者质量三个因素对安全驾车的影响.针对饮酒方式的不同,本文将饮酒过程分成快速饮酒、某时间段内匀速饮酒和多次饮酒三种形式来讨论.并分别建立了快速饮酒、匀速饮酒和多次饮酒系统动力学模型,并运用非线性最小二乘法进行数据拟合得到相关参数,从而得到了血液中酒精含量与时间的函数关系(见图二)。

并结合模型Ⅰ,运用MATLAB工具得到了快速饮用三瓶啤酒时的违规时间分布(见图三).进而推广到快速饮用不同量的啤酒的违规时间分布图(见图四).最后对相关问题进行了解答,结果表明,模型是合理和有效的.另外,本文在模型分析中具体的解释了大李所遇到的问题(详见模型分析).并给想喝一点酒的司机在驾车方面提出了相应的建议和指导.关键词最小二乘法房室模型动力学模型 matlab软件拟合曲线目录摘要 ............................................................................................................................. 错误!未定义书签。

一、问题重述 (3)二、问题分析 (3)三、模型假设 (4)四、符号说明 (4)五、模型的建立与求解 (5)5.1 快速饮酒的模型............................................................................................... 错误!未定义书签。

5.2 慢速饮酒的模型............................................................................................... 错误!未定义书签。

5.3 多次饮酒模型 (10)六、模型的评价与改进 (11)6.1 解释题目中大李遇到的问题 (12)6.2喝了三瓶酒或半斤低度白酒后多久才能驾车 (13)6.3 估计血液中酒精含量在何时最高 (13)6.4 天天喝酒,能否开车 (14)6.5 给司机的忠告 (15)七、模型评价 (16)八、模型推广 (17)九、参考文献 (17)十、附录 (17)一、问题重述据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例.针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫升),血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车(原标准是大于或等于100毫克/百毫升).大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢?并进一步分析快速或匀速饮3瓶啤酒在多长时间内驾车就会违反新标准,估计血液中的酒精含量在什么时间最高,如果某人天天喝酒,是否还能开车等问题.并根据所做出的结果,结合新国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告.二、问题分析根据生物学知识可得,酒精进入机体后,同药物一样,作用于机体而影响某些器官组织的功能;另一方面酒精在机体的影响下,可以发生一系列的运动和体内过程:自用药部位被吸收进入血液循环;然后分布于各器官组织、组织间隙或细胞内;有部分酒精则在血浆、组织中与蛋白质结合;或在各组织(主要是肝脏)发生化学反应而被代谢;最后,酒精可通过各种途径离开机体(排泄);即吸收、分布、代谢和排泄过程。

它们可归纳为两大方面:一是酒精在体内位置的变化,即酒精的转运,如吸收、分布、排泄;二是酒精的化学结构的改变,即酒精的转化亦即狭义的代谢。

由于转运和转化以致形成酒精在体内的量或浓度(血浆内、组织内)的变化,而且这一变化可随时间推移而发生动态变化.另外,根据生物学知识还知道酒精主要由胃、肠吸收,随后进入血液并随血液输送至体内各组织器官内,最后在肝脏中进行代谢.在此,可将胃、肠简化为吸收室,将肝脏简化为分解室。

然而,酒精进入人体后,经一段时间进入血液,当在血液中达最高浓度时,随后便开始消除,把酒精在体内的代谢过程看为进与出的过程,这样便会使问题得到简化.但不同的饮酒方式对血液中酒精浓度的变化有不同的影响,所以,要从不同的饮酒方式进行考虑,从而设置相应的变量,建立模型.三、模型假设为了建立饮酒与安全驾车问题的数学模型,做出以下假设:(1)确定是否饮酒驾车或醉酒驾车以新的国家标准为界(国家标准《车辆驾驶人员血液、呼气酒精含量阈值与检验》规定:车辆驾驶人员血液中的酒精含量大于或等于20毫克/100毫升,小于80毫克/100毫升为饮酒驾车,血液中的酒精含量大于或等于80毫克/100毫升为醉酒驾车).(2)酒精进入人体后经胃、肠吸收进入体液(含血液),然后随血液循环至肝脏分解.(3)酒精在血液和其他体液中的含量相等,体液密度是常数.(4)每个人的胃、肠吸收酒精速率和肝脏分解酒精的速率是常数.(5)酒精从胃、肠渗透入血液的速率和酒精在肝脏中分解的速率都与酒精质量浓度成正比.(6)酒精进入人体内所占体积可忽略不计.(7)在短时间内喝酒不计喝酒时间,在较长一段时间内喝酒被视为在这段时间内以恒定的速率连续喝酒的过程.(8)体液占人体质量的68%,血液占人体质量的7%.(9)忽略如下因素:口腔黏膜对酒精的吸收,通过呼吸、出汗、尿液排出的酒精,其他药物对酒精的影响等.(10)人的吸收速度与代谢速率是恒定的且体重为定值70kg.(11)在整体过程中没有摄入任何影响代谢的药类物质和剧烈性运动.(12)大李用完晚餐在七点左右.四、符号说明本文所用到的符号如下表:五、模型建立与求解根据已知知识可得,酒精主要由胃、肠吸收,随后进入血液并随血液输送至体内各组织器官内,最后在肝脏中进行代谢.现将胃、肠简化为吸收室,将肝脏简化为分解室,忽略干扰因素,可得酒精的吸收和输送流程示意图(图一):图一:酒精的吸收和输送流程示意图图一中的)(tr( mg / (100 mL) )和)(tB( mg / (100 mL) )分别表示t 时刻酒精在吸收室和血液中的浓度.5.1 快速饮酒模型在该模型中,假设酒是在短时间内喝下去的.在此方式下,吸收室中酒精质量浓度的变化率和)(t r 成正比关系,比例系数为3k ,可得微分方程:)()(3t r k t r -=' vm r =)0( 血液中酒精质量浓度的变化率为)()(21t B k t r k -, 于是可得微分方程:)()()(21t B k t r k t r -=' 0)0(=B综上所述,得到快速饮酒的微分方程模型:⎪⎩⎪⎨⎧=-='=-='0)0(),()()()0(),()(213B t B k t r k t B v m r t r k t r对模型进行求解得:⎪⎪⎩⎪⎪⎨⎧--==---)()()()(323231t k tk t k e e k k v mk t B e vm t r 通过Matlab 软件对数据进行拟合,求的:⎪⎪⎩⎪⎪⎨⎧====15.12131607.21828.01607.2321v k k k根据假设,得知:⎩⎨⎧=v 0.68M m v 2158.0ρ满足关系式:和质量人的体液毫克为:每瓶啤酒中的酒精含量为体液密度 (mg / (100 mL)),且为一常数。

从相关的资料中可以得知:酒精的密度为0.8毫克/毫升,啤酒中酒精占3.3%到5%,可以取4.15%为计算标准,每瓶啤酒650毫升.可以得到某人喝下一瓶啤酒时,总的酒精量为650×4.15%×0.8=2158.0毫克 .pv.0.68M =系,满足人体的体液和质量的关, 得M v 385542.16=,将上面的数据带入后的到新的方程组:⎪⎩⎪⎨⎧-==---)(5963.4430),,(058868.4272),,(1607.21828.01607.2tt t e e M n t M n B e Mn t M n r由上式可以得出,在短时间内喝酒的方式下,血液中的酒精质量浓度与喝入的酒精量m 成正比,与人体质量M 成反比,并随时间t 变化.根据已知数据和求得的函数,使用Matlab 软件进行拟合,绘制出在短时间内喝下两瓶酒后,人体血液中酒精浓度随时间的变化关系图(如图二):)(t B /mg/100ml图二: 血液中酒精随时间的变化关系 t/h从图像中可以判断出:在饮酒后0-9.5小时内为饮酒驾车;在饮酒后9.5以后则为正常情况.5.2 慢速饮酒模型在该模型中,假设酒是在较长一段时间t S 内喝下去的.在此方式下分析如下: 5.2.1 0 ≤t ≤t S (喝酒持续时间),吸收室中酒精质量浓度的变化率仍与酒精进入吸收室的速率有关.根据假设,酒精进入吸收室的速率为t vS m ,吸收室中酒精质量浓度的变化率由)(3t r k -和tvS m 组成. 可得微分方程:0)0(),()(3=-='r t r k vS mt r t血液中酒精质量浓度的变化率仍由)(1t r k 和−)(2t B k - 组成, 因此的微分方程:0)0(),()()(21=-='B t B k t r k t B综上所述,得到慢速饮酒的微分方程模型:⎪⎪⎩⎪⎪⎨⎧=-='=-='0)0(,)(0)0(),()()(321r r k vS m t r B t B k t r k t B t对模型进行求解得:⎪⎪⎩⎪⎪⎨⎧-+--=-=----)1()()()()1()(23233132313t k t t k t k t tk t e k vS mk e e k k k vS mk t B e k vS m t r 将已经求得的数据带入上式后的到新的方程组:⎪⎪⎩⎪⎪⎨⎧-+-=-=----)1(71645.2)(0814204.713)()1(5204.2824)(1828.01828.01607.21607.2t t t t t tt e MS n e e MS n t B e MS n t r5.2.2 t ≥t S 时(喝完酒后)吸收室中酒精质量浓度的变化率和)(t r 成正比关系,比例系数为3k ,可得微分方程:)()(3t r k t r -='血液中酒精质量浓度的变化率为),()(21t B k t r k -于是可得微分方程 :)()()(21t B k t r k t B -='综上所述,得到快速饮酒的微分方程模型:⎩⎨⎧-='-=')()()()()(213t B k t r k t B t r k t r对模型进行求解得:⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡--+--+--=-=----)1()()1()()()1()()1()(2233333231323132313t t t t S k t S k t t k t S k t k t S k e k k k vS nk e k k k vS nk e k k k vS e nk t B e k vS e n t r 将已经求v k k k ,,,321的数据带入上式后的到新的方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---+-=-=------t S t S t S tS ttS e e MS n e MS n e MS e n t B e MS e n t M n r t t t t t 1828.01828.01828.01607.21607.21607.21607.2)1(16318.45980)1(350482.2513)1(350482.2513)()1(520405.2824),,( 由上面(1)式和(2)式可以看出,在用慢速喝酒的方式下,血液中的酒精质量浓度与喝入的酒精量m 成正比,与人体质量M 和喝酒所用时间t S 成反比,并随着时间t 变化. 在此,根据已知的数据和上面求得的函数,使用Matlab 软件绘制出在两个小时内匀速的喝下三瓶酒后,人体内酒精浓度随时间的变化图(如图三):图三:两小时匀速饮酒后血液中酒精含量随时间变化图从图像中可得:在饮酒后2—4.5小时内为醉酒驾车;在饮酒后4.5---12小时为饮酒驾车.5.3 多次饮酒模型在此模型中,假设多次饮酒的周期为T ,每次饮酒量均相同为E .在每个周期内,吸收室中酒精质量浓度的变化率和)(t r 成正比关系,比例系数为3k ,可得微分方程:)()(3t r k t r -='血液中酒精质量浓度的变化率为)()(21t B k t r k -,于是可得微分方程:)()()(21t B k t r k t B -='对于每个周期,)(t r 的变化率和)(t B 的变化率均满足以上的微分方程. 综上所述,得到多次饮酒的微分方程模型:⎩⎨⎧≤≤--='-='nT t T n t B k t r k t B t k t r )1(,)()()()()(213 对模型进行求解得:nT t T n e C e k k k C t B e C t r t k t k tk ≤≤-⎪⎩⎪⎨⎧+-==---)1(,)()()(233232111其中和是解微分方程中的参数.在所求得的结果中:(1)当n=1时⎪⎪⎩⎪⎪⎨⎧≤≤--==---T t e e k k v mk t B e v m t r t k t k t k 0,)()()()(323231 (2)当n>1时解出通解中的参数为:⎪⎪⎩⎪⎪⎨⎧-+-⨯=+=---→--→--→--T n k t T n k t T n t T n k e k k E t r k e t B C E t r e C T n T n )1(321)1(2)1()1(12)1(2)1(3))(lim ()(lim ))(lim (图四:多次饮酒血液中酒精浓度示意图由图四可得:在多次饮酒过程中,每个饮酒周期结束时,体内酒精浓度下降,而在下一个饮酒周期开始时,血液中酒精浓度呈上升趋势,这是由于吸收室中酒精浓度突然上升造成的.六、模型分析根据本文所建立的模型,下面将会分析并说明实际中遇到的一些问题;6.1 解释题目中大李遇到的问题用5.1快速饮酒模型进行解释:从中午12点到下午6点,⎪⎩⎪⎨⎧-==≤≤---)(5963.4430),,(058868.4272),,(601607.21828.021607t t t e e M n t M n B e M n t M n r tT=6时,=1451.598371mg / (100 mL)由于在下午6点未测出酒精含量超标,则<20 mg / (100 mL),由此可以估计大李的质量m>67.697kg.之后,设大李再次饮酒的时间为晚上时刻.由于此时大李的吸收室和血液中含有残留的酒精.所以,当t 时,大李喝酒满足的微分方程为:⎪⎩⎪⎨⎧≥=-='+=-='000112111001131)()(),()()()()(),()(t t t B t B t B k t r k t B t r v m t r t r k t r 将已经求v k k k ,,,321的数据带入上式后得: )(1607.25963.44301828.01828.01607.215963.44305963.44305963.44305963.4430)(t t M t t e Me M e M e M t B -----++-= 根据上式可得,与大李在凌晨2点被测出饮酒驾车完全符合.6.2 喝了三瓶酒或半斤低度白酒后多久才能驾车(1)快速饮酒状况下:由5.1的模型可知: )(5963.4430),,(1607.21828.0t t e e Mt M n B ---= 已知喝了三瓶酒,则n=3,所以有:)(2636.12958),,3(1607.21828.0t t e e t M B ---=设在时刻刚好违反标准,之后,人体血液中酒精浓度先上升后下降.在时刻,刚好符合标准:⎩⎨⎧=>20),,3(20),,3(t M B t M B由于刚饮完酒从到时刻,司机不会去驾车,并且很小,故在时间内,司机违反标准,得到的数据结果如下(见表二)由表可以看出,越短,血液中酒精的浓度相对越低.(2)慢速饮酒状况下:由5.2的模型(假设在两个小时内喝完)可知:⎪⎩⎪⎨⎧>-=≤≤-=-----2,65895.1652781242.17456),,3(20),(M 71486.12560),,3(1607.21828.01828.01607.2.0t e e M t M B t e e t M B t t t 设在时刻刚好违反标准,之后,人体血液中酒精浓度先上升后下降。

相关文档
最新文档