2、构件承载力计算
钢筋混凝土受弯构件正截面承载力计算 (2)_OK

合力作用点相同
x=βxc
合力大小相同
fce=αfc
27
混凝土受压区等效矩形应力图系数
≤ C50
C55
C60
C6 5
C70
C75
C80
α
1.0
0.99
0.98
0.97
0.96
0.95
0.94
β
0.8
0.79
0.78
0.77
0.76
0.75
0.74
水工结构中,常常只使用较低等级的混凝土,因此规范 规定:
10
四、梁内钢筋的直径和净距
架立钢筋——设置在梁受压区,用以固定箍筋的正确位置, 并能承受混凝土收缩和温度变化产生的内应力。 箍筋——承受梁的剪力;固定纵向钢筋位置,形成钢筋笼。 侧向构造钢筋——增加梁内钢筋骨架的刚性,增强梁的抗 扭能力,承受侧向发生的温度及收缩变形。
11
四、梁内钢筋的直径和净距
Mu
fyAs
计算简图
fcbx fy As
M
D
Mu
fcbx(h0
x) 2
fy As (h0
x) 2
KM S
Mu
fcbx(h0
x) 2
fy As (h0
x) 2
32
六、基本公式的适用条件
防止发生超筋破坏
max
As fcbx x fc fc
bh0 fybh0 h0 fy
fy
相对受压区高度
x fy As fcb
x
h0
若
1
:
b
Mu
f c b x ( h0
x) 2
f y As (h0
x) 2
若
受压构件的承载力计算

受压构件的承载力计算一、梁柱的承载力计算方法对于受压构件,在弹性范围内,可以采用弹性承载力计算方法。
弹性承载力计算方法是根据梁柱的理论,主要应用弹性力学原理和应变能平衡条件进行计算。
在弹性承载力计算之外,受压梁柱的承载力还受到稳定性要求的限制。
稳定性要求主要包括屈曲的要求和稳定的要求。
稳定性承载力计算方法就是根据稳定性要求来计算的。
二、承载力计算的基本原理和方法1.构件的截面形态与材料的力学性能有关。
几何形态方面,可以通过截面形心深度、截面形态系数和截面面积等参数来描述。
力学性能方面,主要包括材料的抗压强度、屈服强度和弹性模量等参数。
2.构件的边界条件与受力特性有关。
边界条件主要包括自由端的约束、内力的约束和约束条件等。
边界条件对构件的承载力有着直接的影响,需要进行准确的分析和计算。
3.构件的荷载和荷载组合也是影响承载力计算的重要因素。
荷载包括静力荷载和动力荷载,荷载组合则是不同荷载的叠加组合。
需要根据具体情况来确定荷载和荷载组合,并进行相应的计算。
假设一个矩形柱的尺寸为300mm×400mm,材料抗压强度为250MPa,弹性模量为200 GPa。
根据以上参数,可以进行如下步骤的承载力计算。
1.计算截面形态参数:矩形柱的形心深度h=400/2=200mm形态系数α=(h/t)f/π^2=2.692.弹性承载力计算:根据梁柱的理论,弹性承载力可通过以下公式计算:Pcr=(π^2*E*I)/(kl)^2其中,E为弹性模量,I为惯性矩,kl为有效长度系数。
惯性矩I=1/12*b*h^3=1/12*300*400^3=32,000,000mm^4有效长度系数kl可根据梁柱的边界条件和约束情况进行计算。
假设矩形柱两端均固定,则kl=0.5代入以上参数,可以得到弹性承载力Pcr=200,000N=200kN。
3.稳定性承载力计算:稳定性承载力计算主要包括屈曲的要求和稳定的要求。
对于矩形柱,屈曲要求可通过欧拉公式计算,稳定的要求可通过查表确定。
第4章轴心受力构件的承载力计算

柱的长细比较大,柱的极限承载力将受侧向变形所引起的附加弯矩影响而 降低。
第4章 轴心受力构件的承载力计算
1. 受力分析及破坏特征 ⑴受压短柱 第Ⅰ阶段——弹性阶段 轴向压力与截面钢筋和混凝土的应力 基本上呈线性关系
第Ⅱ阶段——弹塑性阶段 混凝土进入明显的非线性阶段,钢筋 的压应力比混凝土的压应力增加得快, 出现应力重分布。
Asso
d cor Ass1
s
计算螺旋筋间距s, 选螺旋箍筋为
12,Assl=113.1mm2
s
d cor Assl
Asso
3.14 450 113.1 69.4mm 2303
取s=60mm,满足s ≤ 80mm(或1/5dcor)
第4章 轴心受力构件的承载力计算
截面验算 一
由混凝土压碎所控制,这一阶段是计算轴心受压构件极限强度的依据。
第4章 轴心受力构件的承载力计算
⑵受压长柱
初始偏心距
附加弯矩和侧向挠度
加大了原来的初始偏心距
构件承载力降低
破坏时,首先在凹侧出现纵向裂缝,随后混凝土被压 碎,纵筋被压屈向外凸出;凸侧混凝土出现垂直于纵 轴方向的横向裂缝,侧向挠度急剧增大,柱子破坏。
第4章 轴心受力构件的承载力计算
2.配有普通箍筋的轴心受压构件正截面承载力计算方法
f c A) N 0.9 ( f y As
N-轴向力设计值;
N
-钢筋混凝土构件的稳定系数;
f y-钢筋抗压强度设计值; fc f y A s
A s-全部纵向受压钢筋的截面面积;
f c-混凝土轴心抗压强度设计值; A -构件截面面积,当纵向配筋率大于0.03时, A改为Ac, Ac =A- A s; 0.9 -可靠度调整系数。 h
03砌体结构构件的承载力计算 02

2020/12/19
3. 局部均匀受压承载力计算 砌体截面中受局部均匀压力时的承载力按下式计
算。
Nl ≤ fAl
式中:Nl——局部受压面积A1上的轴向力设计值。 f ——砌体的抗压强度设计值,可不考虑强
2020/12/19
【例3.4】 某房屋中的双向偏心受压柱,截面尺寸 b×h=370mm×490mm,采用MU15烧结多孔砖和M5混合 砂浆砌筑,柱在两个方向的计算高度均为H0=3.0m,柱顶
截面承受的轴向压力设计值N=115kN,其作用点 e b
=0.1x=0.1×370/2=18.5 mm,eh=0.3y=0.3×490/2=73.5 mm。 试验算柱顶截面的承载力是否满足要求。
布的,称为局部均匀受压;否则,为局部非均匀受压。例 如:支承轴心受压柱的砌体基础为局部均匀受压;梁端支 承处的砌体一般为局部非均匀受压。
2020/12/19
二 、局部受压的破坏试验
通过大量的试验发现,砌体局部受压可能有三种破 坏形态。
1. 纵向裂缝发展而破坏
图(a)所示为一在中部承受局部压力作用的墙体, 当砌体的截面面积A与局部受压面积Al的比值较小时, 在局部压力作用下,试验钢垫板下1或2皮砖以下的砌体 内产生第一批纵向裂缝;
对图 (b),A0= (b+2h)h。
对图 (c),A0= (a+h)h+(b+hl-h)h1。
2020/12/19
对图 (d),A0= (a+h)h。
2020/12/19
影响局部抗压强度的计算面积A0及γ极限值
混凝土受压构件的承载力计算

0 受剪承载力计算
1
1 砌体沿体水平缝的抗剪能力为沿通缝的抗剪承载能力及作用在截面上的压力所产生的摩擦力总和。
VVAf 1.4N o d u
vd
fk
0 式中: Vd—剪力设计值
2
A—受剪截面面积 ○ fvd—抗剪强度设计值 ○ μf—摩擦系数,对实心砖砌体,μf=0.7
Nk—与受剪截面垂直的压力标准值
§17.2受压构件的承载力计算 砌体受压短构件受力状态(图17-2)
特点: (1)构件承受轴心压力时,截面上产生均匀的压应力;
(17-2a) (2)构件承受偏心压力时,压应力分布随偏心距的变化
而变化,砌体表现出弹塑性性能。 (17-2b)
(3)随着偏心距的增大,在远离偏心压力作用的截面边 缘,由受压过渡到受拉,直至破坏,仍会全截面受力。 (17-2c)
φ—轴向受压弯曲系数
拱的承载力计算
1)拱的截面承载力验算
(1)砌体拱圈截面 (2)混凝土拱圈截面 各符号意义同前。
oNdNuAfcd oNdNuAcfcd
2)拱的整体承载力(强度—稳定)验算
近似模拟直杆方法,全拱取一个轴向力和一个偏心距。
(1)砌体拱圈
oN dN u Afcd
(2)混凝土拱圈 oN dN uA cfcd
单击添加副标题
§17 圬 土结构构 件的承载
力计算
2 0 2 3
17.1 计算原则
○ 极限状态设计法设计原则是使荷载效应不利组合的设计值要小于或等于结构抗力
效应的设计值 oSRfd,ad
○ 即: ○ 式中:γo —桥梁结构重要系数
S—作用效应组合值
R(·)—构件承载力设计值函数
○ fd—材料强度设计值 ○ ad—几何参数设计值,可采用几何参数标准值 ak
第6章-受拉构件的截面承载力

e' e0 e
α1 fc fy’As’
fyAs
大偏心受拉构件正截面的承载力计算
基本公式:
e' e0 e
Nu
f y As
f
' y
As'
fcbx
Nu
e
fcbx
h0
x 2
f
' y
As'
h0 as'
As'
Ne
1
f
cbxb
h0
f
' y
h0 as'
xb 2
Nu
As
1 fcbxb Nu
e e' e0
fy’As’ fyAs
小偏心受拉构件正截面的承载力计算
基本公式:
Nu
e
f
' y
As'
h0 as'
Nue' fy As h0 as
Nu
As'
As
fy
Nue ' h0 as'
e e' e0
fy’As’ fyAs
三、偏心受拉构件斜截面受剪承载力计算
计算公式:
V
1.75
fy
f
' y
fy
As'
α1 fc fy’As’
fyAs
相关截面设计和截面复核的计算与大偏心受压构件相似,
所不同的是轴向力为轴力。
小偏心受拉构件正截面的承载力计算
小偏心受拉构件破坏特点:
轴向拉力N在As与A’s之间,全截面均 受拉应力,但As一侧拉应力较大, 一侧拉应力较小。 随着拉力增加,As一侧首先开裂,Nu 但裂缝很快贯通整个截面, As与A’s 纵筋均受拉,最后,As与A’s均屈服 而达到极限承载力。
构件承载力计算

截面面积A=370 ×490=0.1813m2<0.3m2, 强度修正系数ra=0.7+A=0.8713, 砌体强度设计值raf=0.8713×1.5=1.3N/mm2。 2)确定长边承载力影响系数
(1)确定偏心距e 偏心距e=73.5mm,
混合结构设计
一、轴心受压: β≤3时为短柱
短柱: N fA
长柱:
N 0 fA
N:轴向力设计值;
0:轴心受压的纵向弯曲系数;
f:考虑调整系数后砌体抗压强度设计值。
混合结构设计
0
cri A
fm A
cri
fm
2EI
cri
AH02
Et
d d
fm
fm (1
) fm
砖砌体: 0 460 2
β:砌体受压构件的高厚比
矩形截面 T形截面
H0 h
H0 hT
混合结构设计
H0 h
H0 hT
γβ:不同砌体材料的高厚比修正系数 对烧结普通砖、烧结多孔砖、灌孔混凝土砌块砌体γβ=1.0; 对混凝土及轻骨料混凝土砌块砌体γβ=1.1; 对蒸压灰砂砖、蒸压粉煤灰砖、细料石、半细料石砌体γβ=1.2; 对粗料石、毛石砌体γβ=1.5。
3)验算长边承载力 Nu= fA=0.51x1.3x181300=120kN>=120kN,满足承载力要
求.
4)验算短边承载力 按照轴心受压计算, 偏心距e=0,计算长度Ho=5.88m,h=370mm, β= γβ Ho/ h= 1.0×5.880/0.37=16, =0.72 , Nu=0.72×1.3×181300=170kN>120kN,满足承载力要求.
单元二 受弯构件正截面承载能力计算

单三 受弯构件正截面承载能力计算一.矩形截面单筋:计算公式ƒsd •As=ƒcd •b •xMu= ƒcd •b •ho 2•s α 其中s α=ξ(1-0.5ξ),ξ=1-s α21-=x/ho 使用条件(ξ≤ξb 避免超筋,ρ≥ρmin=max ﹛0.002,0.45sdtdf f ﹜避免少筋) 双筋:计算公式ƒsd •As=ƒcd •b •x+ƒsd ’•As ’Mu= ƒcd •b •ho 2•s α+ ƒsd ’•As ’•(ho-as) 其中s α=ξ(1-0.5ξ) ξ=1-s α21-=x/ho使用条件(ξ≤ξ b 使受拉钢筋受拉屈服 x ≥2as ’使受压钢筋受压屈服)若x<2as ’(受压钢筋不屈服) 则: Mu= ƒsd •As •(ho-as)二.单筋T 形截面第一T 形截面:(x ≤hf ’)计算公式 ƒsd •As=ƒcd •bf ’•x Mu= ƒcd •bf ’•ho 2•s α其中s α=ξ(1-0.5ξ) ξ=1-s α21-=x/ho使用条件(ξ≤ξ b 避免超筋 ρ≥ρmin 避免少筋) 第二T 形截面:(x>hf ’)计算公式 ƒsd •As=ƒcd •b •x+ƒcd •(bf ’-b)•hf ’Mu= ƒcd •b •ho 2•s α+ƒcd •(bf ’-b)•hf '•(ho-hf ’/2)其中s α=ξ(1-0.5ξ) ξ=1-s α21-=x/ho使用条件(ξ≤ξ b 避免超筋 ρ≥ρmin 避免少筋)矩形截面梁配筋设计(As )已知(b*h ,ƒcd , ƒsd , ƒsd ’, Md , ro )步骤:设受拉区钢筋层数 即一般取as (一层as=40mm 二层as=70mm 三层as=90mm)求ho (ho=h-as) 求所需Mu=roMd计算roMd 与Mumin=ƒcd •b •ho 2•ξb(1-ξb)并判断其大小若 Mu<ƒcd •b •ho 2•ξb(1-ξb)配单筋 若Mu>ƒcd •b •ho 2•ξb(1-0.5ξb)配双筋一.单筋配筋:求s α=Mu /ƒcd •b •ho 2求ξ=1-s α21- 并判断ξ<=ξb(若ξ>ξb 应重取as)求x=ξb • ho 求As=ƒcd •b •x/fsd根据As 查表选取As ,计算ρ=As/b •ho 并判断ρ>=ρmin(若ρ<ρmin 需重取As) 计算配筋的最小截面尺寸bmin 并判断bmin<b(若bmin>b 需重取As ,若无合适As 应重取as)二.双筋配筋(As As ’)令ξ=ξb 求s α=ξb (1-0.5ξb) 求x=ξb • ho若x>2as ’ 求As ’=(Mu-ƒcd •b •ho 2•s α)/ƒsd ’(ho-as ’)求As=( ƒcd •b •x+ƒsd ’•As ’)/ƒsd依据求得As As ’查表选取As As ’ 计算配筋的最小截面尺寸bmin 并判段bmin<b(若bmin>b 需重取As 或as)若x<2as ’不满足双筋配筋条件` 双筋配筋(As )求s α=[Mu-ƒsd ’•As ’(ho-as ’)]/ƒcd •b •ho 2求ξ=1-s α21- 并判断ξ<=ξb(若ξ>ξb 应重取as) 求x=ξ• ho若x>=2as ’ 求As=( ƒcd •b •x+ƒsd ’•As ’)/ ƒsd 若x<2as ’ 求As= Mu/ƒsd • (ho-as ’)依据求得As 查表选取As,计算配筋的最小截面尺寸bmin 并判段bmin<b(若bmin>b 需重取As 或as)矩形截面梁设计复核一.单筋截面复核已知(b*h ,ƒcd , ƒsd , Md , ro ,as , 钢筋配筋As)步骤:由as求ho (ho=h-as) 根据钢筋配筋查表选取As ,计算ρ=As/b•ho 并判断ρ>=ρmin(若ρ<ρmin说明截面尺寸过小)求X=ƒsd•As/ƒcd•b 求ξ=x/ho 并判断ξ<=ξb(若ξ>ξb)求sα= ξ(1-0.5ξ)求 Mu= ƒcd•b•ho2•sα比较Mu与roMd,若Mu>roMd则满足二.双筋截面复核已知(b*h ƒcd ƒsd ƒsd’ Md ro as as’钢筋配筋As’As)步骤:由as求ho (ho=h-as)求x=(ƒsd•As- ƒsd’•As’)/ƒcd•b若x<2as’Mu=ƒsd•As•(hor-as)若x>=2as’求ξ=x/ho 并判断ξ<=ξ b若ξ<=ξb求sα=ξ(1-0.5ξ)求Mu=ƒcd•b•ho2•sα+ƒsd’•As’(ho-as) 比较Mu与roMd,若Mu>roMd则满足若ξ>ξb 令ξ=ξb求sα=ξb(1-0.5ξb)求Mu=ƒcd•b•ho2•sα+ƒsd’As’•(ho-as)比较Mu与roMd,若Mu>roMd则满足T 形截面梁配筋设计As已知(T 形截面尺寸b*h bf hf ƒcd ƒsd Md ro )步骤:设受拉区钢筋层数 取as(一层as=50二层as=80三层as=100) 由as 求ho (ho=h-as) 求所需Mu=roMd比较Mu 与ƒcd •b •ho 2•s α+ ƒcd •('b f-b)'h f •(ho-'h f /2)一若Mu<=ƒcd •b •ho 2•s α+ƒcd •('b f-b)•'h f •(ho-'h f/2)为第一种T 形截面 求s α=Mu/ƒcd •b •ho 2求ξ=1-s α21- 并判断ξ<=ξb(若ξ>ξb 应重取as)求x=ξb •ho 求As=ƒsd/ƒcd •b •x根据As 查表选取As ,计算ρ=As/b •ho 并判断ρ>=ρmin(若ρ<ρmin 需重取As,若无合适As 应重取as)计算配筋的最小截面尺寸bmin 并判断bmin<b(若bmin>b 需重取As ,若无合适As 应重取as)二若Mu>ƒcd •b •ho 2•s α+ƒcd •('b f-b)•'h f •(ho-'h f/2)为第二种T 形截面 求s α=[Mu-ƒcd •('b f-b)•hf ’•(ho- 'h f /2)]/ƒcd •b •ho 2 求ξ=1-s α21-并判断ξ<=ξb(若ξ>ξb 应重取as) 求x=ξ• ho求As=[ƒcd •b •x+ƒcd •('b f-b)•'h f ]/ƒsd根据As 查表选取As ,计算ρ=As/b •ho 并判断ρ>=ρmin(若ρ<ρmin 需重取As,若无合适As 应重取as)计算配筋的最小截面尺寸bmin 并判断bmin<b(若bmin>b 需重取As ,若无合适As 应重取as)T 形截面梁配筋复核已知(T 形截面尺寸b*h 'b f 'h f ƒcd ƒsd Md ro 钢筋配筋As as ) 步骤:由as 求ho(ho=h-as) 计算ƒsd •As 与ƒcd •'b f •'h f 并比较其大小 一若ƒsd •As<=ƒcd •'b f •'h f 为第一种T 形截面求x= ƒsd •As/ƒcd •'b f 求ξ=x/ho 并判断ξ<=ξ b 求s α=ξ(1-0.5ξ) 求 Mu= ƒcd •'b f •ho 2•s α 比较Mu 与roMd,若Mu>roMd 则满足 二若ƒsd •As>ƒcd •'b f •'h f 为第二种T 形截面求x=[ƒsd •As-ƒcd •('b f-b)•'h f ]/ƒcd •b 求ξ=x/ho 并判断ξ<=ξ b 求s α= ξ(1-0.5ξ) 求Mu= ƒcd •b •ho 2•s α+ƒcd •('b f-b)•'h f •(ho-hf ’/2) 比较Mu 与roMd,若Mu>roMd 则满足单元四 受弯构件斜截面承载力计算混凝土与箍筋的斜截面抗剪承载力Vcs=321ααα*0.45*sv sv k cu f f p bh ρ,03)6.02(10+- (KN )1α:1α=1.0 进中间支点1α=0.9//2α:钢筋混凝土受弯构件2α=1.0预应力钢筋混凝土2α=1.25//3α=1.1//P=100ρ当ρ>2.5时,取ρ=2.5//sv ρ箍筋配筋率sv ρ=sv A /(v s •b)//sv f 不宜大于280MPa弯起钢筋的斜截面抗剪承载力 :vsb =0.75*∑∙∙∙-s sb sd A f θsin 103 箍筋和弯起钢筋的斜截面抗剪承载力:d V 0γ<=321ααα*0.45*sv sv k cu f f p h b ρ,03)6.02(10+∙-+0.75*∑∙∙∙-s sb sd A f θsin 103 适用条件:(上限d V 0γ<=0.51*0,310h b f k cu ∙∙∙-/下限d V 0γ≤0.5*02310h b f td ∙∙∙∙-α(KN)/箍筋最小配筋率:[R235(Q235) sv ρ≥0.0018 ],[HRB335 sv ρ≥0.0012] )受弯构件斜截面抗剪配筋设计条件(d V 0γ>0.50*02310h b f td ∙∙∙∙-α(KN)) 一剪力取值规定箍筋设计计算 求箍筋配筋率sv ρ=kcu sv d f f p h b V '202622322212'0)6.02(1045.0)(+**-αααξγ(ξ>=0.6)预先选定箍筋种类与直径即(sv A ) / 求箍筋间距Sv=bA sv sv∙ρ 弯起钢筋设计计算:sbi A =)(sin 1075.0230mm f V ssd sbiθγ∙∙*-斜截面抗剪承载力复核步骤:一1复核钢筋混凝土梁是否满足公式d V 0γ<=0.51*0,310h b f k cu ∙∙∙-(KN)若不符合,应考虑加大截面尺寸或提高混凝土强度等2当钢筋混凝土中配箍筋和弯起钢筋时按公式d V 0γ<= Vcs+ vsb 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求.
4)验算短边承载力 按照轴心受压计算, 偏心距e=0,计算长度Ho=5.88m,h=370mm, β= γβ Ho/ h= 1.0×5.880/0.37=16, =0.72 , Nu=0.72×1.3×181300=170kN>120kN,满足承载力要求.
查表得,f 2.22N/mm 2
4) 但对独立柱又是双排组砌应乘以强度降低系数0.7,则
fA =0.87 ×0.94×0.7×2.22 ×400×600=305KN>288KN 安
全
混合结构设计
3.2、局部受压
支承上部屋架、梁、柱时,支承处砌体即受到局部压力 作用。
砌体的局部受压抗压强 度大于均匀受压抗压强度。
大梁在垫块上的支承长度可按下式计算:
a0 1
hc f
式中:hc——梁的截面高度;
1——刚性垫块的影响系数,按下表取值;
0/f 1
0 5 .4
0 .2 5 .7
0 .4 6 .0
0 .6 6 .9
0 .8 7 .8
e Nlel N0 Nl
el
ab 2
0.4a0
N 0N l 1A bf 10.35 A0 1 Ab
3)承载力验算 Nu= fA=0.38× 1.3 ×666200 =329KN>320KN, 满足承载力要求。
例3 由混凝土小型空心砌块砌筑独立柱截面尺寸为400×600mm,
砌块的强度等级MU10,混合砂浆强度等级Mb5,柱高3.6M,两端 为不动铰支座。柱顶承受轴向压力标准值Nk=225KN(其中永久荷 载180KN,已包括柱自重),施工质量为B级,试验算柱的承载力。 解:要点:
解:1)确定砌体强度f MU10烧结普通砖, M5混合砂浆,查表,f=1.5N/mm2,
截面面积A=370 ×490=0.1813m2<0.3m2, 强度修正系数ra=0.7+A=0.8713, 砌体强度设计值raf=0.8713×1.5=1.3N/mm2。 2)确定长边承载力影响系数
(1)确定偏心距e 偏心距e=73.5mm,
(2)确定偏心距e e=M/N=38400000/320000=120mm, y=0.413mm,e=120<0.6y,可行。
(3)计算高厚比β 计算长度Ho=6.8m,hT=566mm, 烧结普通砖γβ=1.0 , β= γβ Ho/ hT =1.0x6.8/0.566=12。
(4)确定承载力影响系数 e/hT=120/566=0.212, β=12, 查表得: =0.38,
1——垫块外砌体面积的影响系数,取1=0.8 ,但不小于1.0; 计算公式同前,局压面积为垫块的面积。
当垫块与梁整浇时,仍按上述方法计算。
垫块的构造要求:
(1)垫块的厚度不宜小于180mm。 (2)在带壁柱墙的壁柱内设置垫块时,其局压承载 力降低,因此其计算面积不考虑翼缘部分,只取壁 柱范围内的面积。同时壁柱上垫块深入翼墙的长度 不应小于120mm。
fmfm(1fm)
砖砌体:
04620fm(1fc mr)iH (i0)2
1
0
1 1
1
1
混合结构设计
14602 fm(Hi0)2
矩形截面: i h 12
0
1 1
1
1
H0
h
1
370
fm
1
2
0
1
1 1
2
1
1 2
370 fm
混合结构设计
η:与砂浆强度等级有关的系数
砂浆强 度等级
≥M5
M2.5
)2
i
1
1 1 12(
e
)2
h
混合结构设计
e 二、偏心受压:
1、偏心受压长柱:
N fA
1
e+ei
1 (e ei )2
i
:高厚比β和轴向力的偏心距e对受压构
件承载力的影响系数
1
1 (ei
)2
0
i
ei i
1 1
0
混合结构设计
受压构件计算:
N fA
:高厚比β和轴向力的偏心距e对受压构件承载力的影响
()
()
()
第三节 无筋砌体构件承载力计算
混合结构设计
砌体局部受压有局部均匀受压和非均匀受压
一)均匀局部受压
Nl f Al
Nl:作用在局部受压面积上的轴向力设计值; f:砌体的抗压强度设计值,强度调整系数γa可不考虑, 即取1.0; Al:局部受压面积;
第三节 无筋砌体构件承载力计算
混合结构设计
混合结构设计
e
二、偏心受压:
1、偏心受压短柱:
NNeyf
AI
实验表明:砌体结构的承载力高于上式计算出的数值。
1、弹塑性,压应力分布丰满。 2、开裂,使偏心距减小。 3、实际受压的砌体,呈现局部受压性质。
混合结构设计
e
N1fA
1 :轴向力的偏心距e对受压构件承载力的影响系数
矩形截面:Biblioteka 111 (e
主要是由于局部压力扩 散到未直接承受压力的较大 范围砌体上及周围砌体对受 压部位的约束作用。
第三节 无筋砌体构件承载力计算
混合结构设计
砌体局部受压有三种破坏形态: 因竖向裂缝的发展而破坏:A0/Al不太大 ;图(b) 劈裂破坏 : A0/Al 太大 ;图(c) 局部受压面积下砌体压碎破坏:局部受压砌体强度较低。
N0 fA
2.轴向力的偏心距应符合下列限值要求,即 e≤0.6y
式中y为截面重心至轴向力所在偏心方向截面受压边缘 的距离。(该规定的目的是:截面受拉边不产生过大的 裂缝)
例题1:截面尺寸为370×490mm的砖柱,烧结普通砖的强度等 级为MU10,混合砂浆强度等级为M5,柱高5.88mm,两端为不动 铰支座。柱顶承受作用在截面长边方向的竖向压力设计值 N=120KN,偏心距e=73.5mm,施工质量为B级;请验算该柱的 受压承载力。
(3)当现浇垫块与梁整浇时,垫块可在梁高范围内 设置。
在带壁柱墙的壁柱内设刚性垫块时,由于翼墙多数位于压应力较 小边,翼墙参加工作的程度有限,所以计算面积A0应取壁柱范围 内面积,而不计翼缘部份。
bb
1 ≥120
≤tb
≤tb
N
Nl
1
0.4a 0
ab
1-1
tb≥180
例 试验算外墙上梁端砌体局部受压承载力。已知梁截面尺寸 b h 200 400mm,梁支承长度 a 240mm ,荷载设计值产生的支座反力 Nl 80kN ,墙体的上部荷载 Nu 260 KN ,窗间墙截面 1200×370mm,采 用 MU10 砖,M2.5 混合砂浆砌筑。
固定的而是一个变量--“内拱卸荷作用”。
混合结构设计
1、有上部荷载时,梁端局压强度计算:
N0Nl fA l
Ψ—上部荷载的折减系数; 1.50.5A0 0
Al
N0—局部受压面积内上部轴向力设计值(N)
N0 0Al
σ0—上部平均压应力设计值(N/mm2); η—梁端底面压应力图形的完整系数,一般取=0.7,
例2 某带壁柱的窗间墙,截面尺寸如图,壁柱高5.4m,
计算高度为6.8m,用MU10粘土砖及M2.5混合砂浆砌筑。 控制截面内力为N=320kN,M=38.4kNm,弯矩方向是翼 缘受拉,施工质量为B级,验算该墙体的承载力。
解: 1)确定砌体强度f
MU10烧结普通砖, M2.5混合砂浆,查表, f=1.3N/mm2, 截面面积A=2000×240+380×490=0.666200m2 >0.3m2,强度修正系数ra=1.0, 砌体强度设计值raf=1.0x1.3=1.3N/mm2。 2)确定承载力影响系数 (1)计算截面折算厚度hT A=0.666200m2, 截面重心位置(y1为翼缘外皮到中心线的距离):
y 1 2 0 20 4 16 0 0 2 4 6 0 9 3 6 ( 2 0 8 2 4 1 0 0 )0 9 2 0 0 m 07 m
y262 200 4 71 m3m
截面惯性矩:I17.4 4180 m4m
回转半径: i I 162mm,
A
截面折算厚度:hT3.5i56m6m,
对于过梁和墙梁η =1.0;γ —按前述公式计算。
Al :局部受压面积, Al =a0*b
第三节 无筋砌体构件承载力计算
2 垫块下局部受压
当梁端局压强度不满足要求或墙上搁较大梁、桁架 时,常设置垫块(实际为刚性基础) 。
ab
垫块一般都做成刚性的。所谓刚性垫块,要求垫 块从梁边挑出的长度不大于垫块的厚度。
第三节 无筋砌体构件承载力计算
混合结构设计
二)梁端局部受压 梁端局部受压时有两个特点:
1、梁端存在一个有效支承 长度,而且在有效支承长度 上由于梁传来的荷载所产生 的压应力不是均匀分布的, 而为曲线形分布。
Nl θ
0.4a0
a0
第三节 无筋砌体构件承载力计算
根据试验得到,梁端的有效支承长度可按下式计算:
1) 以恒载为主的组合起控制作用: N=1.35×180+0.7×1.4×45=288KN
2) H0 3.69
b 0.4
因为为砌块砌体,查表时应先对 进行修正,修正系数为1.1,
即 为9.9,查表得
0.87,
3) 截面面积:A=0.4×0.6=0.24m2<0.3m2,应对强度设计值进行
调整,调整系数: a =0.24+0.7=0.94
η
0.0015 0.002
0 0.009