多元线性回归基础知识
多元线性回归讲解学习

简要回答题:1. 在多元线性回归分析中,F检验和t检验有何不同?答案:在多元线性回归中,由于有多个自变量,F检验与t检验不是等价的。
F检验主要是检验因变量同多个自变量的整体线性关系是否显著,在k个自变量中,只要有一个自变量同因变量的线性关系显著,F检验就显著,但这不一定意味着每个自变量同因变量的关系都显著。
检验则是对每个回归系数分别进行单独的检验,以判断每个自变量对因变量的影响是否显著。
知识点:多元线性回归难易度:12. 在多元线性回归分析中,如果某个回归系数的t检验不显著,是否就意味着这个自变量与因变量之间的线性回归不显著?为什么?当出现这种情况时应如何处理?答案:(1)在多元线性回归分析中,当t检验表明某个回归系数不显著时,也不能断定这个自变量与因变量之间线性关系就不显著。
因为当多个自变量之间彼此显著相关时,就可能造成某个或某些回归系数通不过检验,这种情况称为模型中存在多重共线性。
(2)当模型中存在多重共线性时,应对自变量有所选择。
变量选择的方法主要有向前选择、向后剔除和逐步回归等。
知识点:多元线性回归难易度:2计算分析题:1. 一家餐饮连锁店拥有多家分店。
管理者认为,营业额的多少与各分店的营业面积和服务人员的多少有一定关系,并试图建立一个回归模型,通过营业面积和服务人员的多少来预测营业额。
为此,收集到10家分店的营业额(万元)、营业面积(平方米)和服务人员数(人)的数据。
经回归得到下面的有关结果(a=0.05)。
回归统计Multiple R R Square Adjusted R Square 标准误差0.9147 0.8366 0.7899 60.7063方差分析df SS MS F Significance F回归 2 132093.199 66046.600 17.922 0.002残差7 25796.801 3685.257总计9 157890.000参数估计和检验Coefficients 标准误差t Stat P-valueIntercept -115.288 110.568 -1.043 0.332X Variable 1 0.578 0.503 1.149 0.288X Variable 2 3.935 0.699 5.628 0.001(1)指出上述回归中的因变量和自变量。
多元线性回归的原理和应用

多元线性回归的原理和应用1. 原理介绍多元线性回归是一种统计分析方法,用于研究多个自变量与一个因变量之间的关系。
它是线性回归分析的一种拓展,可以同时考虑多个自变量对因变量的影响。
多元线性回归的基本原理可以通过以下公式表示:**Y = β0 + β1X1 + β2X2 + … + βn*Xn + ε**其中,Y表示因变量,X1、X2、…、Xn表示自变量,β0、β1、β2、…、βn表示自变量的系数,ε表示误差项。
多元线性回归通过最小二乘法来估计自变量的系数,使得预测值与实际观测值之间的平方误差最小化。
通过最小二乘法的计算,可以得到自变量的系数估计值,进而可以进行预测和解释因变量的变化。
2. 应用领域多元线性回归在各个领域都有广泛的应用,以下列举了一些常见的应用领域:2.1 经济学多元线性回归在经济学中是一个重要的工具,可以用于研究不同变量对经济发展的影响。
例如,可以通过多元线性回归来分析GDP增长率与投资、消费、出口等变量之间的关系,并进一步预测未来的经济发展趋势。
2.2 市场营销在市场营销领域,多元线性回归可以用于研究市场需求的影响因素。
通过分析不同的市场变量(如产品价格、广告投入、竞争对手的行为等),可以预测市场需求的变化,并制定相应的营销策略。
2.3 医学研究多元线性回归在医学研究中也有广泛的应用。
例如,可以使用多元线性回归来研究不同的遗传、环境和生活方式因素对人体健康的影响。
通过分析这些因素,可以预测患病风险并制定相应的预防措施。
2.4 社会科学多元线性回归在社会科学领域中被广泛应用,用于研究各种社会现象。
例如,可以使用多元线性回归来研究教育、收入、职业等因素对犯罪率的影响,并进一步分析这些因素的相互关系。
2.5 工程与科学研究多元线性回归在工程和科学研究中也有一定的应用。
例如,在工程领域中可以使用多元线性回归来研究不同因素对产品质量的影响,并优化生产过程。
在科学研究中,多元线性回归可以用于分析实验数据,探索不同变量之间的关系。
多元线性回归

多元线性回归简介多元线性回归是一种统计分析方法,用于预测一个因变量与多个自变量之间的关系。
该方法适用于具有多个自变量和一个因变量之间的线性关系的数据集。
多元线性回归建立了一个多元线性模型,通过对多个自变量进行加权求和来预测因变量的值。
它基于最小二乘法,通过最小化预测值与实际观测值之间的差异来找到最佳拟合线。
在多元线性回归中,自变量可以是连续变量、二进制变量或分类变量。
因变量通常是连续的,可以预测数值型变量的值,也可以用于分类问题中。
数学原理多元线性回归的数学原理基于线性代数和统计学。
假设有n个自变量和一个因变量,可以将多元线性回归模型表示为:多元线性回归公式其中,y表示因变量的值,β0表示截距,β1, β2, …, βn表示自变量的系数,x1, x2, …, xn表示自变量的取值。
通过使用最小二乘法,可以最小化残差的平方和来计算最佳拟合线的系数。
残差是预测值与实际观测值之间的差异。
模型评估在构建多元线性回归模型后,需要对模型进行评估,以确定模型的效果和拟合优度。
常用的模型评估指标包括均方误差(Mean Squared Error, MSE)、决定系数(Coefficient of Determination, R2)和F统计量等。
•均方误差(MSE)是指预测值与实际观测值之间差异的平方和的均值。
MSE越接近于0,说明模型的预测效果越好。
•决定系数(R2)是指模型解释因变量变异性的比例。
R2的取值范围是0到1,越接近1表示模型对数据的解释能力越好。
•F统计量是用于比较两个模型之间的差异是否显著。
F统计量越大,说明模型的解释能力越好。
实例应用下面通过一个实例来说明多元线性回归的应用。
假设我们想要预测一个学生的学术成绩(因变量)与以下自变量之间的关系:学习时间、睡眠时间和饮食状况。
我们收集了100个学生的数据。
首先,我们需要对数据进行预处理,包括处理缺失值、异常值和标准化数据等。
然后,我们使用多元线性回归模型进行建模。
(整理)第四章 多元线性回归模型

第四章 多元线性回归模型在一元线性回归模型中,解释变量只有一个。
但在实际问题中,影响因变量的变量可能不止一个,比如根据经济学理论,人们对某种商品的需求不仅受该商品市场价格的影响,而且受其它商品价格以及人们可支配收入水平的制约;影响劳动力劳动供给意愿(用劳动参与率度量)的因素不仅包括经济形势(用失业率度量),而且包括劳动实际工资;根据凯恩斯的流动性偏好理论,影响人们货币需求的因素不仅包括人们的收入水平,而且包括利率水平等。
当解释变量的个数由一个扩展到两个或两个以上时,一元线性回归模型就扩展为多元线性回归模型。
本章在理论分析中以二元线性回归模型为例进行。
一、预备知识(一)相关概念对于一个三变量总体,若由基础理论,变量21,x x 和变量y 之间存在因果关系,或21,x x 的变异可用来解释y 的变异。
为检验变量21,x x 和变量y 之间因果关系是否存在、度量变量21,x x 对变量y 影响的强弱与显著性、以及利用解释变量21,x x 去预测因变量y ,引入多元回归分析这一工具。
将给定i i x x 21,条件下i y 的均值i i i i i x x x x y E 2211021),|(βββ++= (4.1) 定义为总体回归函数(Population Regression Function,PRF )。
定义),|(21i i i i x x y E y -为误差项(error term ),记为i μ,即),|(21i i i i i x x y E y -=μ,这样i i i i i x x y E y μ+=),|(21,或i i i i x x y μβββ+++=22110 (4.2)(4.2)式称为总体回归模型或者随机总体回归函数。
其中,21,x x 称为解释变量(explanatory variable )或自变量(independent variable );y 称为被解释变量(explained variable )或因变量(dependent variable );误差项μ解释了因变量的变动中不能完全被自变量所解释的部分。
多元线性回归课件

在这个多元线性回归课件中,我们将详细介绍多元线性回归的概念、应用场 景以及模型训练和评估方法。一起来探索多元线性回归的奥秘吧!
什么是多元线性回归
多元线性回归是一种统计模型,用于分析多个自变量与因变量之间的关系。它可以帮助我们理解多个因素对目 标变量的影响,并进行预测和解释。
为什么要使用多元线性回归
2
特征选择
选择对目标变量有显著影响的特征,减少冗余信息,提高模型的解释能力。
3
数据分割
将数据集划分为训练集和测试集,用于模型的训练和评估。
模型训练
模型建立
选择适当的多元线性 回归模型,确定自变 量的权重系数。
损失函数
选择合适的损失函数, 衡量模型的预测误差。
梯度下降算法
使用梯度下降算法优 化模型参数,逐步减 小损失函数。
医学研究
多元线性回归可以帮助分析疾病风险因素,进行 疾病预防和治疗方案的制定。
市场营销
多元线性回归可以预测产品销量,帮助制定营销 策略和定价策略。
社会科学
多元线性回归可以帮助研究社会行为、心理因素 等对人群群体影响的相关规律。
数据预处理
1
数据清洗
通过处理缺失值、异常值和重复值等,确保数据的准确性和完整性。
正规方程法
使用正规方程法求解 模型参数,避免迭代 优化算法。
模型评估
1
均方误差
2
衡量模型对目标变量的预测精度,越小
越好。
3
R2 分数
4
衡量模型对目标变量变异性的解释能力, 越接近1越好。
平均绝对误差
衡量模型对目标变量的预测误差,越小 越好。
均方根误差
衡量模型对目标变量的预测准确度,越 小越好。
统计学中多元回归的基础知识

总的平方和=回归平方和及误差平方和 SST=SSR+SSE
多元判定系数 多元判定系数表示的是对估计的多元回归方程拟合优度的度量 R²=SSR/SST
修订多元判定系数=1-(1-R²)(n-1)/(n-p-1)
模型的假定
关于多元回归模型的误差项的假定 误差项是一个平均值或期望值为零的随机变量 对于自变量所有的值,误差的方程都是相同的 误差的值是相互独立的 误差项是一个服从正态分布的随机变量,表示了因变量的值和期望值的离差
具有p个自变量的SR/p 误差 平方和:SSE 自由度:n-p-1 均方:SSE/(n-p-1)
多重共线性
多重共线性:自变量之间的相关性
logistic回归
如果因变量的两个值被赋值0或1,在自变量特定值已知的情况下,给出y=1的概率
统计学中多元回归的基础知识
多元回归模型
多元回归模型和回归方程 多元回归模型:描述因变量如何依赖自变量和一个误差项的方程 多元回归方程:假定多元回归模型的误差的平均值或期望值是零
估计的多元回归方程 利用简单随机样本计算样本统计量,将未知参数作为点估计量,得到估计的多元 回归方程
最小二乘法
利用最小二乘法建立了估计的回归方程,这个方程最佳地近似了因变量和自变量之 间的直线关系 最小二乘法准则:因变量的观测值-因变量的预测值之差的平方的最小值
显著性检验
F检验 用于确定在因变量和所有自变量之间是否存在一个显著关系,F检验称为总体的 显著性检验
总体显著性的F检验 假设检验 H0:所有参数都等于0 H1:至少有一个参数不等于零 检验统计量 F=MSR/MSE 拒绝法则 p值法:如果p值≤a,则拒绝H0 临界值:如果F≥Fa,则拒绝H0
t检验 t检验用来确定每一个单个的自变量是否为一个显著的自变量,对模型中的每一 个单个的自变量,都要单独地进行t检验 单个参数显著性t检验 假设检验 H0:单个参数=0 H1:单个参数≠0 检验统计量 t=b/s 拒绝法则 p值法:如果p值≤a,则拒绝H0 临界值:如果F≥Fa,则拒绝H0
根据线性回归知识点归纳总结(精华版)

根据线性回归知识点归纳总结(精华版)
线性回归是一种常用的统计分析方法,用于建立变量之间线性关系的模型。
以下是线性回归的核心知识点总结:
1. 线性回归模型:线性回归模型的一般形式是y = mx + c,其中y是因变量,x是自变量,m是斜率,c是截距。
通过最小二乘法估计斜率和截距的值,从而建立回归模型。
2. 假设:线性回归建立在一些假设基础上,包括线性关系、独立性、常态分布、同方差性等。
在进行线性回归分析时,需要检验这些假设是否成立。
3. 多元线性回归:当自变量不止一个时,可以使用多元线性回归建立模型。
多元线性回归考虑了多个自变量对因变量的影响,可以更全面地解释变量之间的关系。
4. 模型评估:评估线性回归模型的好坏可以通过R方值、调整R方值、残差分析等方法进行。
R方值越接近1,表示模型拟合效果越好。
5. 变量选择:在建立线性回归模型时,需要考虑哪些自变量对
因变量的影响最大。
常用的变量选择方法包括逐步回归、前向选择、后向选择等。
6. 处理离群值:线性回归模型对离群值敏感,离群值的存在会
影响模型的拟合效果。
可以通过剔除离群值、转换变量等方法来处
理离群值。
7. 模型应用:线性回归模型广泛应用于实际问题中,如经济学、金融学、社会学等领域。
通过线性回归分析,可以预测和解释变量
之间的关系,为决策提供依据。
以上是根据线性回归知识点的归纳总结,希望对您的学习和应
用有所帮助。
《多元线性回归》PPT课件

ˆ 0.7226 0.0003 15674 103 .172 1 ˆ β ˆ 0 . 0003 1 . 35 E 07 39648400 0 . 7770 2
x11 x x 1n x k1 x kn
假设6:回归模型是正确设定的
§3.2
多元线性回归模型的参数估计
一、普通最小二乘估计 二、参数估计量的性质 三、样本容量问题
参数估计的任务和方法
1、估计目标:回归系数βj、随机误差项方差б2 2、估计方法:OLS、ML或者MM * OLS:普通最小二乘估计 * ML:最大似然估计
E(X(Y Xβ )0
矩条件
*矩条件和矩估计量*
1、 E(X(Y Xβ ) 0 称为原总体回归方程的一组矩条件,表明了
原总体回归方程所具有的内在特征。
2、如果随机抽出原总体的一个样本,估计出的样本回归方程:
ˆ 能够近似代表总体回归方程的话,则应成立: ˆ X Y
1 ˆ)0 X (Y Xβ n
第三章
多元线性回归模型
§ 3.1 多元线性回归模型
§ 3.2 多元线性回归模型的参数估计 § 3.3 多元线性回归模型的统计检验 § 3.4 多元线性回归模型的预测 § 3.5 可线性化的多元非线性回归模型 § 3.6 受约束回归
§3.1
多元线性回归模型
一、模型形式 二、基本假定
一、模型形式
Yi 0 1 X 1i 2 X 2 i ... k X ki i 0 j X ji i
#参数估计的实例
例3.2.1:在例2.1.1的家庭收入-消费支出例中,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元线性回归分析预测法多元线性回归分析预测法(Multi factor line regression method,多元线性回归分析法)多元线性回归分析预测法概述在市场的经济活动中,经常会遇到某一市场现象的发展和变化取决于几个影响因素的情况,也就是一个因变量和几个自变量有依存关系的情况。
而且有时几个影响因素主次难以区分,或者有的因素虽属次要,但也不能略去其作用。
例如,某一商品的销售量既与人口的增长变化有关,也与商品价格变化有关。
这时采用一元回归分析预测法进行预测是难以奏效的,需要采用多元回归分析预测法。
多元回归分析预测法,是指通过对两上或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。
当自变量与因变量之间存在线性关系时,称为多元线性回归分析。
多元线性回归的计算模型[1]一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。
当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元性回归。
设y为因变量,为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为:其中,b0为常数项,为回归系数,b1为固定时,x1每增加一个单位对y的效应,即x1对y的偏回归系数;同理b2为固定时,x2每增加一个单位对y的效应,即,x2对y的偏回归系数,等等。
如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为:其中,b0为常数项,为回归系数,b1为固定时,x2每增加一个单位对y的效应,即x2对y的偏回归系数,等等。
如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为:y = b0 + b1x1 + b2x2 + e建立多元性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自变量的选择,其准则是:(1)自变量对因变量必须有显著的影响,并呈密切的线性相关;(2)自变量与因变量之间的线性相关必须是真实的,而不是形式上的;(3)自变量之彰应具有一定的互斥性,即自变量之彰的相关程度不应高于自变量与因变量之因的相关程度;(4)自变量应具有完整的统计数据,其预测值容易确定。
多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和()为最小的前提下,用最小二乘法求解参数。
以二线性回归模型为例,求解回归参数的标准方程组为解此方程可求得b0,b1,b2的数值。
亦可用下列矩阵法求得即多元线性回归模型的检验[1]多元性回归模型与一元线性回归模型一样,在得到参数的最小二乘法的估计值之后,也需要进行必要的检验与评价,以决定模型是否可以应用。
1、拟合程度的测定。
与一元线性回归中可决系数r2相对应,多元线性回归中也有多重可决系数r2,它是在因变量的总变化中,由回归方程解释的变动(回归平方和)所占的比重,R2越大,回归方各对样本数据点拟合的程度越强,所有自变量与因变量的关系越密切。
计算公式为:其中,2.估计标准误差估计标准误差,即因变量y的实际值与回归方程求出的估计值之间的标准误差,估计标准误差越小,回归方程拟合程度越程。
其中,k为多元线性回归方程中的自变量的个数。
3.回归方程的显著性检验回归方程的显著性检验,即检验整个回归方程的显著性,或者说评价所有自变量与因变量的线性关系是否密切。
能常采用F检验,F统计量的计算公式为:根据给定的显著水平a,自由度(k,n-k-1)查F分布表,得到相应的临界值Fa,若F > F a,则回归方程具有显著意义,回归效果显著;F < Fa,则回归方程无显著意义,回归效果不显著。
4.回归系数的显著性检验在一元线性回归中,回归系数显著性检验(t检验)与回归方程的显著性检验(F检验)是等价的,但在多元线性回归中,这个等价不成立。
t检验是分别检验回归模型中各个回归系数是否具有显著性,以便使模型中只保留那些对因变量有显著影响的因素。
检验时先计算统计量ti;然后根据给定的显著水平a,自由度n-k-1查t分布表,得临界值ta或t a / 2,t > t− a或t a / 2,则回归系数b i与0有显著关异,反之,则与0无显著差异。
统计量t的计算公式为:其中,Cij是多元线性回归方程中求解回归系数矩阵的逆矩阵(x'x)− 1的主对角线上的第j个元素。
对二元线性回归而言,可用下列公式计算:其中,5.多重共线性判别若某个回归系数的t检验通不过,可能是这个系数相对应的自变量对因变量的影平不显著所致,此时,应从回归模型中剔除这个自变量,重新建立更为简单的回归模型或更换自变量。
也可能是自变量之间有共线性所致,此时应设法降低共线性的影响。
多重共线性是指在多元线性回归方程中,自变量之彰有较强的线性关系,这种关系若超过了因变量与自变量的线性关系,则回归模型的稳定性受到破坏,回归系数估计不准确。
需要指出的是,在多元回归模型中,多重共线性的难以避免的,只要多重共线性不太严重就行了。
判别多元线性回归方程是否存在严惩的多重共线性,可分别计算每两个自变量之间的可决系数r2,若r2 > R2或接近于R2,则应设法降低多重线性的影响。
亦可计算自变量间的相关系数矩阵的特征值的条件数k= λ1/ λp(λ1为最大特征值,λp为最小特征值),k<100,则不存在多重点共线性;若100≤k≤1000,则自变量间存在较强的多重共线性,若k>1000,则自变量间存在严重的多重共线性。
降低多重共线性的办法主要是转换自变量的取值,如变绝对数为相对数或平均数,或者更换其他的自变量。
6.D.W检验当回归模型是根据动态数据建立的,则误差项e也是一个时间序列,若误差序列诸项之间相互独立,则误差序列各项之间没有相关关系,若误差序列之间存在密切的相关关系,则建立的回归模型就不能表述自变量与因变量之间的真实变动关系。
D.W检验就是误差序列的自相关检验。
检验的方法与一元线性回归相同。
[编辑]多元线性回归分析预测法案例分析案例一:公路客货运输量多元线性回归预测方法探讨[2]一、背景公路客、货运输量的定量预测,近几年来在我国公路运输领域大面积广泛地开展起来,并有效的促进了公路运输经营决策的科学化和现代化。
关于公路客、货运输量的定量预测方法很多,本文主要介绍多元线性回归方法在公路客货运输量预测中的具体操作。
根据笔者先后参加的部、省、市的科研课题的实践,证明了多元线性回归方法是对公路客、货运输量预测的一种置信度较高的有效方法。
二、多元线性回归预测线性回归分析法是以相关性原理为基础的.相关性原理是预测学中的基本原理之一。
由于公路客、货运输量受社会经济有关因素的综合影响。
所以,多元线性回归预测首先是建立公路客、货运输量与其有关影响因素之间线性关系的数学模型。
然后通过对各影响因素未来值的预测推算出公路客货运输量的预测值。
三、公路客、货运输量多元线性回归预测方法的实施步骤1.影响因素的确定影响公路客货运输量的因素很多,主要包括以下一些因素:(1)客运量影响因素人口增长量裤保有量、国民生产总值、国民收入工农业总产值,基本建设投资额城乡居民储蓄额铁路和水运客运量等。
(2)货运量影响因素人口货车保有量(包括拖拉机),国民生产总值,国民收入、工农业总产值,基本建设投资额,主要工农业产品产量,社会商品购买力,社会商品零售总额.铁路和水运货运量菩。
上述影响因素仅是对一般而言,在针对具体研究对象时会有所增减。
因此,在建立模型时只须列入重要的影响因素,对于非重要因素可不列入模型中。
若疏漏了某些重要的影响因素,则会造成预测结果的失真。
另外,影响因素太少会造成模型的敏感性太强.反之,若将非重要影响因素列入模型,则会增加计算工作量,使模型的建立复杂化并增大随机误差。
影响因素的选择是建立预测模型首要的关键环节,可采取定性和定量相结合的方法进行.影响因素的确定可以通过专家调查法,其目的是为了充分发挥专家的聪明才智和经验。
具体做法就是通过对长期从事该地区公路运输企业和运输管理部门的领导干部、专家、工作人员和行家进行调查。
可通过组织召开座谈会.也可以通过采访,填写调查表等方法进行,从中选出主要影响因素为了避免影响因素确定的随意性,提高回归模型的精度和减少预测工作量,可通过查阅有关统计资料后,再对各影响因素进行相关度(或关联度)和共线性分析,从而再次筛选出最主要的影响因素.所谓相关度分析就是将各影响因素的时间序列与公路客货运量的时间序列做相关分杯事先确定—个相关系数,对相关系数小于的影响因素进行淘汰.关联度是灰色系统理论中反映事物发展变化过程中各因素之间的关联程度,可通过建空公路客、货运量与各影响影响因素之间关联系数矩阵,按一定的标准系数舍去关联度小的影响因素.所谓共线性是指某些影响因素之问存在着线性关系或接近于线性关系.由于公路运输经济自身的特点,影响公路客,货运输量的诸多因素之问总是存在着一定的相关性,持别是与国民经济有关的一些价值型指标。
我们研究的不是有无相关性问题而是共线性的程度,如果影响因素之间的共线性程度很高,首先会降低参数估计值的精度。
其次在回归方程建立后的统计检验中导致舍去重要的影响因素或错误的地接受无显著影响的因素,从而使整个预测工作失去实际意义。
关于共线性程度的判定,可利用逐步分析估计法的数理统计理论编制计算机程序来实现。
或者通过比较ri j和R2的大小来判定。
在预测学上,一般认为当ri j > R2时,共线性是严重的,其含义是,多元线性回归方程中所含的任意两个自变量xi,x j之间的相关系数r i j大于或等于该方程的样本可决系数R2时,说明自变量中存在着严重的共线性问题。
2.建立经验线性回归方程利用最小二乘法原理寻求使误差平方和达到撮小的经验线性回归方程:y——预测的客、货运量g——各主要影响因数3.数据整理对收集的历年客、货运输量和各主要影响因素的统计资料进行审核和加工整理是为了保证预测工作的质量。
资料整理主要包括下列内容:(1)资料的补缺和推算。
(2)对不可靠资料加以核实调整.对查明原因的异常值加以修正。
(3)对时间序列中不可比的资料加以调整和规范化;对按当年价格计算的价值指标应折算成按统。
4.多元线性回归模型的参数估计在经验线性回归模型中,是要估计的参数,可通过数理统计理论建立模型来确定。
在实际预测中,可利用多元线性回归复相关分析的计算机程序来实现·5.对模型参数的估计值进行检验。
此项工作的目的在于判定估计值是否满意、可靠。
一般检验工作须从以下几方面来进行。
•经济意义检验关于经济预测的数学模型,首先要检验模型是否有经济意义,γp若参数估计值的符号和大小与公路运输经济发展以及经济判别不符合时,这时所估计的模型就不能或很难解释公路运输经济的一般发展规律.就应抛弃这个模型.需要重新构造模型或重新挑选影响因素。