MATLAB模拟银行单服务台排队模型
MATLAB模拟银行单服务台排队模型

MATLAB模拟银行单服务台排队模型银行单服务台排队模型是一种常见的排队模型,主要用于描述在银行等排队服务场所中,只有一个服务员的情况下,客户如何排队等待服务的情况。
1.模型假设在进行银行单服务台排队模型的建模过程中,我们需要进行一些假设,以简化问题的复杂性。
这些假设包括:-客户到达时间服从泊松分布:客户到达时间间隔服从泊松分布,即客户到达服从一个固定的时间间隔。
-服务时间服从指数分布:每个客户的服务时间是独立同分布的,服从指数分布。
-服务台只有一个:我们假设只有一个服务台,客户按照到达的顺序排队等待服务。
-客户不能提前离开:我们不考虑客户在等待期间可能会放弃等待而提前离开的情况。
2.模型参数在建立银行单服务台排队模型时,我们需要定义一些模型参数。
这些参数包括:-平均到达率λ:客户的平均到达率,表示单位时间内到达的客户数量的期望值。
-平均服务率μ:服务员的平均服务率,表示单位时间内服务的客户数量的期望值。
-服务台利用率ρ:服务台的利用率,表示服务台的平均使用率。
-平均等待时间W:客户平均等待服务的时间。
-平均队列长度L:客户平均排队等待的队列长度。
3.模拟过程为了模拟银行单服务台排队模型,我们使用MATLAB编程进行模拟。
以下是一个简单的模拟过程:-生成客户到达时间间隔:使用泊松分布生成客户到达时间间隔。
-生成客户服务时间:使用指数分布生成客户的服务时间。
-计算客户到达时间和服务完成时间:根据客户的到达时间间隔和服务时间,计算客户的到达时间和服务完成时间。
-计算客户的等待时间:根据客户的到达时间和服务完成时间,计算客户的等待时间。
-统计模拟结果:统计客户的等待时间、队列长度等模拟结果。
4.结果分析通过对模拟结果的分析,我们可以得到一些关键的结果,包括:-平均等待时间:通过计算客户的平均等待时间,可以评估服务台的效率和客户的等待体验。
-平均队列长度:通过计算客户的平均排队等待的队列长度,可以评估服务台的负载情况。
银行排队模拟

printf("***************************************\n");
}
//获取最短队列的编号
int MinQueue()
srand((unsigned)time(NULL));//设置随机种子
Bank_Simulation();//银行模拟排队
CloseForDay();
return 0;
}
/*******************银行排队操作函数***************************************/
}
//得到用户输入银行关闭时间
printf("请输入银行运营时间(小时):");
scanf("%f",&CloseTime);
//多个空队列
for(i = 0; i < windows_num; i++)
InitQueue(&q[i]);//初始化windows_no个窗口队列
int QueueTraverse(LinkQueue *Q);//遍历队列Q
//排队主操作函数
int MinQueue();//获取最短队列的编号
void OpenForDay(); //初始化操作
void CustomerArrived();//顾客达到事件
void CustomerDepature();//顾客离开事件
if(a[i] < a[min]){
matlab单服务台排队系统实验报告

matlab单服务台排队系统实验报告matlab 单服务台排队系统实验报告⼀、实验⽬的本次实验要求实现M/M/1单窗⼝⽆限排队系统的系统仿真,利⽤事件调度法实现离散事件系统仿真,并统计平均队列长度以及平均等待时间等值,以与理论分析结果进⾏对⽐。
⼆、实验原理根据排队论的知识我们知道,排队系统的分类是根据该系统中的顾客到达模式、服务模式、服务员数量以及服务规则等因素决定的。
1、顾客到达模式设到达过程是⼀个参数为λ的Poisson 过程,则长度为t 的时间内到达k 个呼叫的概率服从Poisson 分布,即etkk k t t p λλ-=!)()(,=,2,1,0k ,其中λ>0为⼀常数,表⽰了平均到达率或Poisson 呼叫流的强度。
2、服务模式设每个呼叫的持续时间为i τ,服从参数为µ的负指数分布,即其分布函数为{}1,0t P X t e t µ-<=-≥3、服务规则先进先服务的规则(FIFO ) 4、理论分析结果在该M/M/1系统中,设λρµ=,则稳态时的平均等待队长为1Q ρλρ=-,顾客的平均等待时间为T ρµλ=-。
三、实验内容M/M/1排队系统:实现了当顾客到达分布服从负指数分布,系统服务时间也服从负指数分布,单服务台系统,单队排队,按FIFO ⽅式服务。
四、采⽤的语⾔MatLab 语⾔源代码:clear; clc;%M/M/1排队系统仿真SimTotal=input('请输⼊仿真顾客总数SimTotal='); %仿真顾客总数;Lambda=0.4; %到达率Lambda;Mu=0.9; %服务率Mu;t_Arrive=zeros(1,SimTotal);t_Leave=zeros(1,SimTotal);ArriveNum=zeros(1,SimTotal);LeaveNum=zeros(1,SimTotal);Interval_Arrive=-log(rand(1,SimTotal))/Lambda;%到达时间间隔Interval_Serve=-log(rand(1,SimTotal))/Mu;%服务时间t_Arrive(1)=Interval_Arrive(1);%顾客到达时间ArriveNum(1)=1;for i=2:SimTotalt_Arrive(i)=t_Arrive(i-1)+Interval_Arrive(i);ArriveNum(i)=i;endt_Leave(1)=t_Arrive(1)+Interval_Serve(1);%顾客离开时间LeaveNum(1)=1;for i=2:SimTotalif t_Leave(i-1)t_Leave(i)=t_Arrive(i)+Interval_Serve(i);elset_Leave(i)=t_Leave(i-1)+Interval_Serve(i);endLeaveNum(i)=i;endt_Wait=t_Leave-t_Arrive; %各顾客在系统中的等待时间t_Wait_avg=mean(t_Wait);t_Queue=t_Wait-Interval_Serve;%各顾客在系统中的排队时间t_Queue_avg=mean(t_Queue);Timepoint=[t_Arrive,t_Leave];%系统中顾客数随时间的变化Timepoint=sort(Timepoint);ArriveFlag=zeros(size(Timepoint));%到达时间标志CusNum=zeros(size(Timepoint));temp=2;CusNum(1)=1;for i=2:length(Timepoint)if (temp<=length(t_Arrive))&&(Timepoint(i)==t_Arrive(temp)) CusNum(i)=CusNum(i-1)+1;temp=temp+1;ArriveFlag(i)=1;CusNum(i)=CusNum(i-1)-1;endend%系统中平均顾客数计算Time_interval=zeros(size(Timepoint));Time_interval(1)=t_Arrive(1);for i=2:length(Timepoint)Time_interval(i)=Timepoint(i)-Timepoint(i-1);endCusNum_fromStart=[0 CusNum];CusNum_avg=sum(CusNum_fromStart.*[Time_interval 0] )/Timepoint(end);QueLength=zeros(size(CusNum));for i=1:length(CusNum)if CusNum(i)>=2QueLength(i)=CusNum(i)-1;elseQueLength(i)=0;endendQueLength_avg=sum([0 QueLength].*[Time_interval 0] )/Timepoint(end);%系统平均等待队长%仿真图figure(1);set(1,'position',[0,0,1000,700]);subplot(2,2,1);title('各顾客到达时间和离去时间');stairs([0 ArriveNum],[0 t_Arrive],'b');hold on;stairs([0 LeaveNum],[0 t_Leave],'y');legend('到达时间','离去时间');hold off;subplot(2,2,2);stairs(Timepoint,CusNum,'b')title('系统等待队长分布');xlabel('时间');ylabel('队长');subplot(2,2,3);title('各顾客在系统中的排队时间和等待时间');stairs([0 ArriveNum],[0 t_Queue],'b');stairs([0 LeaveNum],[0 t_Wait],'y');hold off;legend('排队时间','等待时间');%仿真值与理论值⽐较disp(['理论平均等待时间t_Wait_avg=',num2str(1/(Mu-Lambda))]);disp(['理论平均排队时间t_Wait_avg=',num2str(Lambda/(Mu*(Mu-Lambda)))]);disp(['理论系统中平均顾客数=',num2str(Lambda/(Mu-Lambda))]);disp(['理论系统中平均等待队长=',num2str(Lambda*Lambda/(Mu*(Mu-Lambda)))]);disp(['仿真平均等待时间t_Wait_avg=',num2str(t_Wait_avg)])disp(['仿真平均排队时间t_Queue_avg=',num2str(t_Queue_avg)])disp(['仿真系统中平均顾客数=',num2str(CusNum_avg)]);disp(['仿真系统中平均等待队长=',num2str(QueLength_avg)]);五、数据结构1.仿真设计算法(主要函数)利⽤负指数分布与泊松过程的关系,产⽣符合泊松过程的顾客流,产⽣符合负指数分布的随机变量作为每个顾客的服务时间:Interval_Arrive=-log(rand(1,SimTotal))/Lambda;%到达时间间隔,结果与调⽤exprnd(1/Lambda,m)函数产⽣的结果相同Interval_Serve=-log(rand(1,SimTotal))/Mu;%服务时间间隔t_Arrive(1)=Interval_Arrive(1);%顾客到达时间时间计算t_Wait=t_Leave-t_Arrive;%各顾客在系统中的等待时间t_Queue=t_Wait-Interval_Serve; %各顾客在系统中的排队时间由事件来触发仿真时钟的不断推进。
MM1排队系统仿真matlab实验报告

M/M/1排队系统实验报告一、实验目的本次实验要求实现M/M/1单窗口无限排队系统的系统仿真,利用事件调度法实现离散事件系统仿真,并统计平均队列长度以及平均等待时间等值,以与理论分析结果进行对比。
二、实验原理根据排队论的知识我们知道,排队系统的分类是根据该系统中的顾客到达模式、服务模式、服务员数量以及服务规则等因素决定的。
1、 顾客到达模式设到达过程是一个参数为λ的Poisson 过程,则长度为t 的时间内到达k 个呼叫的概率 服从Poisson 分布,即etkk k t t p λλ-=!)()(,⋅⋅⋅⋅⋅⋅⋅⋅⋅=,2,1,0k ,其中λ>0为一常数,表示了平均到达率或Poisson 呼叫流的强度。
2、 服务模式设每个呼叫的持续时间为i τ,服从参数为μ的负指数分布,即其分布函数为{}1,0t P X t e t μ-<=-≥3、 服务规则先进先服务的规则(FIFO ) 4、 理论分析结果在该M/M/1系统中,设λρμ=,则稳态时的平均等待队长为1Q ρλρ=-,顾客的平均等待时间为T ρμλ=-。
三、实验内容M/M/1排队系统:实现了当顾客到达分布服从负指数分布,系统服务时间也服从负指数分布,单服务台系统,单队排队,按FIFO (先入先出队列)方式服务。
四、采用的语言MatLab 语言 源代码:clear; clc;%M/M/1排队系统仿真SimTotal=input('请输入仿真顾客总数SimTotal='); %仿真顾客总数;Lambda=0.4; %到达率Lambda;Mu=0.9; %服务率Mu;t_Arrive=zeros(1,SimTotal);t_Leave=zeros(1,SimTotal);ArriveNum=zeros(1,SimTotal);LeaveNum=zeros(1,SimTotal);Interval_Arrive=-log(rand(1,SimTotal))/Lambda;%到达时间间隔Interval_Serve=-log(rand(1,SimTotal))/Mu;%服务时间t_Arrive(1)=Interval_Arrive(1);%顾客到达时间ArriveNum(1)=1;for i=2:SimTotalt_Arrive(i)=t_Arrive(i-1)+Interval_Arrive(i);ArriveNum(i)=i;endt_Leave(1)=t_Arrive(1)+Interval_Serve(1);%顾客离开时间LeaveNum(1)=1;for i=2:SimTotalif t_Leave(i-1)<t_Arrive(i)t_Leave(i)=t_Arrive(i)+Interval_Serve(i);elset_Leave(i)=t_Leave(i-1)+Interval_Serve(i);endLeaveNum(i)=i;endt_Wait=t_Leave-t_Arrive; %各顾客在系统中的等待时间t_Wait_avg=mean(t_Wait);t_Queue=t_Wait-Interval_Serve;%各顾客在系统中的排队时间t_Queue_avg=mean(t_Queue);Timepoint=[t_Arrive,t_Leave];%系统中顾客数随时间的变化Timepoint=sort(Timepoint);ArriveFlag=zeros(size(Timepoint));%到达时间标志CusNum=zeros(size(Timepoint));temp=2;CusNum(1)=1;for i=2:length(Timepoint)if (temp<=length(t_Arrive))&&(Timepoint(i)==t_Arrive(temp)) CusNum(i)=CusNum(i-1)+1;temp=temp+1;ArriveFlag(i)=1;elseCusNum(i)=CusNum(i-1)-1;endend%系统中平均顾客数计算Time_interval=zeros(size(Timepoint));Time_interval(1)=t_Arrive(1);for i=2:length(Timepoint)Time_interval(i)=Timepoint(i)-Timepoint(i-1);endCusNum_fromStart=[0 CusNum];CusNum_avg=sum(CusNum_fromStart.*[Time_interval 0] )/Timepoint(end);QueLength=zeros(size(CusNum));for i=1:length(CusNum)if CusNum(i)>=2QueLength(i)=CusNum(i)-1;elseQueLength(i)=0;endendQueLength_avg=sum([0 QueLength].*[Time_interval 0] )/Timepoint(end);%系统平均等待队长%仿真图figure(1);set(1,'position',[0,0,1000,700]);subplot(2,2,1);title('各顾客到达时间和离去时间');stairs([0 ArriveNum],[0 t_Arrive],'b');hold on;stairs([0 LeaveNum],[0 t_Leave],'y');legend('到达时间','离去时间');hold off;subplot(2,2,2);stairs(Timepoint,CusNum,'b')title('系统等待队长分布');xlabel('时间');ylabel('队长');subplot(2,2,3);title('各顾客在系统中的排队时间和等待时间');stairs([0 ArriveNum],[0 t_Queue],'b');hold on;stairs([0 LeaveNum],[0 t_Wait],'y');hold off;legend('排队时间','等待时间');%仿真值与理论值比较disp(['理论平均等待时间t_Wait_avg=',num2str(1/(Mu-Lambda))]);disp(['理论平均排队时间t_Wait_avg=',num2str(Lambda/(Mu*(Mu-Lambda)))]);disp(['理论系统中平均顾客数=',num2str(Lambda/(Mu-Lambda))]);disp(['理论系统中平均等待队长=',num2str(Lambda*Lambda/(Mu*(Mu-Lambda)))]);disp(['仿真平均等待时间t_Wait_avg=',num2str(t_Wait_avg)])disp(['仿真平均排队时间t_Queue_avg=',num2str(t_Queue_avg)])disp(['仿真系统中平均顾客数=',num2str(CusNum_avg)]);disp(['仿真系统中平均等待队长=',num2str(QueLength_avg)]);五、数据结构1.仿真设计算法(主要函数)利用负指数分布与泊松过程的关系,产生符合泊松过程的顾客流,产生符合负指数分布的随机变量作为每个顾客的服务时间:Interval_Arrive=-log(rand(1,SimTotal))/Lambda;%到达时间间隔,结果与调用exprnd(1/Lambda,m)函数产生的结果相同Interval_Serve=-log(rand(1,SimTotal))/Mu;%服务时间间隔t_Arrive(1)=Interval_Arrive(1);%顾客到达时间时间计算t_Wait=t_Leave-t_Arrive;%各顾客在系统中的等待时间t_Queue=t_Wait-Interval_Serve; %各顾客在系统中的排队时间由事件来触发仿真时钟的不断推进。
单服务排队系统MAAB仿真程序

单服务台系统MATLAB仿真学号:15 姓名:缪晨一、引言排队是日常生活中经常遇到的现象。
通常 ,当人、物体或是信息的到达速率大于完成服务的速率时 ,即出现排队现象。
排队越长 ,意味着浪费的时间越多 ,系统的效率也越低。
在日常生活中 ,经常遇到排队现象 ,如开车上班、在超市等待结账、工厂中等待加工的工件以及待修的机器等。
总之 ,排队现象是随处可见的。
排队理论是运作管理中最重要的领域之一 ,它是计划、工作设计、存货控制及其他一些问题的基础。
Matlab是 MathWorks公司开发的科学计算软件 ,它以其强大的计算和绘图功能、大量稳定可靠的算法库、简洁高效的编程语言以及庞大的用户群成为数学计算工具方面的标准 ,几乎所有的工程计算领域 ,Matlab都有相应的软件工具箱。
选用 Matlab软件正是基于 Matlab的诸多优点。
二、排队模型三.仿真算法原理(1)顾客信息初始化根据到达率λ和服务率μ来确定每个顾客的到达时间间隔和服务时间间隔。
服务间隔时间可以用负指数分布函数exprnd()来生成。
由于泊松过程的时间间隔也服从负指数分布, 故亦可由此函数生成顾客到达时间间隔。
需要注意的是exprnd()的输入参数不是到达率λ和服务率μ而是平均到达时间间隔 1/λ和平均服务时间1/μ。
根据到达时间间隔 ,确定每个顾客的到达时刻. 学习过C 语言的人习惯于使用FOR循环来实现数值的累加, 但FOR循环会引起运算复杂度的增加而在MATLAB 仿真环境中, 提供了一个方便的函数cumsum() 来实现累加功能读者可以直接引用对当前顾客进行初始化。
第1 个到达系统的顾客不需要等待就可以直接接受服务其离开时刻等于到达时刻与服务时间之和。
(2)进队出队仿真在当前顾客到达时刻,根据系统内已有的顾客数来确定是否接纳该顾客。
若接纳则根据前一顾客的离开时刻来确定当前顾客的等待时间、离开时间和标志位;若拒绝,则标志位置为0.流程图如下:四、程序实现单服务台服务,服务参数M/M/1,λ=μ=,排队规则为FIFO,以分为单位,仿真时间240分钟。
单服务台排队系统仿真

单服务台排队系统仿真单服务台排队系统是指在一个服务台只有一个服务员的情况下,客户需要按顺序等待服务的系统。
本文将介绍一个针对单服务台排队系统的仿真模型。
在设计仿真模型之前,我们需要确定一些重要的参数。
首先是服务时间,即每个客户接受服务所需要的时间。
服务时间可以通过实际观察数据或者估算得出。
其次是到达间隔时间,即每个客户到达的时间间隔。
到达间隔时间可以通过实际观察数据或者使用随机数生成器进行模拟。
首先,我们需要创建一个事件队列来模拟客户的到达和离开。
事件队列是一个按照发生时间顺序排序的队列,每个事件都包含两个属性:时间和类型。
接下来,我们创建一个时钟来记录仿真进行的时间。
初始时,时钟指向第一个到达事件的时间。
然后,我们从事件队列中取出第一个事件,并更新时钟指向该事件的时间。
如果当前事件类型是到达事件,我们需要进行如下操作:首先,模拟下一个客户到达的时间,并将该事件添加到事件队列中。
然后,判断当前是否有客户正在接受服务。
如果没有,我们将当前事件类型设置为离开事件,并模拟该客户的服务时间和离开时间,并将该离开事件添加到事件队列中。
如果有客户正在接受服务,我们将当前事件类型设置为到达事件。
如果当前事件类型是离开事件,我们需要进行如下操作:首先,更新服务台的空闲状态。
然后,判断是否还有等待服务的客户。
如果有,我们将当前事件类型设置为离开事件,并模拟下一个客户的服务时间和离开时间,并将该离开事件添加到事件队列中。
如果没有等待服务的客户,我们将当前事件类型设置为到达事件。
重复上述步骤,直到事件队列中没有事件为止。
最后,我们可以根据仿真的结果,比如客户的等待时间、服务时间和系统繁忙率等指标,来评估和优化该排队系统的性能。
通过以上的模型,我们可以对单服务台排队系统进行仿真,并评估其性能。
我们可以通过改变服务时间、到达间隔时间等参数,来探究不同情况下系统的表现和优化方案。
同时,我们还可以根据仿真结果,对系统进行调整和改进,以提高客户的满意度和服务效率。
MM1排队系统仿真matlab实验报告材料

M/M/1 排队系统实验报告一、实验目的本次实验要现M/M/1单窗口无限排队系统的系统仿真,利用事件调度法实 现离散事件系统仿真,并统计平均队列长度以及平均等待时间等值, 以与理论分析结果进行对比二、实验原理根据排队论的知识我们知道,排队系统的分类是根据该系统中的顾客到达模 式、服务模式、服务员数量以及服务规则等因素决定的。
1、 顾客到达模式设到达过程是一个参数为的Poisson 过程,则长度为t 的时间到达k 个呼常数,表示了平均到达率或 Poisson 呼叫流的强度。
2、 服务模式设每个呼叫的持续时间为i ,服从参数为的负指数分布,即其分布函数为P{X t} 1 e t ,t 03、服务规则先进先服务的规则(FIFO )4、 理论分析结果T的平均等待时间为P k (t)叫的概率 服从Poisson 分布,即(t)k t k! e k 0,1,2,,其中 >0为在该M/M/1 系统中,设,则稳态时的平均等待队长为,顾客三、实验容M/M/1排队系统:实现了当顾客到达分布服从负指数分布,系统服务时间也服从负指数分布,单服务台系统,单队排队,按FIFO方式服务。
四、采用的语言MatLab语言源代码:clear;clc;%M/M/1排队系统仿真SimTota匸i nput(' 请输入仿真顾客总数SimTota匸');% 仿真顾客总数;Lambda=0.4; % 到达率Lambda ;Mu=0.9; %服务率Mu ;t_Arrive=zeros(1,SimTotal);t_Leave=zeros(1,SimTotal);ArriveNum=zeros(1,SimTotal);LeaveNum=zeros(1,SimTotal);In terval_Arrive=-log(ra nd(1,SimTotal))/Lambda;% 到达时间间隔In terval_Serve=-log(ra nd(1,SimTotal))/Mu;% 服务时间t_Arrive(1)=I nterval_Arrive(1);% 顾客到达时间ArriveNum(1)=1;for i=2:SimTotalt_Arrive(i)=t_Arrive(i-1)+In terval_Arrive(i);ArriveNum(i)=i;endt_Leave(1)=t_Arrive(1)+l nterval_Serve(1);% 顾客离开时间LeaveNum⑴=1;for i=2:SimTotalif t_Leave(i-1)<t_Arrive(i)t_Leave(i)=t_Arrive(i)+In terval_Serve(i);elset_Leave(i)=t_Leave(i-1)+I nterval_Serve(i);endLeaveNum(i)=i;endt_Wait=t_Leave-t_Arrive; % 各顾客在系统中的等待时间t_Wait_avg=mea n( t_Wait);t_Queue=t_Wait-I nterval_Serve;% 各顾客在系统中的排队时间t_Queue_avg=mea n( t_Queue);Timepoi nt=[t_Arrive,t_Leave];% 系统中顾客数随时间的变化Timepo in t=sort(Timepo in t);ArriveFlag=zeros(size(Timepo in t));% 到达时间标志CusNum=zeros(size(Timepoi nt));temp=2;CusNum⑴=1;for i=2:le ngth(Timepoi nt)if (temp<=le ngth(t_Arrive))&&( Timepoi nt(i)==t_Arrive(temp))CusNum(i)=CusNum(i-1)+1;temp=temp+1;ArriveFlag(i)=1;elseCusNum(i)=CusNum(i-1)-1;endend%系统中平均顾客数计算Time_ in terval=zeros(size(Timepo in t));Time_in terval(1)=t_Arrive(1);for i=2:le ngth(Timepoi nt)Time_i nterval(i)=Timepoi nt(i)-Timepoi nt(i-1);endCusNum」romStart=[0 CusNum];CusNum_avg=sum(CusNum_fromStart.*[Time」n terval 0] )/Timepo in t(e nd); QueLe ngth=zeros(size(CusNum));for i=1:le ngth(CusNum)if CusNum(i)>=2QueLe ngth(i)=CusNum(i)-1;elseQueLe ngth(i)=0;endendQueLe ngth_avg=sum([O QueLe ngth].*[Time_i nterval 0] )/Timepoi nt(e nd);%系统平均等待队长%仿真图figure(1);set(1,'positio n',[0,0,1000,700]);subplot(2,2,1);title('各顾客到达时间和离去时间');stairs([0 ArriveNum],[O t_Arrive],'b');hold on;stairs([0 LeaveNum],[0 t_Leave],'y');legend('到达时间','离去时间');hold off;subplot(2,2,2);stairs(Timepo in t,CusNum,'b')title('系统等待队长分布');xlabel('时间');ylabel('队长');subplot(2,2,3);title('各顾客在系统中的排队时间和等待时间’);stairs([0 ArriveNum],[O t_Queue],'b');hold on;stairs([0 LeaveNum],[O t_Wait],'y');hold off;legend('排队时间','等待时间');%仿真值与理论值比较disp(['理论平均等待时间t_Wait_avg=',num2str(1/(Mu-Lambda))]);disp(['理论平均排队时间t_Wait_avg=',num2str(Lambda/(Mu*(Mu-Lambda)))]); disp(['理论系统中平均顾客数=',num2str(Lambda/(Mu-Lambda))]);disp(['理论系统中平均等待队长=',num2str(Lambda*Lambda/(Mu*(Mu-Lambda)))]);disp(['仿真平均等待时间t_Wait_avg=',num2str(t_Wait_avg)])disp(['仿真平均排队时间t_Queue_avg=',num2str(t_Queue_avg)])disp(['仿真系统中平均顾客数=',num2str(CusNum_avg)]);disp(['仿真系统中平均等待队长=',num2str(QueLength_avg)]);五、数据结构1. 仿真设计算法(主要函数)利用负指数分布与泊松过程的关系,产生符合泊松过程的顾客流,产生符合负指数分布的随机变量作为每个顾客的服务时间:Interval_Arrive=-log(rand(1,SimTotal))/Lambda; %到达时间间隔,结果与调用exprnd(1/Lambda ,m)函数产生的结果相同In terval_Serve=-log(ra nd(1,SimTotal))/Mu; % 服务时间间隔t_Arrive(1)=l nterval_Arrive(1); % 顾客到达时间时间计算t_Wait=t_Leave-t_Arrive; %各顾客在系统中的等待时间t_Queue=t_Wait-I nterval_Serve; %各顾客在系统中的排队时间由事件来触发仿真时钟的不断推进。
计算机仿真大赛作品—银行排队系统

建立模型
算法设计
编程
输出界面
顾客进来
分配顾客办理业务随机 时间t 分配下一顾客达到间隔 随机时间t0
•随机时间t1[0] •随机时间t1[1] •随机时间t1[2] 。 。 。 。
•随机时间t2[0] •随机时间t2[1] 。 。
•随机时间t3[0] 。 。
•随机时间t4[0] •随机时间t4[1] 。 。 。
(一)选择主题 假设某银行有4个对外业务办理窗口,从早 晨银行开门起不断有客户进入银行,由于每 个窗口某个时刻只能接待一个客户,因此在 客户人数众多时需要在每个窗口进行排队, 对于刚进入银行的客户,如果某个窗口空闲 ,则可立即上前办理业务;否则,就排在人 数最少的队伍后面。请模拟银行一天的业务 情况并统计客户在银行的平均停留时间。
部分 代码
document.getElementById("td00").innerHTML="";
document.getElementById("td01").innerHTML=""; if(currenttime==(t0-t)*3600) end();
}
建立模型
算法设计
编程
输出界面
部分 代码
输出界面
部分 代码
body{ padding-left:0; padding-top:0; padding-bottom:0; paddingright:0; background-image:url(bj.gif); background-repeat:repeat; } #table{ padding-top:0px; padding-left:0; padding-right:0; padding-bottom:0; } #table1{ width:810px;height:800px; border:#FFF solid 4px; }
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M A T L A B模拟银行单服务台排队模型
标准化工作室编码[XX968T-XX89628-XJ668-XT689N]
M A T L A B模拟银行单服务台排队模型
摘要:运筹学就是专门研究对各种经营做出优化决策的科学,也称为最优化理论。
排队论是运筹学的重要组成部分。
排队论又称随机服务系统理论,它是通过对各种服务系统在排队等待现象中概率特性的研究,来解决服务系统最优设计与最优控制一门学科。
具有排队等候现象的服务系统通称为排队系统。
任何一个服务系统总是由两个相辅相成的要素:顾客和服务员(或服务台)所构成。
凡是要求接受服务的人与物统称为顾客;凡是给予顾客服务的人与物统称为服务员(或服务台)。
MATLAB是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。
使用MATLAB可以较使用传统的编程语言(如C、C++和Fortran)更快地解决技术计算问题。
关键词:程序化模拟;单服务台;等待时间;排队论
一、问题叙述
众所周知,近年来我国大学大举扩招,学生人数大幅增加,而大学校园往往距离城市中心较远,银行数量较少,这就导致了银行业务繁忙时大量学生在银行窗口前排起长队等待的情况。
这种现象长期困扰着广大学生,浪费了同学们的大量时间。
为此,我们建立银行单服务台排队模型,并用MATLAB进行模拟,以计算学生在银行窗口前的平均排队时间。
二、模型假设
1。
在银行只有一个服务窗口,客户陆续来到,服务窗口逐个地接待客户.当到来的客户较多时,一部分客户便须排队等待,被接待后的客户便离开银行。
2。
客户到达的间隔时间服从指数分布(均值为10分钟);每个客户的服务时间服从均匀分布U[10,15]。
3。
客户到达时刻、客户服务完毕并离去时刻等均视为随机事件(瞬间完成)。
4。
排队按先到先服务规则。
三、符号说明
arrive(i):第i个客户到达的时刻;
wait(i):第i个客户的排队等待时间;
servetime(i):第i个客户接受服务的时间;
meantime(i):客户的平均等待时间
n:客户数目
四、模型的建立与求解
在任意时刻t,系统的状态可以用排队等候的客户数目和服务员是否在工作来描述。
排队等候的客户数目称为队长,记作L(t),为非负整数。
服务员的状态用S(t)表示,当服务员工作时,令S(t)=1;服务员空闲时,令
S(t)=0。
系统的性能指标通常用排队长度、等待时间和服务利用率等来衡量。
由于它们随时间改变,一般用一段时间内的平均值作为数量指标。
有以下三个指标:
1)平均队长指队长L(t)在[0,T]内的平均值,计算公式为
2)客户的平均等待时间指每个客户平均等待的时间长度,记作W .
3)服务利用率指服务员工作时间在T 中的比例,⎰=T dt t S T U 0
)(1 为了简化问题,假设在上述模型下,系统的性能指标只有一个,即客户的平均等待时间.考虑用模拟方法来求W ,若系统能模拟出每位客户的等待时间序列},,,{21n D D D ,则
具体模拟步骤如下:
第1步调查并收集和处理数据,记录客户到达时刻、等待时间和服务时间.假定客户到达的间隔时间服从指数分布(均值为10分钟);每个客户的服务时间服从均匀分布U[10,15]。
第2步构造模拟模型.输人因素:客户的到达间隔时间和服务时间;排队规则:先到先服务;一个服务机构。
第3步模拟实验。
设置模拟时钟及总的运行时间T ,如8小时等。
推进原则按下次事件推进或均匀间隔推进。
用MATLAB 编制程序如下(paidui.m):
for n=1:10
arrive=zeros(1,n);
for i=2:n
arrive(i)=arrive(i-1)+exprnd(0.1);
end
wait=zeros(1,n);
for i=1:n
if (i==1)
wait(i)=0;
else
servetime=unifrnd(10,15);
if (arrive(i-1)+servetime+wait(i-1)>arrive(i))
wait(i)=arrive(i-1)+servetime+wait(i-1)-arrive(i);
else
wait(i)=0;
end
end
end
meantime=mean(wait)
end
1. 打开MATLAB 软件,创m 文件paidui.m
2. 编写程序
3. 运行程序。