北师大九年级上册数学《第三章概率的进一步认识》检测卷含答案
第3章 概率的进一步认识 北师大版数学九年级上册单元测试卷(含答案)

第三章 概率的进一步认识时间:90分钟 满分:100分一、选择题(共8小题,每小题3分,共24分.每小题有四个选项,其中只有一个选项符合题意)1.用频率估计概率,可以发现抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,下列说法正确的是( )A.每两次必有1次正面向上B.可能有5次正面向上C.必有5次正面向上D.不可能有10次正面向上2.[教材变式P 61练习](2021·辽宁阜新中考)小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是( )A.12 B.23 C.56 D.163.(2022·山东济南历城区期末)一个不透明的袋子里装有白棋子、黑棋子共20个,这些棋子除颜色外都相同.小明从中随机摸出一颗棋子,记下颜色后放回,通过多次重复试验发现,摸出白棋子的频率稳定在0.6,则袋子中白棋子的个数最有可能是( )A.5B.8C.12D.154.(2022·安徽宿州期中)2022年冬奥会吉祥物为“冰墩墩”,冬残奥会吉祥物为“雪容融”.现有三张正面印有吉祥物的不透明卡片,卡片除正面图案不同外,其余均相同,其中两张正面印有“冰墩墩”图案,一张正面印有“雪容融”图案,将三张卡片正面向下洗匀,从中随机一次性抽取两张卡片,则抽出的两张卡片正面都印有“冰墩墩”图案的概率是( )A.13 B.12 C.49 D.235.(2021·重庆期末)一个不透明的袋子中装有3个白球,2个黑球,它们除颜色外都相同.将球摇匀后,从中随机摸出一个球,记下颜色后不放回,再随机摸出一个球.两次摸到的球颜色相同的概率是( )A.23 B.25 C.1325 D.13206.(2022·河南许昌一中月考)某市教委部门高度重视自然灾害中的安全教育,要求各级各类学校从认识安全警示标志入手开展安全教育活动.某数学兴趣小组准备了4张印有安全警示标志的卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张卡片,则这两张卡片上的正面图案中有一张是轴对称图形的概率是( )A.12B.13C.14D.167.(2021·辽宁铁岭期末)若从1,2,3,4这四个数字中任选一个记为a ,再从这四个数字中任选一个记为c ,则关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为( )A.14B.13C.12D.238.(2022·江苏南京鼓楼区期中)如图是用画树状图的方法画出的某个试验的所有可能发生的结果,则这个试验不可能是( )A.在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球B.小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒C.从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答D.体育测试中,随机从足球、篮球、排球三个项目中选择两个项目二、填空题(共5小题,每小题4分,共20分)9.(2022·北京期末)经过某个十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,那么甲汽车经过这个十字路口时,向右转的概率是 .10.为积极响应“无偿献血,传递温暖”的号召,某高校一寝室的4个同学参与到爱心献血的活动中,他们其中有2个A 型血,1个B 型血,还有1个O 型血,现从该寝室随机抽取2个同学参与第一批次献血,则2个同学都是A 型血的概率为 .11.(2021·广东汕头潮阳区模拟)在如图所示的电路图中,随机闭合开关S 1,S 2,S 3中的两个,能让灯泡L 1发光的概率是 .12.(2022·辽宁锦州期中)一张纸片上有一个不规则的图案,小雅想了解该图案的面积是多少,她采取了以下的试验办法:用一个长为5 cm,宽为3 cm的长方形,将不规则图案围起来如图(1)所示,然后在适当位置随机地向长方形区域扔小球,并记录小球落在不规则图案内的次数(球落在界线上或长方形区域外不计入试验结果),她将若干次有效试验的结果绘制成了图(2)所示的折线统计图,由此她估计此不规则图案的面积为 cm2.(结果保留整数)图(1)图(2)13.(2021·江苏镇江中考)一只不透明的袋子中装有1个黄球,现放若干个红球进去,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,若使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为 .三、解答题(共6小题,共56分)14.(8分)近几年,各式各样的共享经济模式在各个领域迅速普及应用,如图是某同学收集的四个共享经济领域的图标,将收集到的图标制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同),背面朝上,洗匀放好.(1)从中随机抽取一张,抽到的卡片上的图标恰好是“共享知识”的概率为 ;(2)从中随机抽取一张卡片,放回后洗匀,再从中随机抽取一张卡片,请用列表或画树状图的方法求抽到的两张卡片上的图标恰好是“共享出行”和“共享知识”的概率.15.(8分)某商场在“五一”促销活动中规定,顾客每消费100元就能获得一次抽奖机会.为了活跃气氛,设计了两种抽奖方案.方案一:转动转盘A一次,指针指向红的部分可领取一份奖品.方案二:转动转盘B两次,两次指针都指向红的部分可领取一份奖品.(两个转盘都被平均分成3份,若指针指向分界线,则重转)(1)转动一次转盘A,获得奖品的概率是 ;(2)如果你获得一次抽奖机会,你会选择哪种方案?请用列表法或画树状图法说明理由.16.(9分)(2022·辽宁抚顺新抚区期末)一个黑箱子里装有红、白两种颜色的球共4只,它们除颜色外,其他都相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,再把它放回,不断重复试验,根据多次试验结果画出如下的折线统计图.(1)当试验次数很大时,摸到白球的频率将会接近 (精确到0.01),从箱子中摸一次球,摸到红球的概率是 ;(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用画树状图法或列表法求摸到一个红球和一个白球的概率.17.(10分)甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)请用画树状图法或列表法求出恰好选中甲、乙两位同学的概率;(2)请利用若干个除颜色外其他都相同的球,设计一个摸球试验(至少摸两次),并根据该试验写出一个发生概率与(1)中所求概率相同的事件.18.(10分)(2021·黑龙江大庆期中)如图(1),一枚质地均匀的正四面体骰子,它有四个面,每个面上分别以1,2,3,4标号;如图(2),等边三角形ABC的三个顶点处各有一个圆圈.明明和亮亮想玩跳圈游戏,游戏的规则为:游戏者从圈A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)明明随机掷一次骰子,她跳跃后落到圈A的概率为 ;(2)明明和亮亮一起玩跳圈游戏:明明随机投掷一次骰子,亮亮随机投掷两次骰子,以最终落到圈A为胜者.这个游戏公平吗?请说明理由. 图(1) 图(2)19.(11分)(2021·辽宁本溪期末)为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A:非常了解,B:了解,C:了解较少,D:不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:(1)此次共调查了 名学生;扇形统计图中D所在扇形的圆心角为 ;(2)将上面的条形统计图补充完整;(3)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数;(4)现有“非常了解”的男生2名,女生2名,从这4名学生中随机抽取2名学生进行座谈,刚好抽到同性别学生的概率是多少?第三章 概率的进一步认识12345678BD C A B A C B9.1310.1611.1312.613.31.B 抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,可能有5次正面向上.2.D 画树状图如图所示,可知共有6种等可能的结果,恰好拿到红色帽子和红色围巾的结果有1种,∴恰好拿到红色帽子和红色围巾的概率为16.3.C 设袋子中白棋子有x 个,根据题意,得x20=0.6,解得x=12,∴袋子中白棋子的个数最有可能是12.4.A 把两张正面印有“冰墩墩”图案的卡片分别记为A 1,A 2,正面印有“雪容融”图案的卡片记为B,根据题意画树状图如下:从树状图可知,共有6种等可能的结果,其中抽出的两张卡片正面都印有“冰墩墩”图案的结果有2种,故P (抽出的两张卡片正面都印有“冰墩墩”图案)=26=13.5.B 画树状图如图:由树状图可知,共有20种等可能的结果,两次摸到的球颜色相同的结果有8种,∴两次摸到的球颜色相同的概率为820=25.6.A 把4张卡片从左到右依次标记为A,B,C,D,画树状图如图所示:由树状图可知,共有12种等可能的结果,因为只有C 卡片上的正面图案是轴对称图形,所以这两张卡片上的正面图案中有一张是轴对称图形的结果有6种,故P (这两张卡片上的正面图案中有一张是轴对称图形)=612=12.7.C 画树状图如图:由树状图可知,共有16种等可能的结果,其中使Δ=42-4ac<0,即ac>4的结果有8种,∴关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为816=12.8.B 在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球,设A ,B 表示黑球,C 表示白球,则可画出题中的树状图;从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答,设A ,B 表示男生,C 表示女生,则可画出题中的树状图;体育测试中,随机从足球、篮球、排球三个项目中选择两个项目,设A 表示足球,B 表示篮球,C 表示排球,则可画出题中的树状图;而小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒,设A ,B ,C 分别表示三款盲盒,树状图为:9.1310.16 列表如下:AA B O A(A,A)(A,B)(A,O)A(A,A)(A,B)(A,O)B(B,A)(B,A)(B,O)O (O,A)(O,A)(O,B)由表可知共有12种等可能的结果,其中2个同学都是A 型血的结果有2种,∴P (2个同学都是A 型血)=212=16.11.13 根据题意画出树状图如下.由树状图可知,共有6种等可能的情况,其中能让灯泡L 1发光的情况有2种,即S 1S 2,S 2S 1,所以能让灯泡L 1发光的概率为26=13.12.6 假设不规则图案的面积为x cm 2,由题意得长方形的面积为15 cm 2,当事件A 试验次数足够多,即样本足够大时,其频率可估计事件A 发生的概率,故由题中折线统计图可知,小球落在不规则图案内的概率大约为0.4,所以x 15=0.4,解得x=6,所以估计此不规则图案的面积为6 cm 2.13.3 假设袋中的红球个数为1,此时袋中有1个黄球、1个红球,搅匀后从中任意摸出两个球,P (摸出一红一黄)=1,P (摸出两红)=0,不符合题意;假设袋中的红球个数为2,画树状图如下:由树状图可知,共有6种等可能的结果,其中两次摸到红球的结果有2种,摸出一红一黄的结果有4种,∴P (摸出一红一黄)=46=23,P (摸出两红)=26=13,不符合题意;假设袋中的红球个数为3,画树状图如下:由树状图可知,共有12种等可能的结果,其中两次摸到红球的结果有6种,摸出一红一黄的结果有6种,∴P (摸出一红一黄)=P (摸出两红)=612=12,符合题意,∴放入的红球个数为3.14.【参考答案】(1)14(3分)(2)根据题意画出如图所示的树状图:由树状图可知,共有16种等可能的结果,其中抽到的两张卡片上的图标是“共享出行”和“共享知识”的结果有2种,所以抽到的两张卡片上的图标是“共享出行”和“共享知识”的概率是216=18.(8分)15.【参考答案】(1)13(3分)(2)选择方案二.(4分)理由:画树状图如下.由树状图可知,共有9种等可能的结果,其中两次指针都指向红的部分的结果有4种,所以P (转动转盘B 两次,领取一份奖品)=49.(6分)由(1)知转动转盘A 一次,领取一份奖品的概率是13,因为13<49,所以选择方案二.(8分)16.【解题思路】(1)当试验次数达到1 500次时,摸到白球的频率接近于0.75,由此可估计摸到红球的概率;(2)先根据(1)的结论求出白球的个数和红球的个数,再列表得出所有等可能的结果,从中找到符合条件的结果,进而可求得概率.【参考答案】(1)0.75 14(4分)解法提示:由折线统计图可知,当试验次数很大时,摸到白球的频率将会接近0.75,从箱子中摸一次球,摸到红球的概率为1-0.75=0.25=14.(2)由(1)知,箱中白球的个数为4×0.75=3,则红球的个数为4-3=1,列表如下:白白白红白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)红(白,红)(白,红)(白,红)由表知,共有12种等可能的结果,其中摸到一个红球和一个白球的结果有6种,∴摸到一个红球和一个白球的概率为612=12.(9分)17.【参考答案】(1)根据题意,画树状图如下: (3分)由树状图,可知共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种,所以P (恰好选中甲、乙两位同学)=212=16.(5分)(2)答案不唯一.如:在一个不透明的袋子中,放入四个除颜色外其他都相同的球,它们的颜色分别为白、黄、粉、橙,从袋中随机摸出一个球记下颜色,不放回,再从袋中随机摸出一个球,记下颜色.事件:两次摸出的球一个是白球,一个是粉球.(10分)18.【参考答案】(1)14(3分)(2)这个游戏不公平.(4分)理由:画树状图如图,共有16种等可能的结果,其中亮亮随机投掷两次骰子,最终落到圈A 的结果数为5,即共跳3个边长或6个边长,所以P (亮亮随机投掷两次骰子,最终落回到圈A )=516.(8分)因为14<516,所以这个游戏不公平.(10分)19.【参考答案】(1)120 54°(2分)解法提示:(25+23)÷40%=120(名),360°×10+8120=54°.(2)D 所占的百分比为(10+8)÷120×100%=15%,A 中的人数为120×(1-40%-20%-15%)=30(名),其中男生有30-16=14(名),C 中的人数为120×20%=24(名),其中女生有24-12=12(名).补全条形统计图如图所示:(4分)(3)800×(1-40%-20%-15%)=200(名),答:估计对食品安全知识“非常了解”的学生的人数为200.(7分)(4)画树状图:由树状图可知,共有12种等可能的结果,抽到同性别学生的结果有4种,所以P (刚好抽到同性别学生)=412=13.(11分)。
第3章概率的进一步认识练习2024-2025学年北师大版九年级数学上册

北师大版九年级数学上册第三章过关检测卷(九年级上册)一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求)1.小明和同学做“抛掷硬币”的试验获得的数据如下表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近A.20B.300C.500D.8002.用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是( )。
A.种植10棵幼树,结果一定是“有9棵幼树成活”B.种植 100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C.种植10n 棵幼树,恰好有“n棵幼树不成活”D.种植n 棵幼树,当n越来越大时,种植幼树成活的频率会越来越稳定于0.93.如图,A是某公园的进口,B,C,D是三个不同的出口,小明从A处进入公园,那么从B,C,D三个出口中恰好在C出口出来的概率为()A.14B. 12C. 13D. 23 4.某市将垃圾分为了四类:可回收垃圾、餐厨垃圾、有害垃圾和其他垃圾.现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,要投放正确的概率是 ( )A. 16B.18C. 112D. 1165.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的试验最有可能的是( )A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一枚质地均匀的正六面体骰子,向上的面的点数是5D.抛一枚质地均匀的硬币,出现反面朝上6.有三张正面分别写有数字一2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a 的值,然后把这张放回去,再从三张卡片中随机抽一张,以其正面的数字作为b 的值,则点(a,b)在第一象限的概率为( )A. 16B.13C. 12D. 49 7.如图是两个可以自由转动的转盘,其中一个转盘平均分为4份,另一个转盘平均分为3份,两个转盘分别标有数字,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为5的概率是()A.12B.13C.14D.158.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到白色球的频率稳定在85%左右,则口袋中红色球可能有( )A.34个B.30个C.10个D.6个9.在一个不透明的袋子中装有20个蓝色小球、若干个红色小球和10个黄色小球,这些球除颜色不同外其余均相同,小李通过多次摸取小球试验后发现,摸取到红色小球的频率稳定在0.4左右,若小李在袋子中随机摸取一个小球,则摸到黄色小球的概率为()A.15B.25C.27D.52110.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是( )A.16B.13C.14D.1211.如图,在水平地面上的甲、乙两个区城分别由若干个大小完全相同的黑色、白色等边三角形瓷砖组成.小红在甲、乙两个区域内分别随意抛一个小球,P(甲)表示小球停留在甲区域中黑色部分的概率,P(乙)表示小球停留在乙区域中黑色部分的概率.则下列说法正确的是( )A.P(甲)<P(乙)B.P(甲)>P(乙)C.P(甲)=P(乙)D.P(甲)与P(乙)的大小关系无法确定12.一个不透明的布袋里装有2个白球、3个黄球,它们除颜色外其他完全相同,将球摇匀后,从中随机摸出一球不放回,再随机摸出一球,则两次摸到的球颜色相同的概率是( )A.12B.25C.925D.325二、填空题(本大题共4个小题,每小题3分,共12分)13.在一个不透明的盒子中装有a个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在 20%左右,则a的值约为。
北师大九年级上册数学《第三章概率的进一步认识》检测卷含答案

第三章检测卷时间:120分钟 满分:150分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共45分)1.同时抛掷两枚1元的硬币,菊花图案都朝上的概率是( ) A.12 B.13 C.14 D.152.有一新娘去商店买新婚礼服,购买了不同款式的上衣2件,不同颜色的裙子3条,则搭配衣服所有可能出现的结果为( )A .2种B .3种C .5种D .6种3.在抛掷一枚硬币的试验中,某小组做了1000次试验,最后出现正面的频率为0.496,此时出现反面的概率约为( )A .0.496B .0.504C .0.500D .不能确定4.从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是( )A.13B.23C.14D.125.在数据1,-1,4,-4中,任选两个数据,均是一元二次方程x 2-3x -4=0的根的概率是( ) A.16 B.13 C.12 D.146.在一个不透明的袋子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中红球的个数约为( )A .4个B .6个C .8个D .12个7.两道单选题都含A 、B 、C 、D 四个选项,瞎猜这两道题,恰好全部猜对的概率是( )A.12B.14C.18 `D.1168.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.169.如图的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( ) A.825 B.625 C.425 D.1925第9题图10.有两双大小、质地相同、仅有颜色不同的拖鞋(分左右脚,可用A 1、A 2表示一双,用B 1、B 2表示另一双)放置在卧室地板上.若从这四只拖鞋中随机取出两只,恰好配成相同颜色的一双拖鞋的概率是( )A.12B.13C.14D.1611.小明从家里出发到学校共经过3个路口,每个路口都有红绿灯,如果红灯亮的时间为20秒,绿灯亮的时间为40秒,那么小明从家里出发到学校一路通行无阻的概率是( )A.23B.49C.827D.2912.如图,有三张卡片,它们背面完全相同,现将这三张卡片背面朝上洗均匀后随机抽取一张,以其正面的数字作为a 的值,放回后再从中随机抽取一张,以其正面的数字作为b 的值,则点(a ,b )在第三象限的概率是( )A.49B.13C.12D.23第12题图13. 有四张分别画有线段、等边三角形、平行四边形和正方形的四个图形的卡片,它们的背面都相同,现将它们背面朝上,从中翻开任意一张的图形是中心对称图形,但不是轴对称图形的概率是( )A.14B.12C.34D .1 14.书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是( ) A.310 B.625 C.925 D.3515.两个正四面体骰子的各面上分别标有数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( )A.14B.316C.34D.38二、填空题(每小题5分,共25分)16.做任意抛掷一只纸杯的重复试验,记录杯口朝上的次数,获得如下数据:估计任意抛掷一只纸杯,杯口朝上的概率约是 .17.一个不透明的口袋里有10个黑球和若干个黄球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球有 个.18.在m 2□6m □9的“□”中任意填上“+”或“-”号,所得的代数式为完全平方式的概率为 . 19.“十一”黄金周期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有两条公路,乙地到丙地有三条公路.每一条公路的长度如图所示(单位:km).梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是 .20.已知关于x 的一元二次方程x 2+bx +c =0.从-1,2,3三个数中任取一个数,作为方程中b 的值.再从剩下的两个数中任取一个数作为方程中c 的值.能使该一元二次方程有实数根的概率是 .三、解答题(共80分)21.(8分)一只箱子中装有红、黑两种圆珠笔共8000支,为了估计出其中红色圆珠笔的数量,随机抽出20支圆珠笔,记下其中红色圆珠笔的数量再放回,作为一次试验.重复上述试验多次,发现平均每20支圆珠笔中有5支红色圆珠笔,请你由此估计箱子中红色圆珠笔的数量.22.(8分)小明和小亮用如图所示的两个转盘做配紫色游戏,游戏规则是:分别转动两个转盘,若其中一个转盘转出红色,另一个转出蓝色,则可以配成紫色,此时小明得一分,否则小亮得一分.(1)用树状图或列表法求出小明获胜的概率;(2)这游戏对双方公平吗?请说明理由.若不公平,如何修改规则才能使游戏对双方公平?23.(10分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.(1)求袋子中白球的个数(请通过列式或列方程解答);(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率(请结合树状图或列表解答).24.(12分)近几年“密室逃脱俱乐部”风靡全球.下图是俱乐部的通路俯视图,小明进入入口后,任选一条通道.(1)他进A 密室或B 密室的可能性哪个大?请说明理由(利用树状图或列表来求解); (2)求小明从中间通道进入A 密室的概率.25.(12分)有两部不同型号的手机(分别记为A ,B )和与之匹配的2个保护盖(分别记为a ,b )(如图所示)散乱地放在桌子上.(1)若从手机中随机取一部,再从保护盖中随机取一个,求恰好匹配的概率; (2)若从手机和保护盖中随机取两个,用树状图法或列表法,求恰好匹配的概率.26.(14分)王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球试验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)根据上表数据估计从袋中摸出一个球是黑球的概率是;(2)估算袋中白球的个数;(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树状图或列表的方法计算他两次都摸出白球的概率.27.(16分)体育课上,小明、小强、小华三人在学习训练踢足球,足球从一人传到另一人就记为踢一次.(1)如果从小强开始踢,经过两次踢后,足球踢到了小华处的概率是多少(用树状图表示或列表说明);(2)如果踢三次后,球踢到了小明处的可能性最小,应从谁开始踢?请说明理由.上册第三章检测卷1.C 2.D 3.B 4.A 5.A 6.C7.D8.A9.B10.B11.C12.A13.A14.A解析:将三本小说分别记作“红1”“红2”“红3”,两本散文分别记作“白1”“白2”,画树状图如下:总共有20种可能的结果,每种结果出现的可能性相同.其中,抽取2本都是小说的结果有6种,∴从中随机抽取2本都是小说的概率为620=310.故选A.15.A∴一共有16种情况,每种情况出现的可能性相同,着地的面所得的点数之和等于5的有4种,∴着地的面所得的点数之和等于5的概率为416=14.故选A. 16.0.22 17.15 18.12 19.1620.12解析:画树状图如下:可以看到b ,c 的值共有6种等可能情况,其中分别求得Δ1=(-1)2-4×1×2=-7<0,Δ2=(-1)2-4×1×3=-11<0,Δ3=22-4×1×(-1)=8>0,Δ4=22-4×1×3=-8<0,Δ5=32-4×1×(-1)=13>0,Δ6=32-4×1×2=1>0,所以能使该一元二次方程有实数根的概率为36=12.21.解:∵每20支圆珠笔中有5支红色圆珠笔,∴箱子中红色圆珠笔占520=14,(4分)∴估计箱子中红色圆珠笔有8000×14=2000(支).(8分)22.解:(1)列表如下:共有6种等可能的结果,(3分)其中可以配成紫色的结果数为1,所以小明获胜的概率为16;(4分)(2)不公平.(5分)因为P (配成紫色)≠P (没配成紫色).(6分)修改:配成紫色小明得5分,否则小亮得1分.(8分)23.解:(1)设袋子中白球有x 个,根据题意得x x +1=23,解得x =2,(3分)经验证,x =2是原分式方程的解,∴袋子中白球有2个;(5分)(2)画树状图如下:(8分)∵共有9种等可能的结果,两次都摸到相同颜色的小球有5种情况,∴两次都摸到相同颜色的小球的概率为59.(10分) 24.解:(1)画出树状图如下:(5分)∴由图可知,小明进入游戏区后一共有6种不同的可能路线.∵小明是任选一条道路,∴走各种路线的可能性认为是相等的,而其中进入A 密室有2种可能,进入B 密室有4种可能,(8分)∴进入B 密室可能性较大;(9分)(2)由(1)可知小明从中间通道进入A 密室的概率为16.(12分)25.解:(1)∵从手机中随机抽取一部,再从保护盖中随机取一个,有Aa ,Ab ,Ba ,Bb 四种等可能情况.恰好匹配的有Aa ,Bb 两种情况,(4分)∴P (恰好匹配)=24=12;(6分)(2)画树状图如下:(9分)∵共有12种等可能的结果,恰好匹配的有4种情况,(10分)∴P (恰好匹配)=412=13.(12分)26.解:(1)0.25(3分)(2)设袋中白球为x 个,依题意有11+x=0.25,解得x =3,经检验,x =3是原方程的解.(6分) 答:估计袋中有3个白球;(7分)(3)用B ,W ,W总共有16种等可能的结果,其中两个球都是白球的结果有9种,所以摸到两个球都是白球的概率为916.(14分)27.解:(1)画树状图如下:(4分)∴P (足球踢到小华处)=14;(5分)(2)应从小明开始踢.(6分) 画树状图如下:(10分)若从小明开始踢,P (踢到小明处)=28=14;(12分)同理,若从小强开始踢,P (踢到小明处)=38;(14分)若从小华开始踢,P (踢到小明处)=38.∵14<38,∴应从小明开始踢.(16分)。
北师版九年级数学上册 第三章 概率的进一步认识 综合测试卷(含答案)

北师版数学九年级上册 第3章 概率的进一步认识综合测试卷(时间90分钟,满分120分)第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1. 将一枚质地均匀的硬币先后抛掷两次,则至少出现一次正面向上的概率为( ) A.14 B.12 C.34 D.232. 笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1~10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是( ) A.110 B.15 C.310 D.253.如图是两个可以自由转动的均匀圆盘A 和B ,A ,B 分别被均匀地分成三等份和四等份,同时自由转动圆盘A 和B ,圆盘停止后,指针分别指向的两个数字的积为偶数的概率是( ) A.34 B.23 C.12 D.134.小明的袋中有红、黄、蓝、白球若干个,晓晓又放入5个黑球,通过多次摸球试验,发现摸到红球、黄球、蓝球、白球的频率依次为30%,15%,40%,10%,则小明的袋中大约有黄球( ) A .5个 B .10个 C .15个 D .30个5.一个不透明的袋子中有1个红球,2个黄球,这些球除颜色外无其他差别,从袋子中随机摸出1个球后放回,再随机摸出1个球,两次摸出的球都是黄球的概率( ) A.23 B.13 C.14 D.496.甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是( ) A.13 B.49 C.59 D.237.某展览大厅有2个入口和2个出口,其示意图如图所示,参观者可从任意一个入口进入,参观结束后可从任意一个出口离开,则一位参观者从入口1进入并从出口A 离开的概率是( ) A.12 B.13 C.14 D.168.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是( )A.14B.12C.34D .1 9.某超市举行购物“翻牌抽奖”活动,如图所示,四张牌分别对应价值5,10,15,20(单位:元)的四件奖品,如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总价值不低于30元的概率为( ) A.12 B.23 C.13 D.3410.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( ) A .16个 B .15个 C .13个 D .12个第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.对于▱ABCD ,从以下五个关系式中任取一个作为条件:①AB =BC ;②∠BAD =90°;③AC =BD ;④AC ⊥BD ;⑤∠DAB =∠ABC ,能判定▱ABCD 是矩形的概率是________.12. 下表记录了某种幼树在一定条件下移植成活情况:由此估计这种幼树在此条件下移植成活的概率约是______ (精确到0.1).13.春节期间,《中国诗词大会》节目的播出深受观众喜爱,进一步激起了人们对古诗词的喜爱.现有以下四句古诗词:①锄禾日当午;②春眠不觉晓;③白日依山尽;④床前明月光.甲、乙两名同学从中各随机选取了一句写在了纸上,则他们选取的诗句恰好相同的概率为________.14. 有A,B两只不透明的口袋,每只口袋里装有两只相同的球,A袋中的两只球上分别写了“细”“致”的字样,B袋中的两只球上分别写了“信”“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是________.15.如图,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是_____. 16.从1,-1,0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是_____. 17.盒子里有完全相同的三个小球,球上分别标有数字-2,1,4,随机摸出一个小球,其上的数字记为p(放回),再随机摸出一个小球,其上的数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是__________.18.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做“中高数”,如796就是一个“中高数”.若十位上的数字为6,则从3,4,5,7,8中任选两数(不重复),与6组成“中高数”的概率是___________.三.解答题(共8小题,66分)19.(6分)4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量的重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约为多少?20.(6分) 如图,数轴上的点A,B,C,D表示的数分别为-3,-1,1,2,从A,B,C,D四点中任意取两点,求所取两点之间的距离为2的概率.21.(8分) 小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为________;(2)求他们三人在同一个半天去游玩的概率.22.(8分) 有两个信封,每个信封内各装有四张完全相同的卡片,其中一个信封内的四张卡片上分别写有1,2,3,4四个数,另一个信封内的四张卡片上分别写有5,6,7,8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率;(2)你认为这个游戏公平吗?为什么?23.(8分) 由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局,若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.24.(8分) 如小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A,B,C,D,E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:①玩家只能将小兔从A,B两个出入口放入:②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值4元的小兔玩具,否则应付费3元.(1)请用画树状图的方法,列举出该游戏的所有可能情况;(2)小美得到小兔玩具的机会有多大?(3)假设有125人次玩此游戏,估计游戏设计者可赚多少元.25.(10分) 我省中小学积极开展综合实践活动,某校准备组织开展四项综合实践活动:“A.我是非遗小传人,B.学做家常餐,C.爱心义卖行动,D.找个岗位去体验”.为了解学生最喜爱哪项综合实践活动,随机抽取部分学生进行问卷调查(每位学生只能选择一项),将调查结果绘制成下面两幅不完整的统计图,请结合图中提供的信息回答下列问题:(1)本次一共调查了______名学生,在扇形统计图中,m的值是_______;(2)补全条形统计图;(3)若该校共有1 200名学生,估计最喜爱B和C项目的学生一共有多少名?(4)现有最喜爱A,B,C,D活动项目的学生各一人,学校要从这四人中随机选取两人交流活动体会,请用列表或画树状图的方法求出恰好选取最喜爱C和D项目的两位学生的概率.26.(12分) 图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)随机掷一次骰子,则棋子跳动到点C处的概率是__________;(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.图①图②参考答案:1-5CCBCD 6-10CCBCD11. 3 512. 0.913. 1 414. 1 415. 1 216. 2 317. 2 318.31019. 解:(1)P(抽到的是不合格品)=14 (2)假设不合格的产品为F ,合格的三件产品分别为T 1,T 2,T 3,通过列表(表略)可知一共有:(F ,T 1),(F ,T 2),(F ,T 3),(T 1,T 2),(T 1,T 3),(T 2,T 3)共6种情况,因此可得P(抽到的都是合格品)=36=12 (3)P =3+x 4+x =0.95,解得x =16,经检验是原方程的解,∴x =16 20. 解:画树状图为:由树状图可知共有12种等可能的结果数,其中所取两点之间的距离为2的结果数为4,∴所取两点之间的距离为2的概率=412=1321. 解:(1) 画树状图为:小明和小刚都在本周日去游玩有4种可能的结果,其中都在本周日上午去游玩的可能性只有1种,∴小明和小刚都在本周日上午去游玩的概率为14(2)由树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,∴他们三人在同一个半天去游玩的概率为28=1422. 解:(1)列表如下:由上表可知该游戏所有等可能的结果共16种,其中两卡片上的数字之积大于20的有5种,∴甲获胜的概率为516(2)不公平,∵甲获胜的概率为516,乙获胜的概率为1116,∴这个游戏不公平23. 解:(1)∵转盘的4个等分区域内只有1,3两个奇数,∴小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率=24=12(2)列表如下:所有等可能的情况有16种,其中两指针所指数字都是偶数或都是奇数的情况都是4种,∴P(小王胜)=416=14,P(小张胜)=416=14,∴游戏公平24. 解:(1)画树状图略(2)共有10种等可能的结果,其中从开始进入的出入口离开的情况有2种,所以小美玩一次“守株待兔”游戏能得到小兔玩具的概率为15(3)125×0.8×3-125×0.2×4=200,所以估计游戏设计者可赚200元 25. 解:(1)200 20%(2)最喜爱C 项目的人数是200×25%=50(人),补图如下(3)估计最喜爱B 和C 项目的学生一共有1 200×(45%+25%)=840(名) (4)画树状图为:由图可知共有12种等可能的结果数,恰好选取最喜爱C 和D 项目的两位学生的结果数为2种,∴P(恰好选取最喜爱C 和D 项目的两位学生)=212=1626. 解: (1)14(2)列表如下:由表可知共有16种等可能的结果,两次的和为14可以到达点C ,有3种情形,∴棋子最终跳动到点C 处的概率为316。
北师大版数学九年级上册第三章《概率的进一步认识》单元检测卷含答案

北师大版数学九年级上册第三章《概率的进一步认识》单元检测卷[检测内容:第三章 满分:120分 时间:120分钟]一、选择题(每小题3分,共30分)1. 在一个不透明的布袋中,红色、黑色、白色的球共有120个,这些球除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在15%和45%,则布袋中白色球的个数很可能是( )A. 48个B. 60个C. 18个D. 54个2. 在0,1,2三个数字中任取两个,组成两位数,则组成的两位数是奇数的概率为( )A. B. C. D. 141612343. 在用摸球试验来模拟6人中有2人生肖相同的概率的过程中,有如下不同的观点,其中正确的是( )A. 摸出的球不能放回B. 摸出的球一定放回C. 可放回,可不放回D. 不能用摸球试验来模拟此事件4. 如图所示,有以下3个条件:①AC =AB ,②AB ∥CD ,③∠1=∠2.从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是( )A. 0B.C.D. 11323第4题第5题5. 让如图所示的两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或是3的倍数的概率等于( )A.B.C.D. 316385813166. 在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.B.C.D. 121314167. 小明与小刚一起玩抛掷两枚硬币的游戏,游戏规则:抛出两个正面,小明赢1分,抛出其他结果,小刚赢1分,谁先到10分,谁就获胜.这是一个不公平的游戏规则,要把它修改成公平的游戏,下列做法中错误的是( )A. 把“抛出两个正面”改为“抛出两个同面”B. 把“抛出其他结果”改为“抛出两个反面”C. 把“小明赢1分”改为“小明赢3分”D. 把“小刚赢1分”改为“小刚赢3分”8. 如图,一个质地均匀的正四面体上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M (a ,b )落在以A (-2,0),B (2,0),C (0,2)为顶点的三角形内(包含边界)的概率是( )A. B.C.D. 38716129169.在平面直角坐标系中,作△OAB ,其中三个顶点分别是O (0,0),B (1,1),A (x ,y )(-2≤x ≤2,-2≤y ≤2,x ,y 均为整数),则所作△OAB 为直角三角形的概率是( )A.B.C.D. 2535151210. 如图所示,有一电路AB 由图示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( )A.B.C.D. 25353412二、填空题(每小题3分,共24分)11. 在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是 .12. 向一个装有很多黄豆的袋子里放入100粒绿豆,每次倒出10粒记下所倒出的绿豆的数目,再把它们放回去,做相同的试验100次,共倒出绿豆240粒,则袋中原有黄豆约粒.13. 在分别写有数字-1,0,1,2的四张卡片中,随机抽取一张后放回,再随机抽取一张,以第一次抽取的数字作为横坐标,第二次抽取的数字作为纵坐标的点落在第一象限的概率是 .14. 有四条线段,长度分别为3,5,7,9,从中任取三条,能构成三角形的概率为 .15. 有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意一把锁,一次打开锁的概率是 .16. 某人设摊“摸彩”,只见他手持一袋,内装大小、质地完全相同的3个红球、2个白球,每次让顾客“免费”从袋中摸出两球,若两球的颜色相同,则顾客获得10元钱,否则顾客付给这个人10元钱.请你判断一下,该活动对顾客(填“合算”或“不合算”).17. 对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是 .18. 如图,小华和小明做转盘游戏,当两个转盘所转到的数字之积为奇数时,小华得2分,当两个转盘所转到的数字之积为偶数时,小明得1分,这个游戏.(填“公平”或“不公平”)三、解答题(共66分)19. (8分)某校九年级(1)、(2)班联合举行毕业晚会,组织者为了使气氛热烈、有趣,策划时计划整场晚会以转盘游戏的方式进行,每个节目开始时,两班各派一人先进行转盘游戏,胜者获得一件奖品,负责表演一个节目,(1)班和(2)班的文娱委员利用分别标着数字1,2,3和4,5,6,7的两个转盘(如图)设计一种游戏方案,两人同时各转动一个转盘一次,将转到的数字相加,和为偶数时,(1)班代表胜,否则(2)班代表胜,你认为该方案对双方是否公平?为什么?20. (8分)在一个不透明的口袋里装有只有颜色不同的黑白两种颜色的球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m68109136345568701摸到白球的频率0.680.730.680.690.710.70(1)请估计:当n很大时,摸到白球的频率将会接近;(2)假如你去摸一次,摸到白球的概率是,摸到黑球的概率是;(3)试估算口袋中黑、白两种颜色的球各有多少个.21. (9分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.22. (9分)大课间活动时,有两个同学做了一个数字游戏:有三张正面写有数字-1,0,1的卡片,它们背面完全相同,将这三张卡片背面朝上洗匀后,其中一个同学随机抽取一张,将其正面的数字作为p的值,然后将卡片放回并洗匀,另一个同学再从这三张卡片中随机抽取一张,将其正面的数字作为q的值,两次结果记为(p,q).(1)请你帮他们用画树状图或列表的方法表示(p,q)所有可能出现的结果;(2)求满足关于x的方程x2+px+q=0没有实数解的概率.23. (10分)试验探究:有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有整数1和2.B布袋中有三个完全相同的小球,分别标有整数-1,-2和-3.平平从A布袋中随机取出一个小球,记录其标有的整数为x,再从B布袋中随机取出一个小球,记录其标有的整数为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=x-3上的概率.24. (10分)如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红心、方块、黑桃、梅花,其中红心、方块为红色,黑桃、梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.A B C D(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示);(2)求摸出的两张牌同为红色的概率.25. (12分)珊珊与静静设计了A,B两种游戏:游戏A的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则珊珊获胜;若两数字之和为奇数,则静静获胜.游戏B的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,珊珊先随机抽出一张牌,抽出的牌不放回,静静从剩下的牌中再随机抽出一张牌.若珊珊抽出的牌面上的数字比静静抽出的牌面上的数字大,则珊珊获胜;否则静静获胜.请你帮静静选择其中一种游戏,使她获胜的可能性较大,并说明理由.参考答案1. A2. A3. B4. D5. C6. A7. D8. B9. A 10. B11. Error!12. 31713. Error!14. Error!15. Error!16. 不合算17. Error!18. 公平19. 解:公平.理由:利用树状图法得出所有可能结果如下:所有可能结果有12种,其中数字之和为偶数的有6种,数学之和为奇数的也有6种.所以(1)班代表胜的概率为Error!,(2)班代表胜的概率也为Error!,所以该游戏方案对双方是公平的.20. 解:(1)0.70(2)0.700.30(3)白球有20×0.70=14(个),黑球有20-14=6(个).21. 解:(1)方法1:画树状图,如图所示.共有12种等可能的结果,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=Error!.方法2:列表格如下:甲乙丙丁甲甲、乙甲、丙甲、丁乙乙、甲乙、丙乙、丁丙丙、甲丙、乙丙、丁丁丁、甲丁、乙丁、丙共有12种等可能的结果,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=Error!. (2)P(恰好选中乙同学)=Error!.22. 解:(1)画树状图如下:由图可知共有9种等可能的结果.(2)若方程x2+px+q=0没有实数解,则Δ=p2-4q<0.由(1)可得满足Δ=p2-4q<0的有(-1,1),(0,1),(1,1),∴满足关于x的方程x2+px+q=0没有实数解的概率为Error!=Error!.23. 解:(1)列表为:y-1-2-3x1(1,-1)(1,-2)(1,-3)2(2,-1)(2,-2)(2,-3)∴点Q的坐标有(1,-1),(1,-2),(1,-3),(2,-1),(2,-2),(2,-3)六种可能情况. (2)“点Q落在直线y=x-3上”记为事件A,则有(1,-2)和(2,-1)两点满足条件,∴P(A)=Error!=Error!,即点Q落在直线y=x-3上的概率为Error!.24. 解:(1)画树状图如图所示:列表法:第二次A B C D第一次A AB AC ADB BA BC BDC CA CB CDD DA DB DC(2)P(摸出的两张牌同为红色)=Error!=Error!.25. 解:对游戏A:画树状图如图所示:或用列表法:第二次234第一次2(2,2)(2,3)(2,4)3(3,2)(3,3)(3,4)4(4,2)(4,3)(4,4)所有可能出现的结果共有9种,其中两数字之和为偶数的有5种,所以游戏A珊珊获胜的概率为Error!,而静静获胜的概率为Error!.即游戏A对珊珊有利,获胜的可能性大于静静.对游戏B:画树状图如图所示:或用列表法:静静5688珊珊5-(5,6)(5,8)(5,8)6(6,5)-(6,8)(6,8)8(8,5)(8,6)-(8,8)8(8,5)(8,6)(8,8)-所有可能出现的结果共有12种,其中珊珊抽出的牌面上的数字比静静大的有5种:根据游戏B的规则,当静静抽出的牌面上的数字与珊珊抽到的数字相同或比珊珊抽到的数字大时,则静静获胜.所以游戏B珊珊获胜的概率为Error!,而静静获胜的概率为Error!.即游戏B对静静有利,获胜的可能性大于珊珊.综上所述,静静应选择游戏B.。
(常考题)北师大版初中数学九年级数学上册第三单元《概率的进一步认识》检测题(包含答案解析)

一、选择题1.小明在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则最可能符合这一结果的实验是()A.掷一枚骰子,出现3点的概率B.抛一枚硬币,出现反面的概率C.任意写一个整数,它能被3整除的概率D.从一副扑克中任取一张,取到“大王”的概率2.在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为()A.12B.13C.14D.13.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.164.三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长能构成等腰三角形的概率是()A.19B.13C.59D.795.在一个不透明的口袋中,装有若干个红球和6个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率稳定在0.6,则估计口袋中大约有红球()A.24个B.10个C.9个D.4个6.有三个质地、大小一样的纸条上面分别写着三个数,其中两个正数,一个负数,任意抽取一张,记下数的符号后,放回摇匀,再重复同样的操作一次,试问两次抽到的数字之积是正数的概率为()A.13B.49C.59D.237.现有两组相同的牌,每组三张且大小一样,三张牌的牌面数字分别是1、2、3,从每组牌中各摸出一张牌.两张牌的牌面数字之和等于4的概率是()A.29B.13C.59D.238.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是()A.0.1 B.0.2 C.0.3 D.0.69.我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是()A.18B.38C.58D.1210.如图,电路图上有四个开关A、B、C、D和一个小灯泡,则任意闭合其中两个开关,小灯泡发光的概率是()A.12B.13C.14D.1611.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球()A.32个B.36个C.40个D.42个12.老师组织学生做分组摸球实验.给每组准备了完全相同的实验材料,一个不透明的袋子,袋子中装有除颜色外都相同的3个黄球和若干个白球.先把袋子中的球搅匀后,从中随意摸出一个球,记下球的颜色再放回,即为一次摸球.统计各组实验的结果如下:一组二组三组四组五组六组七组八组九组十组摸球的次数100100100100100100100100100100摸到白球的次数41394043383946414238请你估计袋子中白球的个数是()A.1个B.2个C.3个D.4个二、填空题13.在一个不透明的布袋中装有52个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.2左右,则布袋中黑球的个数可能有________.14.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是__________.15.一个袋子中6个红球,若干白球,它们除颜色外完全相同,现在经过大量重复的摸球试验发现,摸出一个球是白球的频率稳定在0.4附近,则袋子中白球有_____个.16.一个不透明的袋子中装有若干个除颜色外都相同的小球,小明每次从袋子中随机摸出一个球,记录下颜色,然后放回,重复这样的试验3000次,记录结果如下:实验次数n100200300500800100020003000摸到红球次数m6512417830248162012401845摸到红球频率m0.650.620.5930.6040.6010.6200.6200.615n估计从袋子中随机摸出一个球恰好是红球的概率约为_______________.(精确到0.1)17.小玲在一次班会中参加知识抢答活动,现有语文题5道,数学题6道,综合题7道,她从中随机抽取1道,抽中数学题的概率是_________.18.从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球5个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有___个白球.19.在一个不透明的塑料袋中装有红色白色球共40个.除颜色外其他都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在20%左右,则口袋中红色球可能有________个.20.对一批防PM2.5口罩进行抽检,经统计合格口罩的概率是0.9,若这批口罩共有2000只,则其中合格的大约有__只.三、解答题21.从2名男生和2名女生中随机抽取上海迪斯尼乐园志愿者.(1)抽取1名,恰好是男生的概率是;(2)抽取2名,用列表法或画树状图法求恰好是1名男生和1名女生的概率.22.某校有A,B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐,用列表或列树状图的方法解决下列问题:(1)求甲、乙、丙三名学生在同一个餐厅用餐的概率.(2)求甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率.23.为加强素质教育,某学校自主开设了A书法、B阅读、C足球、D器乐四门选修课程供学生选择,每门课程被选到的机会均等.(1)学生小明计划选修两门课程,请写出所有可能的选法;(用树状图或列表法表示选法)(2)若学生小明和小刚各计划选修一门课程,则他们两人恰好同时选修书法或足球的概率是多少?24.小秋打算去某影城看电影.她用手机打开购票页面,座位已选情况如图所示(虚线边框内为黄金区域,其余为普通区域;深色为已售座位,白色为可选座位).求下列事件的概率:(1)小秋独自观影,他选择第4排或第5排的概率是_________;(2)小秋约小叶一同观影,求小秋选择2个同排相邻的座位恰好都在黄金区域的概率.25.如图三张不透明的卡片,正面图案分别是我国著名的古代数学家祖冲之、杨辉和赵爽的头像,卡片除正面图案不同外,其余均相同,将这三张卡片背面向上洗匀从中随机抽出一张,记录图像后放回,重新洗匀后再从中随机抽取一张,请你用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“祖冲之”的概率.26.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据统计图可知试验结果的频率在30%—40%之间,然后分别计算出四个选项的概率,概率在30%—40%之间即符合题意.【详解】A、掷一枚骰子,出现4点的概率为16,不符合题意;B、抛一枚硬币,出现反面的概率为12,不符合题意;C、任意写出一个整数,能被3整除的概率为13,符合题意;D、从一副扑克中任取一张,取到“大王”的概率为1 54.故答案为C.【点睛】本题主要考查了利用频率估计概率以及运用概率公式求概率,掌握利用频率估计概率的方法成为解答本题的关键.2.C解析:C【详解】解:∵共有4个球,红球有1个,∴摸出的球是红球的概率是:P=14.故选C.【点睛】本题考查概率公式.3.C解析:C【详解】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,∴两次抽取的卡片上的数字之积为正偶数的概率是:21=.63故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.4.C解析:C【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与构成等腰三角形的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有27种等可能的结果,构成等腰三角形的有15种情况,∴以a、b、c为边长正好构成等腰三角形的概率是:155=.279故选:C.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.5.D解析:D【分析】设口袋中红球有x个,用黄球的个数除以球的总个数等于摸到黄球的频率,据此列出关于x的方程,解之可得答案.【详解】解:设口袋中红球有x个,根据题意,得:66x=0.6,解得x=4,经检验:x=4是分式方程的解,所以估计口袋中大约有红球4个,故选:D.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.6.C解析:C【分析】根据题意画出树状图得出所有等可能的结果与两次抽到的数字之积是正数的情况数,然后利用概率公式求解即可.【详解】解:两个正数分别用a,b表示,一个负数用c表示,画树状图如下:共有9种等情况数,其中两次抽到的数字之积是正数的有5种,则两次抽到的数字之积是正数的概率是59;故选:C.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.B解析:B【分析】画树状图列出所有情况,看数字之和等于4的情况数占总情况数的多少即可.【详解】画树状图得:则共有9种等可能的结果,其中两张牌的牌面数字之和等于4的有3种结果, ∴两张牌的牌面数字之和等于4的概率为 39=13, 故选:B . 【点睛】本题考查列表法和树状图法,解题的关键是可以不重复不遗漏的列出所有可能的结果.8.D解析:D 【分析】直接利用概率公式进行求解,即可得到答案. 【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个. ∴1张抽奖券中奖的概率是:102030100++=0.6,故选:D . 【点睛】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.9.B解析:B 【分析】画树状图得出所有情况数和遇到两次红灯的情况数,根据概率公式即可得答案. 【详解】根据题意画树状图如下:共有8种等情况数,其中遇到两次红灯的有3种, 则遇到两次红灯的概率是38,故选:B . 【点睛】本题考查利用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比;根据树状图得到遇两次红灯的情况数是解题关键.10.A解析:A 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案. 【详解】 解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况, ∴小灯泡发光的概率为612=12. 故选:A . 【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.A解析:A 【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数“,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数” 【详解】设盒子里有白球x 个, 根据=黑球个数摸到黑球次数小球总数摸球总次数得:8808400x =+ 解得:x=32.经检验得x=32是方程的解. 答:盒中大约有白球32个. 故选;A . 【点睛】此题主要考查了利用频率估计概率,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分式方程要验根.12.B解析:B 【分析】由表格可知共摸球1000次,其中摸到白球的频率稳定在0.4,由此知袋子中摸出一个球,是白球的概率为0.4,据此根据概率公式可得答案. 【详解】解:由表格可知共摸球1000次,其中摸到白球的频率稳定在0.4, ∴在袋子中摸出一个球,是白球的概率为0.4, 设白球有x 个,则3xx+=0.4, 解得:x=2, 故选:B . 【点睛】本题主要考查利用频率估计概率及概率公式,熟练掌握频率估计概率的前提是在大量重复实验的前提下是解题的关键.二、填空题13.13【分析】在同样条件下大量反复试验时随机事件发生的频率逐渐稳定在概率附近可以从比例关系入手设出未知数列出方程求解【详解】解:设袋中有黑球x 个由题意得:=02解得:x=13经检验x=13是原方程的解解析:13 【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解. 【详解】解:设袋中有黑球x 个,由题意得:52xx +=0.2, 解得:x=13,经检验x=13是原方程的解, 则布袋中黑球的个数可能有13个. 故答案为:13. 【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.14.【分析】根据题意把所有可能出现的结果用表格表示出来即可求解【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果其中两人恰好选中同一根绳子的结果共有3种∴两人恰好选中同一根绳子的概率为:故解析:1 3【分析】根据题意,把所有可能出现的结果用表格表示出来,即可求解.【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果,其中两人恰好选中同一根绳子的结果共有3种,∴两人恰好选中同一根绳子的概率为:3193=,故答案为:13.【点睛】本题考查用列表法或画树状图法求概率,解题的关键是根据题意列出所有可能出现的结果.15.4【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】设袋子中白球有x个由题意得=04解得:x=4经检验x=4是原方程的解故袋子中白球有4个故答解析:4【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】设袋子中白球有x个,由题意得,6xx+=0.4,解得:x=4,经检验x=4是原方程的解故袋子中白球有4个, 故答案为:4. 【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn是解题关键. 16.6【分析】利用表格中摸到红球频率估计随机摸出一个球恰好是红球的概率即可【详解】解:由表格中的数据可得摸到红球频率大约为06则随机摸出一个球恰好是红球的概率约为06故答案为06【点睛】本题主要考查了利解析:6 【分析】利用表格中摸到红球频率估计随机摸出一个球恰好是红球的概率即可. 【详解】解:由表格中的数据可得,摸到红球频率大约为0.6,则随机摸出一个球恰好是红球的概率约为0.6. 故答案为0.6. 【点睛】本题主要考查了利用频数估计概率,明确题意、掌握频率和概率的关系是解答本题的关键.17.【分析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数【详解】解:抽中数学题的概率为故答案为:【点睛】本题考查了概率正确利用概率公式计算是解题的关键解析:13【分析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数. 【详解】解:抽中数学题的概率为615673=++,故答案为:13. 【点睛】本题考查了概率,正确利用概率公式计算是解题的关键.18.10【分析】先由频率=频数÷数据总数计算出频率再由简单事件的概率公式列出方程求解即可【详解】解:摸了150次其中有50次摸到黑球则摸到黑球的频率是设口袋中大约有x 个白球则解得故答案为:10【点睛】考解析:10【分析】先由“频率=频数÷数据总数”计算出频率,再由简单事件的概率公式列出方程求解即可. 【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是5011503=, 设口袋中大约有x 个白球,则5153x =+, 解得10x =. 故答案为:10. 【点睛】考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.19.8【分析】设有红球有x 个利用频率约等于概率进行计算即可【详解】设红球有x 个根据题意得:=20解得:x =8即红色球的个数为8个故答案为:8【点睛】本题考查了由频率估计概率的知识解题的关键是了解大量重复解析:8 【分析】设有红球有x 个,利用频率约等于概率进行计算即可. 【详解】 设红球有x 个, 根据题意得:40x=20%, 解得:x =8,即红色球的个数为8个, 故答案为:8. 【点睛】本题考查了由频率估计概率的知识,解题的关键是了解大量重复实验中事件发生的频率等于事件发生的概率.20.【分析】用这批口罩的只数×合格口罩的概率列式计算即可得到合格的只数【详解】2000×09=2000×09=1800(只)故答案为:1800【点睛】本题主要考查了用样本估计总体生产中遇到的估算产量问题解析:【分析】用这批口罩的只数×合格口罩的概率,列式计算即可得到合格的只数. 【详解】2000×0.9=2000×0.9=1800(只). 故答案为:1800. 【点睛】本题主要考查了用样本估计总体,生产中遇到的估算产量问题,通常采用样本估计总体的方法.三、解答题21.(1)12;(2)图表见解析,P=23【分析】(1)根据题意,抽取1名志愿者总共有4种可能,男生有2人,利用概率公式即可求解抽取1名恰好是男生的概率;(2)根据题意列表,可分别得到总共有多少种等可能的结果与符合条件的结果,根据概率公式即可求解.【详解】(1)抽取1名,恰好是男生的概率为:2142P==,(2)列表得:由表格可知:总共有12种等可能的结果,其中恰好是1名男生和1名女生的结果有8种结果,所以抽取2名,恰好是1名男生和1名女生的概率为:82123P==.【点睛】本题考查了概率的求解,解题关键是准确列出表格,得到所有的等可能结果,再从中选取符合条件的结果,然后利用概率公式计算.22.(1)14;(2)78【分析】(1)画树形图展示所有8种等可能的结果数,再找出甲、乙、丙三名学生在同一个餐厅用餐的结果数,然后根据概率公式求解;(2)从树状图中找出甲、乙、丙三名学生中至少有一人在B餐厅用餐的结果数,然后根据概率公式求解.【详解】解:画树状图如下:甲、乙、丙选择餐厅的所有可能结果有8种,(1)甲、乙、丙三名学生在同一个餐厅用餐的可能结果有2种,∴P(甲、乙、丙三名学生在同一个餐厅用餐)2184==;(2)甲、乙、丙三名学生中至少有一人在B餐厅用餐的可能结果有7种,∴P(甲、乙、丙三名学生中至少有一人在B餐厅用餐)=78.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.(1)树状图见解析,共有6种可能的选法;(2)18.【分析】(1)利用直接列举得到所有6种等可能的结果数;(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.【详解】解:(1)画树状图如下:共有12种等可能的结果数,不重复的选法有6种:AB、AC、AD、BC、BD、CD.(2)画树状图如下:共有16种等可能的结果数,其中他们两人恰好修书法或足球的结果数为2,所以他们两人恰好选修书法或足球的概率为21 168=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24.(1)12;(2)12【分析】(1)由概率公式求解即可;(2)由概率公式求解即可.【详解】解:(1)由题意知:白色为可选座位,共2+2+1+3=8(个)其中,第4排1个空位,第5排3个空位,共4个空位,小秋独自观影,他选择第4排或第5排的概率是41 82 =,故答案为:12;(2)小秋选择2个同排相邻的座位共有4个结果,其中小秋选择2个同排相邻的座位恰好都在黄金区域的结果有2个,∴小秋选择2个同排相邻的座位恰好都在黄金区域的概率为21 =42.【点睛】.此题考查的是概率的应用与计算.用到的知识点为:概率=所求情况数与总情况数之比.25.1 9【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【详解】解:用A表示祖冲之,用B表示杨辉,用C表示赵爽,列表如下:“祖冲之”的有1种结果,所以抽出的两张卡片上的图案都是“祖冲之”的概率为19.【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.26.(1)14;(2)甲组抽到A小区,同时乙组抽到C小区的概率为112.【分析】(1)直接根据概率公式求解即可;(2)根据题意画出树状图得出所有等可能的情况数和甲组抽到A小区,同时乙组抽到C 小区的情况数,然后根据概率公式即可得出答案.【详解】解:(1)共有A,B,C,D四个小区甲组抽到A小区的概率是14.答案为:14.(2)根据题意画树状图如下:∵共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率为112.【点睛】本题考查了树状图法求概率,树状图法适合两步或两步以上完成的事件,用到的知识点为:概率=所求情况数与总情况数之比.。
北师大版数学九年级上册第三章测试题及答案解析(2套)

北师大版数学九年级上册第三章测试题(一)(概率的进一步认识测试卷)一、选择题1.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A. B.C. D.2.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是()A. B.C. D.3.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A. B.C. D.二、填空题4.袋中装有一个红球和一个白球,他们除了颜色外其它都相同,随机从中摸出一个球,记录下颜色后放回袋中充分摇匀后,再随机摸出一个球,两次都摸到红球的概率是.5.有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意的一把锁,一次能打开锁的概率是.6.襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是.7.从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是.8.在一个不透明的口袋中,有3个完全相同的小球,他们的标号分别是2,3,4,从袋中随机地摸取一个小球然后放回,再随机的摸取一个小球,则两次摸取的小球标号之和为5的概率是.9.已知a、b可以取﹣2、﹣1、1、2中任意一个值(a≠b),则直线y=ax+b的图象不经过第四象限的概率是.三、解答题10.在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表的方法,求小明获胜的概率;(2)这个游戏公平吗?请说明理由.11.甲乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲乙两人抽得的两个数字之积,如果积为奇数则甲胜,若积为偶数则乙胜.(1)用列表或画树状图等方法,列出甲乙两人抽得的数字之积所有可能出现的情况;(2)请判断该游戏对甲乙双方是否公平?并说明理由.12.现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;。
北师大版数学九年级上册第三章《概率的进一步认识》试卷含答案

北师大版数学九上第三章《概率的进一步认识》试卷、答案一、选择题(共12小题;共36分)1. 甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是A. B. C. D.2. 甲、乙两名同学在一次用频率去估计概率的实验中,统一了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是A. 从一个装有个白球和个红球的袋子中任取两球,取到两个白球的概率B. 任意写一个正整数,它能被整除的概率C. 抛一枚硬币,连续两次出现正面的概率D. 掷一枚正六面体的骰子,出现点的概率3. 小茜课间活动中,上午大课间活动时可以先从跳绳、乒乓球、健美操中随机选择一项运动,上午课外活动再从篮球、武术、太极拳中随机选择一项运动.则小茜上午、下午都选中球类运动的概率是A. B. C. D.4. 将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是A. B. C. D.5. 在不透明的袋子中有黑棋子枚和白棋子若干(它们除颜色外都相同),现随机从中摸出枚记下颜色后放回,这样连续做了次,记录了如下的数据:次数黑棋数根据以上数据,估算袋中的白棋子数量为A. 枚B. 枚C. 枚D. 枚6. 现有两枚质地均匀的骰子,每枚骰子的六个面上都分别标上数字,,,,,.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为的概率是A. B. C. D.7. 小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是A. B. C. D.8. 小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是A. 掷一枚质地均匀的硬币,正面朝上的概率B. 从一个装有个白球和个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率C. 从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率D. 任意买一张电影票,座位号是的倍数的概率9. 学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是A. B. C. D.10. 小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时“参加社会调查”的概率为A. B. C. D.11. 王大伯为了估计他家鱼塘里有多少条鱼,从鱼塘里捞出条鱼,将它们做上标记,然后放回鱼塘.经过一段时间后,再从鱼塘中随机捕捞条鱼,其中有标记的鱼有条,请你估计鱼塘里鱼的数量大约有A. 条B. 条C. 条D. 条12. 一个布袋内只装有个黑球和个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是A. B. C. D.二、填空题(共6小题;共24分)13. 在一个暗箱里放有个除颜色外其余完全相同的球,这个球中红球只有个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在,那么可以推测出大约是.14. 淘淘和丽丽是非常要好的九年级学生,在月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.15. 一个不透明的袋子中装有除颜色外均相同的个黑球、个白球和若干个红球.每次摇匀随机摸出一个球,记下颜色后再放回袋子中,通过大量重复摸球试验后,发现摸到红球的频率稳定于,由此可估计袋子中约有红球个.16. 在一个不透明的口袋中,装有,,,四个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.17. 如图,随机地闭合开关,,,,中的三个,能够使灯泡,同时发光的概率是.18. 在一只不透明的口袋中放人红球个,黑球个,黄球个,这些球除色不同外其他完全相同.搅匀后随机从中摸出一个,恰好是黄球的概率为,则放人口袋中的黄球总数.三、解答题(共7小题;共60分)19.(8分)甲、乙两个人做游戏:在一个不透明的口袋中装有张相同的纸牌,它们分别标有数字,,,.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.20.(10分)在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色球只,某学习小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球的次数摸到白球的次数摸到白球的频率(1)请你估计,当很大时,摸到白球的频率将会接近(精确到).(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是.(3)试估算口袋中黑、白两种颜色的球有多少只.21. (8分)小华和小军做摸球游戏,袋中装有编号为,,的三个小球,袋中装有编号为,,的三个小球,两袋中的所有小球除编号外都相同,从两个袋子中分别随机摸出一个小球,若袋摸出的小球的编号与袋摸出小球的编号之差为偶数,则小华胜,否则小军胜.这个游戏对双方公平吗?请说明理由.22. (8分)小明和小亮用如图所示的两个转盘(每个转盘被分成三个面积相等的扇形)做游戏,转动两个转盘各一次,若两次数字之和为奇数,则小明胜;若两次数字之和为偶数,则小亮胜,这个游戏对双方公平吗?说说你的理由.23. (8分)在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有个,黄球有个,蓝球有个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢,赢的一方得电影票.游戏规则是:两人各摸次球,先由小明从纸箱里随机摸出个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.24.(10分)“六一”期间,某公园游戏场举行“游园”活动.有一种游戏的规则是:在一个装有个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个喜羊羊玩具.已知共有人次参加这种游戏,公园游戏场发放的喜羊羊玩具为个.(1)求参加一次这种游戏活动得到喜羊羊玩具的频率.(2)请你估计袋中白球接近多少个.25. (8分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字,,.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.答案第一部分1. C2. A3. A4. B5. C6. C7. C8. B9. C 【解析】本题考查列表法求概率.将征征、舟舟两名同学参加社团的可能情况列表如下:航模征征彩绘征征泥塑征征航模舟舟航模舟舟航模征征航模舟舟彩绘征征航模舟舟泥塑征征彩绘舟舟彩绘舟舟航模征征彩绘舟舟彩绘征征彩绘舟舟泥塑征征泥塑舟舟泥塑舟舟航模征征泥塑舟舟彩绘征征泥塑舟舟泥塑征征由上表可知征征和舟舟选择的可能情况有种,其中征征和舟舟选到同一社团的可能情况有种,所以概率为.10. A11. C12. D 【解析】列表法:符合题意的情况用“”表示,不符合题意用“”表示.黑白白黑白白所以(两次黑).第二部分13.14.15.16.17.【解析】随机地闭合开关,,,,中的三个共有种可能,能够使灯泡,同时发光有种可能(,,或,,).随机地闭合开关,,,,中的三个,能够使灯泡,同时发光的概率是.18.第三部分19. 不公平,根据题意列表如下:所有等可能的情况有种,其中两次摸出的纸牌上数字之和是的倍数的情况有:,,,,,共种,所以甲获胜,乙获胜,则该游戏不公平.20. (1)【解析】根据题意可得当很大时,摸到白球的频率将会接近.(2);【解析】因为当很大时,摸到白球的频率将会接近;所以摸到白球的概率是;摸到黑球的概率是.(3)因为摸到白球的概率是,摸到黑球的概率是,所以口袋中黑、白两种颜色的球,有白球是个,黑球是个.21. 列表如下共有种等可能结果,其中袋中数字减去袋中数字为偶数有种等可能结果.;小华胜则小军胜的概率为.,不公平.22. 这个游戏对双方不公平.理由如下:画树状图为:共有种等可能的结果数,其中两次数字之和为奇数的结果数为,两次数字之和为偶数的结果数为,小明胜的概率,小亮胜的概率,而,这个游戏对双方不公平.23. 不公平,画树状图如图所示.由上述树状图知,所有可能出现的结果共有种.小明赢,小亮赢.此游戏对双方不公平,小亮赢的可能性大.24. (1)因为所以参加一次这种游戏活动得到喜羊羊玩具的频率为.(2)因为试验次数很大,频率接近概率,所以估计从袋中任意摸出一个球恰好是红球的概率是.设袋中白球有个,则根据题意,得,解得.经检验是方程的解.所以估计袋中白球接近个.25. (1)所有可能出现的结果如图:【解析】树状图法:甲乙所有可能出现的结果从上面的表格(或树状图)可以看出,总共有种结果,每种结果出现的可能性相同,其中两人抽取相同.数字的结果有种,所以两人抽取相同数字(2)不公平.从上面的表格(或树状图)可以看出,两人抽取数字和为的倍数有种,两人抽取数字和为的倍数有种,所以甲获胜;乙获胜.因为,所以甲获胜的概率大,游戏不公平.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章检测卷时间:120分钟 满分:150分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共45分)1.同时抛掷两枚1元的硬币,菊花图案都朝上的概率是( ) A.12 B.13 C.14 D.152.有一新娘去商店买新婚礼服,购买了不同款式的上衣2件,不同颜色的裙子3条,则搭配衣服所有可能出现的结果为( )A .2种B .3种C .5种D .6种3.在抛掷一枚硬币的试验中,某小组做了1000次试验,最后出现正面的频率为0.496,此时出现反面的概率约为( )A .0.496B .0.504C .0.500D .不能确定4.从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是( )A.13B.23C.14D.125.在数据1,-1,4,-4中,任选两个数据,均是一元二次方程x 2-3x -4=0的根的概率是( )A.16B.13C.12D.146.在一个不透明的袋子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中红球的个数约为( )A .4个B .6个C .8个D .12个 7.两道单选题都含A 、B 、C 、D 四个选项,瞎猜这两道题,恰好全部猜对的概率是( )A.12B.14C.18 `D.1168.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.169.如图的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )A.825B.625C.425D.1925第9题图10.有两双大小、质地相同、仅有颜色不同的拖鞋(分左右脚,可用A 1、A 2表示一双,用B 1、B 2表示另一双)放置在卧室地板上.若从这四只拖鞋中随机取出两只,恰好配成相同颜色的一双拖鞋的概率是( )A.12B.13C.14D.1611.小明从家里出发到学校共经过3个路口,每个路口都有红绿灯,如果红灯亮的时间为20秒,绿灯亮的时间为40秒,那么小明从家里出发到学校一路通行无阻的概率是( )A.23B.49C.827D.2912.如图,有三张卡片,它们背面完全相同,现将这三张卡片背面朝上洗均匀后随机抽取一张,以其正面的数字作为a 的值,放回后再从中随机抽取一张,以其正面的数字作为b 的值,则点(a ,b )在第三象限的概率是( )A.49B.13C.12D.23第12题图13. 有四张分别画有线段、等边三角形、平行四边形和正方形的四个图形的卡片,它们的背面都相同,现将它们背面朝上,从中翻开任意一张的图形是中心对称图形,但不是轴对称图形的概率是( )A.14B.12C.34D .1 14.书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是( ) A.310 B.625 C.925 D.3515.两个正四面体骰子的各面上分别标有数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( )A.14B.316C.34D.38二、填空题(每小题5分,共25分)16估计任意抛掷一只纸杯,杯口朝上的概率约是 .17.一个不透明的口袋里有10个黑球和若干个黄球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球有 个.18.在m 2□6m □9的“□”中任意填上“+”或“-”号,所得的代数式为完全平方式的概率为 .19.“十一”黄金周期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有两条公路,乙地到丙地有三条公路.每一条公路的长度如图所示(单位:km).梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是 .20.已知关于x 的一元二次方程x 2+bx +c =0.从-1,2,3三个数中任取一个数,作为方程中b 的值.再从剩下的两个数中任取一个数作为方程中c 的值.能使该一元二次方程有实数根的概率是 .三、解答题(共80分)21.(8分)一只箱子中装有红、黑两种圆珠笔共8000支,为了估计出其中红色圆珠笔的数量,随机抽出20支圆珠笔,记下其中红色圆珠笔的数量再放回,作为一次试验.重复上述试验多次,发现平均每20支圆珠笔中有5支红色圆珠笔,请你由此估计箱子中红色圆珠笔的数量.22.(8分)小明和小亮用如图所示的两个转盘做配紫色游戏,游戏规则是:分别转动两个转盘,若其中一个转盘转出红色,另一个转出蓝色,则可以配成紫色,此时小明得一分,否则小亮得一分.(1)用树状图或列表法求出小明获胜的概率;(2)这游戏对双方公平吗?请说明理由.若不公平,如何修改规则才能使游戏对双方公平?23.(10分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.(1)求袋子中白球的个数(请通过列式或列方程解答);(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率(请结合树状图或列表解答).24.(12分)近几年“密室逃脱俱乐部”风靡全球.下图是俱乐部的通路俯视图,小明进入入口后,任选一条通道.(1)他进A 密室或B 密室的可能性哪个大?请说明理由(利用树状图或列表来求解); (2)求小明从中间通道进入A 密室的概率.25.(12分)有两部不同型号的手机(分别记为A,B)和与之匹配的2个保护盖(分别记为a,b)(如图所示)散乱地放在桌子上.(1)若从手机中随机取一部,再从保护盖中随机取一个,求恰好匹配的概率;(2)若从手机和保护盖中随机取两个,用树状图法或列表法,求恰好匹配的概率.26.(14分)王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生根据上表数据估计从袋中摸出一个球是黑球的概率是;(2)估算袋中白球的个数;(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树状图或列表的方法计算他两次都摸出白球的概率.27.(16分)体育课上,小明、小强、小华三人在学习训练踢足球,足球从一人传到另一人就记为踢一次.(1)如果从小强开始踢,经过两次踢后,足球踢到了小华处的概率是多少(用树状图表示或列表说明);(2)如果踢三次后,球踢到了小明处的可能性最小,应从谁开始踢?请说明理由.上册第三章检测卷1.C 2.D 3.B 4.A 5.A 6.C 7.D 8.A 9.B 10.B 11.C 12.A 13.A14.A 解析:将三本小说分别记作“红1”“红2”“红3”,两本散文分别记作“白1”“白2”,画树状图如下:总共有20种可能的结果,每种结果出现的可能性相同.其中,抽取2本都是小说的结果有6种,∴从中随机抽取2本都是小说的概率为620=310.故选A.15.∴一共有16种情况,每种情况出现的可能性相同,着地的面所得的点数之和等于5的有4种,∴着地的面所得的点数之和等于5的概率为416=14.故选A. 16.0.22 17.15 18.12 19.1620.12解析:画树状图如下:可以看到b ,c 的值共有6种等可能情况,其中分别求得Δ1=(-1)2-4×1×2=-7<0,Δ2=(-1)2-4×1×3=-11<0,Δ3=22-4×1×(-1)=8>0,Δ4=22-4×1×3=-8<0,Δ5=32-4×1×(-1)=13>0,Δ6=32-4×1×2=1>0,所以能使该一元二次方程有实数根的概率为36=12.21.解:∵每20支圆珠笔中有5支红色圆珠笔,∴箱子中红色圆珠笔占520=14,(4分)∴估计箱子中红色圆珠笔有8000×14=2000(支).(8分)22.解:(1)共有6种等可能的结果,(3分)其中可以配成紫色的结果数为1,所以小明获胜的概率为16;(4分) (2)不公平.(5分)因为P (配成紫色)≠P (没配成紫色).(6分)修改:配成紫色小明得5分,否则小亮得1分.(8分)23.解:(1)设袋子中白球有x 个,根据题意得x x +1=23,解得x =2,(3分)经验证,x =2是原分式方程的解,∴袋子中白球有2个;(5分)(2)画树状图如下:(8分)∵共有9种等可能的结果,两次都摸到相同颜色的小球有5种情况,∴两次都摸到相同颜色的小球的概率为59.(10分)24.解:(1)画出树状图如下:(5分)∴由图可知,小明进入游戏区后一共有6种不同的可能路线.∵小明是任选一条道路,∴走各种路线的可能性认为是相等的,而其中进入A 密室有2种可能,进入B 密室有4种可能,(8分)∴进入B 密室可能性较大;(9分)(2)由(1)可知小明从中间通道进入A 密室的概率为16.(12分)25.解:(1)∵从手机中随机抽取一部,再从保护盖中随机取一个,有Aa ,Ab ,Ba ,Bb 四种等可能情况.恰好匹配的有Aa ,Bb 两种情况,(4分)∴P (恰好匹配)=24=12;(6分)(2)画树状图如下:(9分)∵共有12种等可能的结果,恰好匹配的有4种情况,(10分)∴P (恰好匹配)=412=13.(12分)26.解:(1)0.25(3分)(2)设袋中白球为x 个,依题意有11+x =0.25,解得x =3,经检验,x =3是原方程的解.(6分)答:估计袋中有3个白球;(7分)总共有16种等可能的结果,其中两个球都是白球的结果有9种,所以摸到两个球都是白球的概率为916.(14分)27.解:(1)画树状图如下:(4分)∴P (足球踢到小华处)=14;(5分)(2)应从小明开始踢.(6分) 画树状图如下:(10分)若从小明开始踢,P (踢到小明处)=28=14;(12分)同理,若从小强开始踢,P (踢到小明处)=38;(14分)若从小华开始踢,P (踢到小明处)=38.∵14<38,∴应从小明开始踢.(16分)。