水泥磨研磨体级配
水泥磨研磨体级配

该水泥粉磨生产线投产近半年以来,辊压机和V型选粉机预粉磨系统显得能力不足,成为水泥粉磨台时的首要制约因素。
主要的表现是:辊压机因辊缝差和电流差超高频繁跳停;喂料增加时稳流仓持续涨仓。
主要的调整措施:1.调高辊缝差和电流差高限跳停值、更换磨损的侧挡板并将间隙调至最低值约15mm,以提高辊压机对喂料粒度的适应能力,大幅减少跳停故障;2.调整V选内部阀板开度、调整风机风门开度以增大V选的通风量同时封堵V选的短路风管(提升机、皮带机等下料点收尘风管),以便最大限度的提高V选的选出率,从而提高预粉磨的产量进而提高水泥系统的产量;3.适当提高加载压、适当调整辊缝以强化辊压机的辊压效果,以便适当提高辊压机预粉磨的产量。
以上措施实施后,水泥系统的台时逐步提高,绝对增加值约10t/h。
现在,辊压机的主要矛盾已经基本解决,降为水泥系统的次要因素,而水泥磨成为系统产量的主要制约因素。
目前的水泥系统台时,扣除配料秤约13.5%的计量误差,实际仍只有61.5t/h。
为了进一步提高系统的台时产量,除了实施必要的技术改造外,水泥磨的研磨体级配无疑是需要重点调整的工艺方案。
以下是我们拟定的、正在使用的级配方案。
1.原设计方案表1:水泥磨原设计级配规格1仓装载量体积2仓装载量体积3仓装载量体积60 9 1.9350 14 2.9740 10 2.1030 5 1.0318*18 7.5 1.6716*16 10.5 2.3314*14 7.5 1.6712*12 37 8.2210*10 24.5 5.44合计38 8.04 25.5 5.67 61.5 13.67各仓Dcp 47.1 - 16.0 - 11.2 -各仓φ*L 3.1*3705 - 3.1*2500 - 3.1*6000 - 各仓容积27.96 - 18.87 - 45.29 -各仓填充率(%) 28.74 - 30.03 - 30.18 -总装量125 平均填充率29.712.一仓方案表2:1#磨入磨样品筛分析筛孔尺寸(mm) 0.9 0.2 0.08 0.08以下累计筛余(%) 4.6 33.8 51.4分计筛余(%) 4.6 29.2 17.6通过量(%) 95.4 66.2 48.6表3:2#磨入磨样品筛分析筛孔尺寸(mm) 0.9 0.2 0.08 0.08以下累计筛余(%) 3.4 28.8 48分计筛余(%) 3.4 25.4 19.2通过量(%) 96.6 71.2 521#磨取样时产量75t/h,2#磨取样时产量68t/h,2#磨的辊压机系统未达到最佳状态。
如何优化研磨体级配

PR GRI PO7-08 V1研磨介绍:● 研磨体的优化是达到有效研磨效果的一个重要因素。
一台球磨机只能对一种产品进行优化,如果磨机生产几种产品,应该对主要产品进行优化。
● 在磨机优化过程中不能只考虑研磨体,同时必须考虑磨机系统设计,包括选粉机、磨机内部的设计和状况。
● 为了确保研磨体优化能够起到一定的效果,必须保证几个前提条件。
指标和目标:● 中间隔仓板处的筛余量水泥磨:目标2毫米筛的筛余量< 5% 生料磨:目标4毫米筛的筛余量< 5% ● 物料料位1仓:在料床上可以看到一部分大球 2仓:刚刚超过研磨体高度 ● 填充率的膨胀率:< 3% ● 1仓电耗水泥磨8-12kWh/t生料磨,占全部磨机电耗的40-50% ● 篦缝宽度:1仓6-8毫米 2仓8-10毫米前提条件:● 磨机喂料粒度:熟料和混合材:95%通过25毫米;100%通过50毫米 生料原料:95%通过30毫米;100%通过50毫米 ● 所使用的选粉机应达到最佳性能 ● 以下方面对系统没有限制:物料的输送 物料的烘干 隔仓板的开度● 水泥磨的通风:-1.5到2.0m/s ● 熟料温度:<70ºC从磨机审计检查中要求得到的信息● 磨机喂料粒度● 球填充率,急停磨和磨内物料排空后 ● 物料的料位 ● 目前的球级配● 衬板状况和衬板阶梯高度 ● 隔仓板处物料粒度●隔仓板状况、篦缝大小、目前的间隙(如果适合进行流量控制调节)PR GRI PO7-08 V1研磨● 磨机产量● 磨机电机使用功率● 磨机尺寸、电机大小、磨机速度、减速机大小等来计算功率。
工具:● 用于计算磨机电耗的Slegten 公式可以用于估计每仓需要的研磨体量。
参照:研磨区> 工作帮助● 功率指标能够用于计算把细度和成分考虑在内的磨机的净功率。
参照:BRS 数据库>指标>水泥磨电耗指标(PR1120X )在这个程序中你可以发现其他信息的参考文件(工具,其他的“如何”程序、知识文件等)这些文 件在水泥分支网中都能够找到(比如:研磨,烧成..)或从BRS 数据库中(指标) 通过L.O Group Portal 进入水泥门户网参照: >进入所有的局域网>分支网址>水泥PR GRI PO7-08 V1 研磨行动步骤1.确定目标及比较●由易磨性确定磨机的目标产量以及电耗●与实际的磨机性能进行比较2.计算●对1仓的实际和理论能耗进行计算3.如果实际能耗小于8kWh/t●如果实际能耗小于8kWh/t,最大的可能是没有足够的能量对物料进行有效的破碎。
TLM42130水泥磨机技术资料及钢球级配调整方法

TLM42130水泥磨一、磨机技术参数基本数据1、磨机规格:Ф4.2×13m磨机筒体内径(mm)磨机筒体内壁长度(mm)磨机有效内径(mm)磨机有效长度(mm)一仓二仓三仓一仓二仓三仓Ф4200 13000 Ф4080 Ф4080 Ф4100 3650 2700 59002、粉磨方式:开流3、设计生产能力:130t/h(带辊压机,出磨细度为3200cm2/g)4、入磨物料粒度:≤20mm,95%通过5、磨机转速:16.051r/min,主传动转速:15.9r/min,辅助传动转速:0.151r/min6、研磨体最大装载量:225t7、最大填充率:33%8、滑履轴承冷却水用量:4.0m3/h×29、主电动机(兰州电机厂)型号:YR800-6额定功率:3150kw额定转速:991r/min额定电压:10kv10、减速机(重庆同力)型号:MBG22/32(264-4.2)-WX/AZ速比:7.33711、慢驱(重庆同力)型号:MBM360速比:156.712、主电动机润滑装置13、主减速机润滑装置14、滑履轴承润滑装置15、磨机衬板及隔仓板情况介绍TLM42130水泥磨共分为三仓,一仓使用阶梯衬板,一仓和二仓之间为双层隔仓板,二仓使用波纹衬板,二仓和三仓之间为单层隔仓板,三仓为活化衬板,三仓内自隔仓板至出料端:隔仓板1450mm 仰料板1000mm 仰料板1250mm 仰料板1500mm 聚料板700 出料端,出料筛子缝隙宽度为7mm。
一仓和二仓之间的隔仓板由16块隔仓板襄成,由中心通风孔向外分布三层,螺栓孔数由中心向外分别为:16孔、32孔、32孔、32孔。
如下图:二、当前磨机各仓长径数据磨机筒体有效内径(mm)磨机筒体有效长度(mm)磨机有效内径(mm)磨机有效长度(mm)一仓二仓三仓一仓二仓三仓Ф4080 12250 Ф4080 Ф4080 Ф4100 3650 2700 5900 三、当前磨机各仓仓长比例及其参数仓位有效长度(m)仓长比例(%)有效容积(m3)装载量(t)研磨体形状研磨体材质一仓 3.65 29.80 47.69 球高铬铸铁二仓 2.70 22.04 35.28 球、锻高铬铸铁三仓 5.90 48.16 77.86 微锻 高铬铸铁 合计12.25100160.83四、当前磨内各仓研磨体级配 五、磨机总有效容积V φV φ=0.785D φ2·L φ=0.785·4.08672·12.25m 3= 160.60 m 3 其中D φ为有效内径(平均),mL φ为有效长度,m六、研磨体填充率φ其中G 为某一仓研磨体的重量,t; V φ为某一仓的有效容积,m 3;r 为研磨体容重,t/m 3,一般钢球取r=4.5 t/m 3,铁球4.2 t/m 3,钢棒5.4~5.6 t/m 3。
水泥磨研磨体级配调整总结

**公司水泥磨研磨体级配调整总结**公司为年产80万吨水泥粉磨站,由SJG140-65+Φ3.8m×12m球磨机组成双闭路联合水泥粉磨系统。
公司于2015年底大修时,对水泥磨磨内隔仓板改造,钢球重新选球、钢球级配进行调整,取得了较好的节能效果。
众所周知,磨机的台时产量与许多因素有关,如粉磨工艺流程及其配套辅机(选粉机,磨前预破碎机等)的性能、入磨物料的特性(品种及其配比、粒度大小、综合水份、易磨性等)、细度、磨内通风、隔仓板的形状及位置、衬板的工作形状、研磨体填充率及其级配、磨机转速、粉磨生产操作和系统设备调控等。
如何合理进行研磨体填充及级配,以达到最佳粉磨效率呢?我们根据所学理论知识、结合近几年生产实际,对水泥磨研磨体级配进行了调整。
现将研磨体级配调整总结如下:一、主机设备基本参数:表1 主机设备参数:表2 水泥磨主要参数:二、研磨体级配调整前后对比:调整思路:1、减少水泥磨钢球装载量,降低水泥磨运行功率。
找出水泥磨钢球装载量与水泥磨台时的最佳结合点。
在水泥磨台时与降低水泥电耗之间,找出最佳平衡点。
2、辊压机预破碎能力较前期略有降低,入磨物料细度增大,需适当加大平均球径。
表3 水泥磨钢球级配调整前:表4 水泥磨钢球级配调整后:钢球级配调整后,一仓装载量降低4.1吨,平均球径增大1.73mm;二仓装载量降低8.06吨,平均球径增大0.74mm。
三、技改效果:技改完成后,经过半个月的调试和调整,球磨机系统台时趋于稳定。
在工艺状况稳定下,实现水泥磨生产P·O42.5水泥平均磨前台时达到136.46t/h,水泥电耗27.92KWh/t,实现了降低水泥电耗的目标。
改造前后技术经济指标对比见下表:调整前后技术经济指标对比表(以P·O42.5水泥数据对比)四、总结1、水泥磨装载量总体降低12.16吨,磨机运行功率降低180KW,水泥磨台时降低2.41 t/h,水泥电耗降低0.81kwh/t。
研磨体级配对水泥比表面积的影响

研磨体级配对水泥比表面积的影响【水泥人网】生产高标号水泥,除需要高标号熟料外,还需要提高水泥比表面积。
降低出磨水泥细度筛余值,固然可以提高水泥比表面积,但是这种做法往往是以降低磨机台时产量、增加电耗和水泥生产成本作为代价的。
而且筛余值降至一定程度,比表面积提高并不明显。
改进磨内研磨体级配和调节控制选粉机回粉率(循环负荷)是一种既经济又行之有效的方法。
适当降低研磨体平均球径,在控制同样筛余值的情况下,可以明显提高水泥比表面积,而水泥台时产量并不降低,出磨水泥3天抗压强度大幅度提高。
一般认为,在闭路粉磨中,为了减少过粉磨现象,往往使1仓的填充率高于2仓,使物料在磨内流速加快,适当提高回粉率;一般回粉率为100%~150%时,台时产量最高。
回粉率过高,虽然细度合格,但比表面积降低。
如将2仓填充率高于1仓,并适当降低钢球平均球径和钢段直径,减慢磨内流速,同时调整选粉机大、小风叶数量,从而降低了选粉率。
在台时产量和筛余值不变的情况下,能提高水泥比表面积和水泥的早期强度。
生产过程中,随着钢球、钢段的磨损,填充率的降低,首先观察到的不是台时产量的降低,而是回粉率的提高、水泥比表面积的减小、水泥3天抗压强度的下降。
当回粉率太高以后,会引起饱磨,此时才导致台时产量的下降。
所以,必须根据回粉率的多少、比表面积的大小来决定补充研磨体。
一旦台时产量的下降很多,则应倒仓重新进行研磨体级配。
——改善水泥颗粒级配分布与提高3~30微米颗粒含量即使采用闭路系统生产(极少数已采用与第三代O—Sepa型高效选粉机的厂家除外),其成品水泥的颗粒分布也较宽,小于2微米颗粒的含量一般大于8%,大于30微米颗粒的含量则超过25%。
对于普遍采用开流粉磨系统的,水泥中这两部分颗粒的含量还会更高。
国外(如采用O—Sepa型选粉机的日本藤原水泥厂、富勒公司在北美的水泥厂以及采用Rema 型高效选粉机的英国兰圈水泥公司)的水泥厂其水泥产品中粒径大于30微米的颗粒含量仅为17%,有的甚至控制在7%以下。
水泥磨球配方案设计

磨机配球一、仓内混合钢球的最大球径和平均球径 ① 对于闭路磨机的粗磨仓 最大球径: D 大=28⨯395d ⨯m K f(1) 平均球径: D 平=28⨯380d ⨯mK f (2)式中;D 95、D 80——入磨物料最大粒度,平均粒度mm ;以95%、80%通过的筛孔孔径表示;mK ——物料的相对易磨性系数,表1;f ——磨机单位容积物料通过量影响系数,根据磨机每小时的单位容积通过量K 从表1中查出。
其中,K=(Q+QL )/V (t/h m 3) (3) 式中,Q ——磨机小时产量(t/h);L ——磨机的循环负荷率(%)对于开路磨QL=0 V ——磨机有效容积(m 3)。
K f ② 对于细磨仓则,D 大mK fd ⨯⨯=39546 (4)D 平mK f d ⨯⨯=38046 (5)式中,D 大、D 平——细磨仓最大,平均球径,mm ;D 95、D 80——细磨仓入口处物料最在大粒度,平均粒度,mm.二、我国水泥行业经验公式 对于生料磨——仓平均球径: D 平=1.83D 80+57式中,D 80——喂入物料80%通过的筛孔孔径,mm 。
该式只适用于直径大于2m 的开路磨机,对于闭路磨机,D 平可适当加大2~3mm ,且被磨物料为中等硬度。
三、级配后的混合平均球径计算公式112212............n nnD G D G D G D G G G +++=+++平(mm )式中:D 1,D 2,…D n —分别为G 1,G 2……G n 钢球质量的直径,mm ; G 1,G 2,…G n —分别为D 1,D 2……D n 直径的钢球质量,t 。
四、研磨体级配方案的制定制定研磨体的级配方案,通常是从第一仓开始(即粗碎仓)。
对多仓磨机而言,一仓的钢球级配尤为重要,按照一般交叉级配的原则,亦即上一仓的最小球径决定下一仓的最大球径,依此类推,一仓实际上主导了其它各仓的级配,目前,球磨机一仓有代表性的级配方法有两种,一种是应用最普通的多级级配法,另一是近年来开始采用的二级级配法。
磨机级配

70.12
100
34
37
48
∑,t aq,,Illm 小,%
160
29.22
31.36
2010/2水泥技术
万方数据
物料粒径,olin
2.36
相对球径,咖
60
累积百分数,%
5.16
1.0 50 12.84
裹4 一仓研磨体级配
0伪8
o.011<o.011
40
30<25
49.95
84.10
l∞
∑,t 25
21.Omm。 6研磨体填充系数
各种工艺磨机各仓的填充系数 在研磨体级配给出数据,这对泾阳声 威三种粉磨工艺来讲比较合理。目前 一般来讲控制在28%-34%,以30% 为基础,随着入磨物料颗粒粒径的大 大下降,研磨体直径大大下降,相应 填充系数增大,以提高研磨体量来提 高磨机产量。
笔者认为水泥粉磨磨机主电机 负荷控制在88%~93%较合理,一仓 填充系数27%一29%,后仓逐渐提高, 填充系数30%一33%。入磨物料粒径 较细和小型磨机,磨机填充系数可选 高些,全磨研磨体装填量达设计量的 95%一97%,提高动力产量。入磨物料 粒径较粗和大型磨机,磨机填充数可 选低些,全磨研磨体装填量达设计量 的88%一92%,提高钢球产量,降低电 耗。 7水泥磨机研磨级配和装填效果
据报导,国内该工艺系统二仓使
物料粒径,哪
相对应球径,/nm 累积百分数。% 相应百分数,%
相对球量,t 修l 修2
9.5 80 10.9 10.9 6.54 6 7
表2配球组合
2.36
0.045
<o.045
70
60
50
64.66
85.05
技术水泥磨研磨体装载量和级配调整方法

技术水泥磨研磨体装载量和级配调整方法磨体装载量和级配虽有公式可以参考,但同时还需靠经验调配。
目前钢球级配还是以多级配球较多,在使用分级衬板时,磨仓内在长度方向上(进料端到出料端)各点处的物料平均粒径是逐渐降低的,钢球在各点处的平均球径也应该是逐渐降低,两条曲线的走势应该是一致的。
调整钢球级配时要考虑到钢球尺寸的减小并不是一致的。
例如有文献介绍,通过试验和计算得出,当90mm的钢球磨损至80mm时,同比,80mm的钢球磨损至71.11mm,70mm的钢球磨损至63.20mm,60mm的钢球磨损至56.20mm。
显然,若只补大球,则平均球径必然有变大的趋势。
研磨体装载量和级配是否合理,可通过下述四种方法在生产实践中进行检验和调整。
1.根据磨机产量和产品细度进行检验分析(1)当磨机出现产量低、产品细度粗时,说明研磨体装载量不足或研磨体磨耗太大,此时应添加研磨体。
(2)当磨机出现产量高、产品细度粗时,说明磨内研磨体的冲击力太强,研磨能力不足,物料的流速过快所致。
此时应适当减少大球,增加小球和钢段以提高研磨能力,同时减少研磨体之间的空隙,使物料在磨内的流速减慢,延长物料在磨内的停留时间,以便得到充分的研磨。
(3)如磨机出现产量低、产品细度细时,其原因可能是小钢球太多、大钢球太少而造成的。
磨内冲击破碎作用减弱,而相对研磨能力增强。
(4)若磨机产量高、产品细度又细时,说明研磨体的装载量和级配都是合理的。
2.根据磨音判断在正常喂料的情况下,一仓钢球的冲击较强,有哗哗的声音。
若第一仓钢球的冲击声音特别洪亮时,说明第一仓钢球的平均球径过大或填充率较大;若声音发闷,说明第一仓钢球的平均球径过小或填充率过低了,此时应提高钢球的平均球径和填充率。
第二仓正常时应能听到研磨体的唰唰声。
3.检查磨内物料情况在磨机正常运转、正常喂料的情况下,根据生产经验,球仓中的钢球应露出半个钢球于料面上。
如钢球外露太多,说明装载量偏多或钢球平均球径太大;反之,说明装载量偏少或钢球平均球径太小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
该水泥粉磨生产线投产近半年以来,辊压机和V型选粉机预粉磨系统显得能力不足,
成为水泥粉磨台时的首要制约因素。
主要的表现是:辊压机因辊缝差和电流差超高频繁跳停;
喂料增加时稳流仓持续涨仓。
主要的调整措施:1.调高辊缝差和电流差高限跳停值、更换磨损的侧挡板并将间隙调至最低值约15mm,以提高辊压机对喂料粒度的适应能力,大幅减少跳停故障;
2.调整V选内部阀板开度、调整风机风门开度以增大V选的通风量同时封堵V选的短路风管(提升机、皮带机等下料点收尘风管),以便最大限度的提高V选的选出率,从而提高预粉磨的产量进而提高水泥系统的产量;
3.适当提高加载压、适当调整辊缝以强化辊压机的辊压效果,以便适当提高辊压机预粉磨的产量。
以上措施实施后,水泥系统的台时逐步提高,绝对增加值约10t/h。
现在,辊压机的主要矛盾已经基本解决,降为水泥系统的次要因素,而水泥磨成为系统产量的主要制约因素。
目前的水泥系统台时,扣除配料秤约13.5%的计量误差,实际仍只有61.5t/h。
为了进一步提高系统的台时产量,除了实施必要的技术改造外,
水泥磨的研磨体级配无疑是需要重点调整的工艺方案。
以下是我
们拟定的、正在使用的级配方案。
1.原设计方案
表1:水泥磨原设计级配
规格1仓装载量体积2仓装载量体积3仓装载量体积
60 9 1.93
50 14 2.97
40 10 2.10
30 5 1.03
18*18 7.5 1.67
16*16 10.5 2.33
14*14 7.5 1.67
12*12 37 8.22
10*10 24.5 5.44
合计38 8.04 25.5 5.67 61.5 13.67
各仓Dcp 47.1 - 16.0 - 11.2 -
各仓φ*L 3.1*3705 - 3.1*2500 - 3.1*6000 - 各仓容积27.96 - 18.87 - 45.29 -
各仓填充率(%) 28.74 - 30.03 - 30.18 -
总装量125 平均填充率29.71
2.一仓方案
表2:1#磨入磨样品筛分析
筛孔尺寸(mm) 0.9 0.2 0.08 0.08以下
累计筛余(%) 4.6 33.8 51.4
分计筛余(%) 4.6 29.2 17.6
通过量(%) 95.4 66.2 48.6
表3:2#磨入磨样品筛分析
筛孔尺寸(mm) 0.9 0.2 0.08 0.08以下
累计筛余(%) 3.4 28.8 48
分计筛余(%) 3.4 25.4 19.2
通过量(%) 96.6 71.2 52
1#磨取样时产量75t/h,2#磨取样时产量68t/h,2#磨的辊压机系统未达到最佳状态。
取1#磨的入磨样品数据作筛分析曲线,得出曲线的回归方程式
利用此方程式计算出入磨物料对应于2.36、1、0.098mm等筛孔的累计筛余。
然后按通常的粒度与球径的对应关系计算研磨体级配如
下。
表4:计算方案1
筛孔尺寸mm 2.36 1 0.098 0.011 <0.011 ∑ dcp 累积筛余% 0 2.59 47.52 89.83 100
分计筛余(%) 0 2.59 44.93 42.31 10.17
相对球径mm 60 50 40 30 25
计算球量(t) 0 0.98 17.07 16.08 3.87 38 34.50
修正0.5 3 16 15 3.5 38 35.72
表5:计算方案2
0.12 0.045 0.038 <0.038 ∑ dcp
累积筛余% 43.60 62.58 65.85 100.00
分计筛余(%) 43.60 18.97 3.27 34.15
40 30 25 20
计算球量(t) 16.57 7.21 1.24 12.98 38.00 30.78
修正16 8 8 6 38 31.58
另一方面,利用上述曲线的回归方程式计算出入磨物料的平均粒径和最大粒径分别为:
d80=0.407mm,d95=0.883mm
据此算出的最大球径和平均球径仅为:
D大=27mm,D平=21mm
取大一级的钢球,即最大球取40mm。
这与上述两个计算方案是基本一致的,同时也表明必须减少60和50mm球的用量。
第三,参照声威集团的联合粉磨(辊压机带打散机)和联合预粉磨(辊压机带V选)对应水泥磨机的研磨体级配(如下表),上述方
案1是比较合适的研磨体级配方案。
表6:联合粉磨系统中的水泥磨级配
2.36 1 0.098 0.011 <0.011 ∑ dcp
相对球径mm 60 50 40 30 <25
累积筛余% 5.16 12.84 49.95 84.1 100
分计筛余(%) 5.16 7.68 37.11 34.15 15.9
计算球量(t) 0 0 0 0 0 φ=27.26
修正1 2 10 8 4 25 36
表7:联合预粉磨系统中的水泥磨级配
0.12 0.045 0.038 <0.038 ∑ dcp φ
40 30 25 20
累积筛余% 16.88 46.27 76.6 100
5.064 8.817 9.099 7.02 30 27.66 28.34
修正4 9 10 7 30 27.33
最后,鉴于目前一仓的平均球径高达47.1mm,为了工艺和操作上平稳过渡,参照方案1提出一个平均球径略大一些的折中参考方案,供选用。
表8:折中方案
2.36 1 0.098 0.011 <0.011 ∑ dcp
累积筛余% 0 2.59 47.52 89.83 100
分计筛余(%) 0 2.59 44.93 42.31 10.17
相对球径mm 60 50 40 30 25
计算球量(t) 0 0.98 17.07 16.08 3.87 38 34.50
折中方案0.5 5 15 14 3.5 38 36.51
3.三仓方案
由于我们的出磨水泥比表比金大地和坝道津市偏低,三仓的方案适当增加了φ10*10小锻的装载量,削减了φ12*12大锻的装载量,以适当降低平均球径,提高粉磨能力。
表9:三仓方案
钢锻规格(mm) 12*12 10*10
装载量(t) 30 31.5
Dcp(mm) 10.9。