二次函数和二次方程

合集下载

二次函数与二次方程的关系

二次函数与二次方程的关系

二次函数与二次方程的关系在数学中,二次函数和二次方程是密不可分的概念。

二次函数可以用来描述二次方程的图像特征,而二次方程则是用来求解二次函数的根的工具。

本文将解析二次函数与二次方程之间的关系。

一、二次函数的定义与性质二次函数的一般形式为y = ax^2 + bx + c,其中a、b、c为常数且a≠ 0。

二次函数的图像是一个开口向上或向下的抛物线。

其中,参数a决定了抛物线的开口方向和形状,正值使得抛物线开口向上,负值则使得抛物线开口向下;参数b决定了抛物线的位置,正值使得抛物线右移,负值则使得抛物线左移;参数c决定了抛物线与y轴的交点位置。

二、二次方程的定义与性质二次方程是形如ax^2 + bx + c = 0的一元二次方程,其中a、b、c为常数且a ≠ 0。

解二次方程的根就是使方程等于0的x值。

根据求根公式,可以得到二次方程的解:x = (-b ± √(b^2 - 4ac)) / 2a其中,±代表两个不同的解,即方程可能有两个解、一个解或无解。

根据判别式Δ = b^2 - 4ac的正负与零的关系,可以进一步判断二次方程的解的情况。

当Δ > 0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ < 0时,方程无实数根,但可以有复数根。

三、二次函数与二次方程的关系1. 根与零点对于二次函数y = ax^2 + bx + c,其根就是使得函数值等于0的x值,也就是二次方程ax^2 + bx + c = 0的解。

反之,二次方程的解也可以作为二次函数的零点,即对应的x值。

2. 抛物线与图像二次函数的图像是一个抛物线,而二次方程的解决定了抛物线与x轴的交点,也就是抛物线的顶点或者零点。

具体而言:- 当二次方程有两个实数根时,抛物线与x轴有两个交点,分别对应于方程的两个解;- 当二次方程有两个相等的实数根时,抛物线与x轴有一个交点,即抛物线在该点处切线与x轴重合;- 当二次方程无实数根时,抛物线与x轴没有交点,抛物线位于x轴上方或下方。

二次函数与方程

二次函数与方程

二次函数与方程二次函数是指形如y=ax²+bx+c的函数,其中a、b、c是常数且a≠0。

而二次方程是指形如ax²+bx+c=0的方程,其中a、b、c也是常数且a≠0。

二次函数的图像通常呈现出抛物线的形状,开口的方向取决于a的正负,a>0时抛物线开口向上,a<0时抛物线开口向下。

而二次函数的图像与方程的解之间存在密切的关系。

解二次方程的一种常见方法是使用求根公式。

对于一般的二次方程ax²+bx+c=0,其中a≠0,它的根可以用以下公式表示:x = (-b ± √(b²-4ac))/(2a)这个公式中的±表示两个解,一个取加号,一个取减号。

根据二次方程的判别式Δ=b²-4ac的值,可以确定方程的解的情况:1. 当Δ>0时,方程有两个不相等的实根;2. 当Δ=0时,方程有且仅有一个实根;3. 当Δ<0时,方程无实根,但有两个共轭复根。

通过求根公式,我们可以求得二次方程的解。

而这些解可以帮助我们进一步了解二次函数的性质。

与二次函数相关的一些重要概念包括顶点、轴对称和对称轴。

顶点是抛物线的最高点或最低点,它的横坐标为-x轴的对称轴。

对于二次函数y=ax²+bx+c,它的顶点的横坐标可以通过以下公式计算:x = -b/(2a)轴对称是指抛物线关于对称轴对称。

对于二次函数y=ax²+bx+c,它的对称轴的方程可以表示为x=-b/(2a)。

通过对二次函数的顶点和对称轴的求解,我们可以更好地理解二次函数的图像和性质。

二次函数的图像还与a的大小有关。

当a的绝对值越大时,抛物线的开口越窄,图像越陡峭;当a的绝对值越小时,抛物线的开口越宽,图像越平缓。

除了图像和方程之间的关系,二次函数和方程还在实际中有广泛的应用。

在物理学中,二次函数可以用来描述自由落体运动的轨迹、抛体运动的轨迹等。

在经济学中,二次函数可以用来建立成本函数、收益函数等。

二次函数与二次方程

二次函数与二次方程

二次函数与一元二次方程知识要点梳理: 一元二次方程ax2+bx+c=0(a≠0)的解的情况等价于抛物线y=ax2+bx+c(c≠0)与直线y=0(即x轴)的公共点的个数。

抛物线y=ax2+bx+c(a≠0)与x轴的公共点有三种情况:两个公共点(即有两个交点),一个公共点,没有公共点,因此有: (1)抛物线y=ax2+bx+c与x轴有两个公共点(x1,0)(x2,0)一元二次方程ax2+bx+c=0有两个不等实根△=b2-4ac>0。

(2)抛物线y=ax2+bx+c与x轴只有一个公共点时,此公共点即为顶点一元二次方程ax2+bx+c=0有两个相等实根, (3)抛物线y=ax2+bx+c与x轴没有公共点一元二次方程ax2+bx+c=0没有实数根△=b2-4ac<0. (4)事实上,抛物线y=ax2+bx+c与直线y=h的公共点情况方程ax2+bx+c=h的根的情况。

抛物线y=ax2+bx+c与直线y=mx+n的公共点情况方程ax2+bx+c=mx+n的根的情况。

典例精讲例1(2008枣庄)在直角坐标平面中,O为坐标原点,二次函数的图象与y轴交于点A,与x轴的负半轴交于点B,且.(1)求点A与点B的坐标;(2)求此二次函数的解析式;(3)如果点P在x轴上,且△ABP是等腰三角形,求点P的坐标.例2已知二次函数y=x2-〔m2+8〕x+2〔m2+6〕,⑴求证;不论m取任何实数,此函数图象都与x轴有两个交点,且两个交点都在x轴的正半轴上。

⑵设抛物线顶点为A,与X轴交于B,C两点,问是否存在实数M,使三角形ABC为等腰直角角形?如果存在,求出M的值;如果不存在,请说明理由。

例3(2009遂宁)如图,二次函数的图象经过点D(0,),且顶点C的横坐标为4,该图象在x 轴上截得的线段AB的长为6.⑴求二次函数的解析式;⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.基础练习1.不论x为何值,二次函数y=ax2+bx+c的值恒为负的条件()。

二次函数与一元二次方程、不等式

二次函数与一元二次方程、不等式

2.3 二次函数与一元二次方程、不等式(一)教材梳理填空(1)一元二次不等式:一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.一元二次不等式的一般形式是ax 2+bx +c >0或ax 2+bx +c <0,其中a ,b ,c 均为常数,a ≠0.(2)二次函数的零点:一般地,对于二次函数y =ax 2+bx +c ,我们把使ax 2+bx +c =0的实数x 叫做二次函数y =ax 2+bx +c 的零点.(3)二次函数与一元二次方程、不等式的解的对应关系Δ>0 Δ=0 Δ<0y =ax 2+bx +c (a >0)的图象ax 2+bx +c =0 (a >0)的根 有两个不相等的实数根x 1,x 2(x 1<x 2) 有两个相等的实数根x 1=x 2=-b2a没有实数根ax 2+bx +c >0 (a >0)的解集 {x |x <x 1, 或x >x 2} ⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠-b 2aRax 2+bx +c <0 (a >0)的解集 {x |x 1<x <x 2}∅∅(二)基本知能小试 1.判断正误(1)mx 2-5x <0是一元二次不等式.( )(2)若a >0,则一元二次不等式ax 2+1>0无解.( )(3)若一元二次方程ax 2+bx +c =0的两根为x 1,x 2(x 1<x 2),则一元二次不等式ax 2+bx +c <0的解集为{x |x 1<x <x 2}.( )(4)不等式x 2-2x +3>0的解集为R.( ) 2.不等式2x 2-x -1>0的解集是( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <1 B .{x |x >1} C .{x |x <1或x >2} D .⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >1 3.不等式-2x 2+x +3<0的解集是( )A .{x |x <-1}B .⎩⎨⎧⎭⎬⎫x ⎪⎪ x >32C .⎩⎨⎧⎭⎬⎫x ⎪⎪ -1<x <32D .⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >32 4.若不等式ax 2+5x +c >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12,则a ,c 的值分别为________,________.题型一 一元二次不等式的解法[学透用活][典例1] 解下列不等式:(1)-2x 2+x -6<0; (2)-x 2+6x -9≥0; (3)x 2-2x -3>0; (4)-4x 2+4x -1>0.[对点练清]1.(2018·全国卷Ⅰ)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2} D .{x |x ≤-1}∪{x |x ≥2}2.不等式(x +5)(3-2x )≥6的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-1或x ≥92B.⎩⎨⎧⎭⎬⎫x ⎪⎪-1≤x ≤92C.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-92或x ≥1D.⎩⎨⎧⎭⎬⎫x ⎪⎪-92≤x ≤1 3.解不等式:-2<x 2-3x ≤10.题型二 二次函数与一元二次方程、不等式间的关系[学透用活][典例2] 已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},求关于x 的不等式cx 2+bx +a <0的解集.[对点练清]1.[变结论]本例中条件不变,求关于x 的不等式cx 2-bx +a >0的解集.2.[变条件]若将本例的条件“关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3}”变为“关于x 的不等式ax 2+bx +c ≥0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪-13≤x ≤2”.求不等式cx 2+bx +a <0的解集.题型三一元二次不等式的实际应用[学透用活][典例3]某校园内有一块长为800 m,宽为600 m的长方形地面,现要对该地面进行绿化,规划四周种花卉(花卉带的宽度相同),中间种草坪,若要求草坪的面积不小于总面积的一半,求花卉带宽度的范围.[对点练清]1.某商品在最近30天内的价格y1与时间t(单位:天)的关系式是y1=t+10(0<t≤30,t ∈N);销售量y2与时间t的关系式是y2=-t+35(0<t≤30,t∈N),则使这种商品日销售金额z不小于500元的t的范围为________.2.在一个限速40 km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事发后现场测得甲车的刹车距离略超过12 m,乙车的刹车距离略超过10 m. 又知甲、乙两种车型的刹车距离S m与车速x km/h之间分别有如下关系:S甲=0.1x +0.01x2,S乙=0.05x+0.005x2.问超速行驶谁应负主要责任.[课堂一刻钟巩固训练]一、基础经典题1.下列不等式:①x 2>0;②-x 2-x ≤5;③ax 2>2;④x 3+5x -6>0;⑤mx 2-5y <0;⑥ax 2+bx +c >0.其中是一元二次不等式的有( )A .5个B .4个C .3个D .2个2.不等式-x 2-5x +6≥0的解集为( ) A .{x |x ≥6或x ≤-1} B .{x |-1≤x ≤6} C .{x |-6≤x ≤1}D .{x |x ≤-6或x ≥1}3.二次不等式ax 2+bx +c <0的解集是全体实数的条件是( )A.⎩⎪⎨⎪⎧ a >0,Δ>0B.⎩⎪⎨⎪⎧ a >0,Δ<0C.⎩⎪⎨⎪⎧a <0,Δ>0 D.⎩⎪⎨⎪⎧a <0,Δ<0 4.若a <0,则关于x 的不等式a (x +1)⎝⎛⎭⎫x +1a <0的解集为________. 5.若关于x 的不等式(k -1)x 2+(k -1)x -1<0恒成立,则实数k 的取值范围是________. 二、创新应用题6.解关于x 的不等式x 2-3ax -18a 2>0.[课下双层级演练过关]A 级——学考水平达标练1.设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则S ∩T =( )A .{x |2≤x ≤3}B .{x |x ≤2或x ≥3}C .{x |x ≥3}D .{x |0<x ≤2或x ≥3} 2.下列四个不等式:①-x 2+x +1≥0;②x 2-25x +5>0;③x 2+6x +10>0;④2x 2-3x +4<1.其中解集为R 的是( )A .①B .②C .③D .④3.若0<t <1,则不等式(x -t )⎝⎛⎭⎫x -1t <0的解集为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ 1t <x <t B.⎩⎨⎧⎭⎬⎫x ⎪⎪ x >1t 或x <t C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <1t 或x >t D.⎩⎨⎧⎭⎬⎫x ⎪⎪t <x <1t 4.一元二次方程ax 2+bx +c =0的两根为-2,3,a <0,那么ax 2+bx +c >0的解集为( ) A .{x |x >3或x <-2} B .{x |x >2或x <-3} C .{x |-2<x <3}D .{x |-3<x <2}5.若产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2(0<x <240),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是( )A .100台B .120台C .150台D .180台 6.要使17-6x -x 2有意义,则x 的解集为________.7.已知集合A ={x |3x -2-x 2<0},B ={x |x -a <0},且B ⊆A ,则a 的取值范围为________. 8.若关于x 的不等式ax 2-6x +a 2<0的非空解集为{x |1<x <m },则m =________. 9.解下列不等式:(1)2x 2+7x +3>0;(2)-4x 2+18x -814≥0; (3)-2x 2+3x -2<0; (4)-12x 2+3x -5>0.10.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏.为了使这批台灯每天能获得400元以上的销售收入,应怎样制定这批台灯的销售价格?B级——高考水平高分练1.设x2-2x+a-8≤0对于任意x∈{x|1≤x≤3}恒成立,则a的取值范围是________.2.对于实数x,当且仅当n≤x<n+1(n∈N*)时,[x]=n,则关于x的不等式4[x]2-36[x]+45<0的解集为________.3.解关于x的不等式x2-(a+a2)x+a3>0.4.某小商品在2018年的价格为8元/件,年销量是a件.现经销商计划在2019年将该商品的价格下调至5.5元/件到7.5元/件之间,经调查,顾客的期望价格是4元/件.经测算,该商品价格下调后新增的年销量与实际价格和顾客期望价格的差成反比,比例系数为k.该商品的成本价为3元/件.(1)写出该商品价格下调后,经销商的年收益y与实际价格x的关系式;(2)设k=2a,当实际价格最低定为多少时,仍然可以保证经销商2019年的收益比2018年至少增长20%?5.某热带风暴中心B 位于海港城市A 东偏南30°的方向,与A 市相距400 km.该热带风暴中心B 以40 km/h 的速度向正北方向移动,影响范围的半径是350 km.问:从此时起,经多少时间后A 市将受热带风暴影响,大约受影响多长时间?习题课(提升关键能力) 一元二次函数、方程和不等式高频考点一|比较大小[例1] (1)已知a, b 满足等式x =a 2+b 2+20, y =4(2b -a ), 则x, y 满足的大小关系是( )A .x ≤yB .x ≥yC .x <yD .x >y (2)对于a >0,b >0,下列不等式中不正确的是( ) A.ab 2<1a +1b B .ab ≤a 2+b 22 C .ab ≤⎝⎛⎭⎫a +b 22D.⎝⎛⎭⎫a +b 22≤a 2+b22(3)若角α,β满足-π2<α<π2,-π2<β<π2,则2α+β的取值范围是( )A .-π<2α+β<0B .-π<2α+β<πC .-3π2<2α+β<π2D .-3π2<2α+β<3π2[集训冲关]1.若a >b ,x >y ,下列不等式正确的是( )A .a +x <b +yB .ax >byC .|a |x ≥|a |yD .(a -b )x <(a -b )y 2.已知a +b <0,且a >0,则( )A .a 2<-ab <b 2B .b 2<-ab <a 2C .a 2<b 2<-abD .-ab <b 2<a 23.若0<a <1,0<b <1,且a ≠b ,则a +b,2ab ,2ab ,a 2+b 2中最大的一个是( ) A .a 2+b 2 B .2ab C .2ab D .a +b4.已知a <b <c ,试比较a 2b +b 2c +c 2a 与ab 2+bc 2+ca 2的大小.高频考点二|基本不等式及应用[例2] (1)已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8(2)已知函数y =x -4+9x +1(x >-1),当x =a 时,y 取得最小值b ,则a +b =________. (3)某商品进货价每件50元,据市场调查,当销售价格(每件x 元)为50<x ≤80时,每天售出的件数为P =105(x -40)2,若要使每天获得的利润最多,销售价格每件应定为多少元?[集训冲关]1.(3-a )(a +6)(-6≤a ≤3)的最大值为( ) A .9 B.92 C .3 D.3222.设a >0,若对于任意的正数m ,n ,都有m +n =8,则满足1a ≤1m +4n +1的a 的取值范围是________.3.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位 m/s)、平均车长l (单位:m)的值有关,其公式为F =76 000vv 2+18v +20l.(1)如果不限定车型,l =6.05,则最大车流量为____辆/小时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/小时. 4.若正实数x ,y 满足2x +y +6=xy ,求2x +y 的最小值.高频考点三|一元二次不等式及其应用[例3] (1)解关于x 的不等式x 2+(1-a )x -a <0.(2)甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求1≤x ≤10),每小时可获得的利润是100⎝⎛⎭⎫5x +1-3x 元. ①要使生产该产品2小时获得的利润不低于 3 000元,求x 的取值范围;②要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.[集训冲关]1.若不等式-x 2+mx -1>0有解,则m 的取值范围是( ) A .m <-2或m >2 B .-2<m <2 C .m ≠±2D .1<m <32.关于x 的不等式x 2-ax -6a 2>0(a <0)的解集为{x |x <x 1或x >x 2},且x 2-x 1=52, 则a 的值为( )A .- 5B .-32C .- 2D .-523.某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应的提高比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,问投入成本增加的比例x 应在什么范围内?高频考点四|一元二次函数、方程和不等式[例4] 若不等式x 2+ax +3-a >0对于满足-2≤x ≤2的一切实数x 恒成立,求实数a 的取值范围.[集训冲关]1.若关于x 的方程8x 2-(m -1)x +m -7=0的两根均大于1,则m 的取值范围是________.2.若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}. (1)解不等式2x 2+(2-a )x -a >0;(2)b 为何值时,ax 2+bx +3≥0的解集为R .一、选择题1.若A =a 2+3ab ,B =4ab -b 2,则A ,B 的大小关系是( ) A .A ≤B B .A ≥B C .A <B 或A >B D .A >B2.设集合A ={x |x 2-x -2<0},集合B ={x |1<x <3},则A ∪B =( ) A .{x |-1<x <3} B .{x |-1<x <1} C .{x |1<x <2} D .{x |2<x <3}3.设m >1,P =m +4m -1,Q =5,则P ,Q 的大小关系为( ) A .P <Q B .P =Q C .P ≥QD .P ≤Q4.若不等式ax 2+bx -2>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2<x <-14,则a +b 等于( ) A .-18 B .8 C .-13 D .15.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的取值范围是( ) A .a ≤2 B .a ≥2 C .a ≥3D .a ≤36.《几何原本》第二卷中的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多代数的定理都能够通过图形实现证明,并称之为无字证明.现有如图所示的图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB .设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A.a +b 2≥ab (a >0,b >0) B .a 2+b 2≥2ab (a >0,b >0)C.2aba +b≤ab (a >0,b >0) D.a +b 2≤a 2+b 22(a >0,b >0) 7.对任意实数x ,不等式(a -2)x 2+2(a -2)x -4<0恒成立,则a 的取值范围是( ) A .{a |-2<a ≤2} B .{a |-2≤a ≤2} C .{a |a <-2或a >2}D .{a |a ≤-2或a >2}8.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则( )A .甲先到教室B .乙先到教室C .两人同时到教室D .谁先到教室不确定二、填空题 9.若a <b <0,则1a -b与1a 的大小关系为________. 10.已知x +mx -2(x >2)的最小值为6,则正数m 的值为________.11.关于x 的不等式ax -b >0的解集是{x |x >1},则关于x 的不等式(ax +b )(x -2)>0的解集是________.12.若m 2x -1mx +1<0(m ≠0)对一切x ≥4恒成立,则实数m 的取值范围是________.三、解答题13. 当x >3时,求2x 2x -3的取值范围.14.解关于x 的不等式56x 2+ax -a 2<0.15.已知a >0,b >0,1a +1b =1,求1a -1+9b -1的最小值.16. 国际上钻石的重量计量单位为克拉.已知某种钻石的价值(美元)与其重量(克拉)的平方成正比,且一颗重为3克拉的该钻石的价值为54 000美元.(1)写出钻石的价值y 关于钻石重量x 的关系式;(2)把一颗钻石切割成两颗钻石,若两颗钻石的重量分别为m 克拉和n 克拉, 试证明:当m =n 时,价值损失的百分率最大.(注:价值损失的百分率=原有价值-现有价值原有价值×100%;在切割过程中的重量损耗忽略不计)。

二次函数与一元二次方程

二次函数与一元二次方程

二次函数与一元二次方程【知识梳理】(一)二次函数与一元二次方程的关系一元二次方程ax 2+bx+c=0(a ≠0)的解的情况等价于抛物线y=ax 2+bx+c(c ≠0)与直线y=0(即x 轴)的公共点的个数。

抛物线y=ax 2+bx+c(a ≠0)与x 轴的公共点有三种情况:两个公共点(即有两个交点),一个公共点,没有公共点,因此有:(1)抛物线y=ax 2+bx+c 与x 轴有两个公共点(x 1,0)(x 2,0)即:一元二次方程ax 2+bx+c=0有两个不等实根△=b 2-4ac >0。

(2)抛物线y=ax 2+bx+c 与x 轴只有一个公共点时,此公共点即:为顶点(2b a -,0)一元二次方程ax 2+bx+c=0有两个相等实根,122bx x a ==-240b ac -=(3)抛物线y =ax 2+bx +c 与x 轴没有公共点一元二次方程ax 2+bx+c=0没有实数根△=b 2-4ac <0.(二)二次函数关系式的确定⑴设一般式:y =ax 2+bx +c(a≠0).若已知条件是图象上三个点的坐标,则设一般式y =ax 2+bx +c (a ≠0),将已知条件代入,求出a ,b ,c 的值.⑵设顶点式:y =a(x -h)2+k(a≠0).若已知条件是图象顶点及另一点,则设顶点式y =a (x -h )2+k (a ≠0).,将已知条件代人,求解并化为一般形式.:⑶设交点式(或两点式):y =a(x -x 1)(x -x 2)(a ≠0).若已知条件是图象与x 轴的两个交点及另一点,则设交点式y =a (x -x 1)(x -x 2)(a ≠0).将已知条件代人,求解并化为一般形式.【考点剖析】考点一 二次函数与方程例1.小兰画了一个函数y=x 2+ax+b 的图象如图,则关于x 的方程x 2+ax+b=0的解是( )A . 无解B .x=1C .x=-4D .x=-1或x=4例2.已知抛物线y=x 2﹣4x +m ﹣1.(1)若抛物线与x 轴只有一个交点,求m 的值;(2)若抛物线与直线y=2x ﹣m 只有一个交点,求m 的值.例3.如图,二次函数y=x 2﹣6x+5的图象交x 轴于A 、B 两点,交y 轴于点C ,则△ABC 的面积为 .例3图 变1图【变式练习】1.已知二次函数y=-x 2+2x+m 的部分图象如图所示,则关于x 的一元二次方程022=++-m x x 的解为 。

二次函数与方程的关系

二次函数与方程的关系

二次函数与方程的关系二次函数和二次方程是数学中常见的概念,它们之间存在着密切的关系。

本文将从定义、图像、性质以及解析式等角度,探讨二次函数与方程之间的关系。

一、二次函数的定义二次函数是指一个自变量为x的函数,其一般形式为f(x)=ax^2+bx+c,其中a、b、c是实数且a≠0。

其中x是自变量,f(x)是因变量。

二次函数的图像为抛物线。

二、二次方程的定义二次方程是指形式为ax^2+bx+c=0的方程,其中a、b、c是实数且a≠0。

其中x是未知数。

三、二次函数的图像二次函数的图像是抛物线,其开口的方向由二次项系数a的正负决定。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

抛物线的顶点坐标为(xv, yv),其中xv=-b/2a,yv=f(xv)。

四、二次方程的解对于二次方程ax^2+bx+c=0,可以通过求解得到其根的解。

根的个数和判别式Δ有关,Δ=b^2-4ac。

1. 当Δ>0时,方程有两个不相等的实根。

根的公式为x1=(-b+√Δ)/2a,x2=(-b-√Δ)/2a。

2. 当Δ=0时,方程有两个相等的实根。

根的公式为x=-b/2a。

3. 当Δ<0时,方程没有实根,有两个共轭复根。

根的公式为x1=(-b+i√|Δ|)/2a,x2=(-b-i√|Δ|)/2a。

五、二次函数与二次方程的联系1. 抛物线的顶点坐标:二次函数的解析式中,顶点的横坐标xv=-b/2a对应着二次方程的根的公式中x1和x2的值。

2. 方程的解与函数的零点:二次方程的实根对应着二次函数与x轴(y=0)的交点,也就是函数的零点。

可以通过求解方程获得函数的零点。

3. 方程求解问题:通过建立二次方程解题可以推导出二次函数的性质和特点,例如最值点、单调性等。

六、结论通过上述分析可以看出,二次函数和方程之间存在着密切的关联。

二次函数的图像为抛物线,方程的解对应着函数的零点。

掌握了二次函数和方程的关系,可以更好地理解和应用二次函数和方程在实际问题中的应用。

二次函数与一元二次方程、不等式

二次函数与一元二次方程、不等式
2.3 二次函数与一元二次方程、不等 式
第1课时 二次函数与一元二次方程、 不等式
1.一元二次不等式的概念 只含有一个未知数,并且未知数的最高次数是2的不等 式,称为一元二次不等式. 一元二次不等式的一般形式是: ax2+bx+c>0(a≠0)或ax2+bx+c<0(a≠0).
【思考】 (1)不等式x2+ 2 >0是一元二次不等式吗?
【解析】原不等式转化为(x-2a)(x+a)<0. 对应的一元二次方程的根为x1=2a,x2=-a. ①当a>0时,x1>x2, 不等式的解集为{x|-a<x<2a}; ②当a=0时,原不等式化为x2<0,无解;
③当a<0时,x1<x2,不等式的解集为{x|2a<x<-a}. 综上,当a>0时,原不等式的解集为{x|-a<x<2a}; 当a=0时,原不等式的解集为∅; 当a<0时,原不等式的解集为{x|2a<x<-a}.
(2)当Δ =0时,不等式ax2+bx+c≥0(a>0)与ax2+bx+c≤0 (a>0)的解集分别是什么? 提示:R,{x|x=x1}
【素养小测】
1.思维辨析(对的打“√”,错的打“×”) (1)mx2-5x<0是一元二次不等式. ( ) (2)若方程ax2+bx+c=0(a<0)没有实数根,则不等式ax2+ bx+c>0的解集为R. ( )
(3)设二次方程f(x)=0的两解为x1,x2,则一元二次不等 式f(x)>0的解集不可能为{x|x1<x<x2}. ( ) (4)不等式ax2+bx+c≤0(a≠0)或ax2+bx+c≥0(a≠0)的 解集为空集,则函数f(x)=ax2+bx+c无零点. ( )

二次函数一元二次方程

二次函数一元二次方程


由①②消去y得S 3x2 5x
当x


5 2 ´(
3)
5 6
时,S
最大

3(´ 5)2 6

5 6

米 25( 2)
12
答:略。
讨 ●请你把这节课你学到了东西告诉你的同 论 桌,然后告诉老师?
这节课应有以下内容:
二次函数与一 元二次方程的 关系
当二次函数y=ax2+bx+c中y的值 确定,求x的值时,二次函数就变 为一元二次方程。即当y取定值时, 二次函数就为一元二次方程。
4.抛物线y=x2-3x+2 与y轴交于点__(0_,2_) ,与x轴交
于点_(1_,0_) (2,0_) .
K≠0 5图.如象图知,,抛关物于线x的y=方ax程2+abxx2++bcx的+对c=称0的b轴2两-是4个a直c根线≥分0x别=-是1,由
x1=1.3 ,x2=_-_3.3_
6.已知抛物线y=kx2-7x-7的图象和x轴有交点,则 k的取值范围( B )
(2)请求出球飞行
的最大水平距离.
(3)若王强再一次从此处击球,要想让球飞 行的最大高度不变且球刚好进洞,则球飞行路 线应满足怎样的抛物线,求出其解析式.
作业
课本:p56-57页 复习巩固
选做题:如图,一位篮球运动员跳起投篮,球沿抛物线 y=-x2+3.5运行,然后准确落人篮框内。已知篮框的 中心离地面的距离为3.05米。 (1)球在空中运行的最大高度为多少米? (2)如果该运动员跳投时,球出手离地面 的高度为2.25米,请问他距离篮框中 心的水平距离是多少?
升华提高
弄清一种关系------函数与一元二次方程的关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例3:
求证:一元二次方程 2x2 3x 7 0
有两个不相等的实数根.
证法一: 用Δ>0来判断.
想想还有没有其他的证明的方法了?
f (x) 2x2 3x 7
小结:
1.一元二次函数与一元二次方程间 的关系.
2.二次函数的零点. 3.利用二次函数与方程间的关系解
题.
思考:已知二次函数 y f (x ) 满足
y
y
y
-1
2x
01 x
2
1x
Δ=b2-4ac Δ>0
ax2+bx+c=0 (a>0)
y=ax2+bx+c (a>0)
Δ=0
Δ<0
方程无实数根
顶部垂下缕缕簇簇怪蛇般的光影,看上去酷似金橙色的景色伴随着深红色的泪珠飘飘而下……大道左侧不远处是一片土灰色的仙草地,仙草地旁边紫、黑、红三色相交 的林带内不时出现闪动的异影和怪异的叫声……大道右侧远处是一片纯黄色的海峡,那里似乎还闪动着一片白象牙色的泥榆树林和一片墨绿色的鬼蕉树林……见有客到 ,大道两旁淡红色的闪影金基座上,正在喧闹的青鲸神和灰豹魔立刻变成了一个个凝固的雕像……这时,静静的泉水也突然喷出一簇簇、一串串直冲云霄的五光十色的 音符般的水柱和云丝般的水花……突然,满天遍地飞出数不清的梦幻,顷刻间绚丽多姿的梦幻就同时绽放,整个大地和天空立刻变成了怪异的海洋……空气中瞬间跳跃 出神奇的妖影之香……飞进主塔罕见的水红色蛋形大门,空阔安静、灿烂浪漫的大厅立刻让人眼前一亮,但扑面而来的空气也让人感到一种陶醉完美的味道……大厅的 地面是用明亮怪异的深灰色五光银和乳蓝色美仙冰铺成,四周高大的朦胧金墙壁雕绘着辉宏而粗犷的巨幅壁画……大厅前方,隐隐可见一座光彩亮丽、正被仙雾光环笼 罩的圣坛,但见仙雾朦胧萦绕,光环耀眼梦幻,所以很难看清圣坛上的身影和圣人……通向圣坛的豪华地毯两旁摆放着两排精美的硕大花盆,花盆中生长着整齐繁茂、 鲜花盛开、香气四溢的巨大乔本花卉……每个花盆前面都摆放着一只精巧怪异的大香炉,缕缕飘渺幽静、带着异香的紫烟正袅袅地升上大厅高高的穹顶……抬头看去, 大厅穹顶完全是用可自动变幻景物的神秘材料魔化而成,穹顶的景色一会儿是云海,一会儿是星空,一会儿是海底,一会儿是巨洞……穹顶中央巨大焰火雾淞般的梦幻 吊灯,四周是亿万造形奇异、色彩变幻的顶灯……蘑菇王子和知知爵士刚刚在两张镶着五色钻石的纯金座椅上坐下,只听一声悠长的号角响起,大厅突然辉煌灿烂起来 ,笼罩在圣坛上的仙雾很快散去……只见圣坛中央的宝座上仍然坐着主考官Y.依佛奇兹首相,两旁还是坐着那些副考官和监考官!一阵的钟声响过,主考官Y.依佛 奇兹首相站起身来,然后看着蘑菇王子和知知爵士问道:“你们两个准备好没有?”蘑菇王子答道:“我们准备好了!”主考官Y.依佛奇兹首相大声道:“那就开始 吧!”Y.依佛奇兹首相刚刚说完,就见亮红色个穿着亮红色天石天石袄的司仪官同时用手朝空中一指,随着六道闪光,整个大厅像菊花一样展开怒放,然后纷纷向远 方退去,逐渐消失在地平线之下……接着只见一座几乎无底透明、正在凌空盘踞的巨大巨龟形运动场,旋风般地在蘑菇王子和知知爵士的脚下展现出来,而悬空盘踞的 巨大运动
二次函数y=ax2+bx+c (a≠0) 一元二次方程ax2+bx+c=0(a≠0)
二次函数与一元二次方程
二次函数与一元二次方程之间有什么联系?
①方程 x2 2x 3 0 Байду номын сангаас函数 y x2 2x 3
②方程 x2 2x 1 0与函数 y x2 2x 1 ③方程 x 22x 3 0与函数 y x2 2x 3
Δ=b2-4ac Δ>0
ax2+bx+c=0 (a>0)
y=ax2+bx+c (a>0)
Δ=0
Δ<0
方程无实数根
讨论:二次函数y=f(x),若f(m)f(n)<0, 且m<n,那么一定能说明在区间[m,n] 内一定有零点吗?
思考:若x0是二次函数y=f(x)的零点, 且m<x0<n,那么f(m)f(n)<0一定成立吗?
; SEO优化服务 搜索引擎排名服务
一般的,一元二次方程ax2+bx+c=0(a≠0)的 根就是二次函数y=ax2+bx+c (a≠0)的 值为 _0_时_自__变__量__x_的值; 也就是函数_y_=_a_x_2+_b_x_+__c的图象与_x_轴交点 的_横__坐标.
f ( 1 3 ) f ( 1 3 ) 0 且最大值为3, 求 y f (x ) 的表达式.
因此,我们把一元二次方程ax2+bx+c=0的 根也称做函数y=ax2+bx+c(a≠0)的 零点.
思考:
1.零点是不是点? 2.是不是所有的二次函数都有零点? 3.如何判断二次函数是否有零点,有几
个零点? 4.对有两个零点的二次函数,函数图象
经过零点时,函数值有什么变化?在两 个零点之间的函数值有什么特点?
相关文档
最新文档