数学人教版七年级下册相交线教学设计
七年级相交线教案

七年级相交线教案一、教学目标:1. 知识目标:- 掌握相交线的基本概念;- 理解相交线的性质和相关定义。
2. 能力目标:- 能够描绘两条相交线的示意图;- 能够辨认出两条线是否相交;- 能够应用相交线的性质解决问题。
3. 情感目标:- 培养学生的观察力和逻辑思维能力;- 增强学生在数学学习中的自信心。
二、教学重难点:1. 重点:- 相交线的概念和性质;- 判断两条线是否相交。
2. 难点:- 应用相交线的性质解决问题。
三、教学内容与方法:1. 教学内容:- 相交线的基本概念;- 相交线的性质和相关定义。
2. 教学方法:- 教师讲解结合示例演示;- 学生自主探究;- 小组合作讨论。
四、教学过程:1. 导入(5分钟)- 引入相交线的概念:请同学们举例描述一下身边的相交线的例子。
2. 概念讲解(15分钟)- 教师用白板讲解相交线的定义和性质;- 教师通过示意图演示相交线的情况,并让学生观察和描述相交线的特点。
3. 分组探究(20分钟)- 将学生分成小组,每个小组找到至少三组相交线的示意图,并思考它们各自的特点和性质;- 学生通过小组合作讨论,总结相交线的相关定义和性质,并将结果报告给全班。
4. 深化练习(15分钟)- 教师出示一些问题,让学生应用相交线的知识解答;- 学生单独完成,然后与同伴交流和讨论。
5. 归纳总结(10分钟)- 教师与学生一起回顾相交线的定义和性质;- 学生根据所学内容归纳总结相交线的相关知识点。
6. 作业布置(5分钟)- 布置一些练习题作为课后作业,巩固相交线的知识。
五、教学反思:通过本节课的教学,学生对相交线的概念有了初步的了解,并且能够通过观察和描述来判断两条线是否相交。
在小组探究环节中,学生通过合作讨论,巩固了相交线的性质和相关定义。
在问题解答和归纳总结过程中,学生能够运用所学知识解答问题,并巩固对相交线的理解。
在今后的教学中,可以增加一些拓展练习,用更多的实际例子来帮助学生加深对相交线的理解。
人教版七年级数学下册5.1.1《相交线》教案

1.分组讨论:学生们将分成若干小组,每组讨论一个与相交线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相交线的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相交线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
其次,注重培养学生的空间想象力。在解决实际问题时,我发现部分学生难以将题目中的信息与几何图形联系起来。为了改善这一点,我计划在今后的教学中,多设计一些空间想象力训练的环节,如让学生自己动手画图、制作模型等。
再次,加强小组合作学习的引导。在小组讨论和实验操作过程中,我发现有些学生参与度不高,依赖性强。针对这个问题,我将在今后的教学中加强对小组合作学习的引导,鼓励每个学生积极参与,培养他们的团队协作能力。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相交线的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相交线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
1.理论介绍:首先,我们要了解相交线的基本概念。相交线是两条在平面内不平行且在某一点相遇的直线。它在几何学中有着重要的作用,可以帮助我们分析图形的性质和解决实际问题。
人教版数学七年级下册5-1-1 相交线 教案

5.1.1相交线教学设计课题 5.1.1 相交线单元第五单元学科初中数学年级七下学习目标1.了解两直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质.2.理解对顶角性质的推导过程,能使用该性质进行简单的计算.3.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力.4.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.重点了解两直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质.难点理解对顶角性质的推导过程,能使用该性质进行简单的计算.教学过程教学环节教师活动学生活动设计意图导入新课【观察思考】握紧剪刀的把手时,随着把手之间的角逐渐变小,剪刀刃之间的角是怎么变化的?分析:随着把手之间的角逐渐变小,剪刀刃之间的角也逐渐变小.【观察思考】如果把剪刀的构造抽象成一个几何图形,会是什么样的图形?请你在纸上画出来.分析:剪刀的构造可看作两条相交的直线,剪刀刃之间的角就是相交直线所成的角.【复习回顾】相交线的概念:如果两条直线只有一个公共点,那么我们就说这两条直线相交,它们的公共点叫做交点.观察并思考.挖掘和利用现实生活背景,让学生将理论知识与现实生活相联系.分析:如上图,AB、CD为两条直线,点O是直线AB与直线CD的交点,我们就可以说直线AB与直线CD相交.【教学建议】引导学生观察剪刀把手夹角与刀刃夹角之间的大小关系,为后续学习邻补角、对顶角做铺垫.讲授新课【合作探究】任意画两条相交的直线,形成几个角?这些角有什么位置关系?分析:任意两条相交的直线,形成4个角;这4个角有公共顶点.【观察思考】在两条相交的直线所形成的4个角中,∠1与∠2有怎样的位置关系?分析:∠1与∠2:①有一条公共边OC;②另一边互为反向延长线;③具有这种关系的两个角,互为邻补角.问题:你还能找出其它的邻补角吗?分析:∠2与∠3;∠3与∠4;∠4与∠1问题:∠1与∠2的度数有什么关系?分析:∠1+∠2=180o【观察思考】在两条相交的直线所形成的4个角中,∠1与∠3思考并回答小组交流合作,观察思考积极回答问题.让学生了解平面内两直线相交所成的4个角之间有怎样的特征.让学生经历合作探究的过程,通过观察、发现、归纳、概括得出邻补角和对顶角的概念;培养学生发现问题,解决问题和抽象概括能力.有怎样的位置关系?分析:∠1与∠3:①有一个公共顶点O;②∠1的两边分别是∠3的两边的反向延长线;③具有这种关系的两个角,互为对顶角.问题:你还能找出其它的对顶角吗?分析:∠2与∠4【合作探究】∠1与∠3的度数有什么关系?分析:∠1+∠2=180o∠2+∠3=180o∠1+∠2=∠2+∠3∠1=∠3总结:对顶角的性质:对顶角相等.【教学建议】引导学生小组合作,自主实践,教师巡回指导,随时观察学生完成情况并进行相应指导.熟悉并掌握对顶角相等.通过分析已知求证,利用平角的定义和等式的性质进行推导,培养学生逻辑推理力.【典型例题】如图,直线a、b相交,若∠1 = 40°,求∠2、∠3、∠4的度数.解:由邻补角的定义,∠1 = 40°可得∠2 = 180°-∠1= 180°-40°= 140°由对顶角相等,可得∠3 = ∠1 = 40°∠4 = ∠2 = 140°【教学建议】教师适当引导,学生自主完成.思考并积极回答.通过例题,规范学生对解题步骤的书写,让学生感受数学的严谨性.【随堂练习】1.如图,直线AB、CD、EF 两两相交,图中共有___对对顶角,___对邻补角.答案:6;12.2.下列各组角中,∠1与∠2是对顶角的为( )答案:D3. 如图,直线AB、CD相交于点O,OE是射线. 则:∠BOC的对顶角是________________,∠AOC的对顶角是________________,∠AOC的邻补角是________________,∠BOE的邻补角是________________.答案:∠AOD;∠BOD;∠BOC、∠AOD;∠AOE.4. 如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=70°,求∠BOD,∠BOC的度数.解:因为OA平分∠EOC,∠EOC = 70°所以∠AOC = 35°由对顶角相等,得∠BOD =∠AOC = 35°自主完成练习进一步巩固本节课的内容. 了解学习效果,让学生经历运用知识解决问题的过程,给学生获得成功体验的空间.通过课堂练习巩固新知,加深对顶角、余角、补角的概念和性质的理解,并学会运用它们解决一些问题.由邻补角的定义,得∠BOC = 180°-∠AOC= 180°-35°= 145°【教学建议】教师给出练习,随时观察学生完成情况并相应指导,根据学生完成情况适当分析讲解.课堂小结以思维导图的形式呈现本节课所讲解的内容. 回顾本节课所讲的内容通过小结让学生进一步熟悉巩固本节课所学的知识.板书1.邻补角:有一条公共边,另一边互为反向延长线的两个角,互为邻补角.邻补角互补.2.对顶角:(1)概念:有公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,这样的两个角,互为对顶角.(2)对顶角相等.。
相交线(教学设计)-七年级数学下册同步备课系列(人教版)

5.1.1相交线教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级下册(以下统称“教材”)第五章“相交线与平行线”5.1.1相交线,内容包括:邻补角与对顶角的概念及性质.2.内容解析本节课是在学习了直线、射线、线段和角的有关知识的基础上,进一步研究平面内两条直线相交形成4个角的位置和数量关系,为今后学习几何奠定了基础,同时也为证明几何题提供了一个示范作用,本节对于进一步培养学生的识图能力,激发学生的学习兴趣具有推动作用,所以本节课具有很重要的地位和作用。
基于以上分析,确定本节课的教学重点为:掌握邻补角与对顶角的性质,并能运用它们的性质进行角的计算及解决简单的实际问题.二、目标和目标解析1.目标(1)理解两条直线相交的特征及邻补角与对顶角的概念.(2)掌握邻补角与对顶角的性质,并能运用它们的性质进行角的计算及解决简单的实际问题.2.目标解析理解对顶角和邻补角的概念,能从图中辨别对顶角和邻补角。
掌握“对顶角相等的性质”,理解对顶角相等的说理过程,在数学活动中培养学生的观察、转化、说理能力和语言规范表达能力。
通过小组讨论,培养合作精神,让学生在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣;在解题中感受生活中数学的存在,体验数学中充满着探索和创造。
三、教学问题诊断分析七年级的孩子思维活跃,模仿能力强。
同时他们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结。
但是受年龄特征的影响,他们对知识迁移能力不强,推理能力还需进一步培养。
基于以上学情分析,掌握邻补角与对顶角的性质,并能运用它们的性质进行角的计算及解决简单的实际问题.四、教学过程设计情境引入你能在身边找出一些相交线的实例吗?自学导航思考:作过程,你能发现它的角有什么变化?如果把剪刀的构造看做两条相交的直线,你们想想它是一种怎样的几何结构?如果两条直线有一个公共点,就说这两条直线相交;公共点叫做这两条直线的交点.上图的几何描述为:直线AB 、CD 相交于点O .合作探究探究:任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?根据这种位置关系将它们分类.形如∠1与∠2有一条公共边OC,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角.图中还有哪些角也是邻补角呢?形如∠1与∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.图中还有哪些角也是对顶角呢?∠1与∠3在数量上又有什么关系呢?对顶角相等∵∠1与∠2互补,∠3与∠2互补(邻补角的定义)∴∠1=∠3(同角的补角相等)(注:“∵”表示“因为”,“∴”表示“所以”.)考点解析考点1:邻补角的定义及性质★例1.下列图形中,∠1与∠2互为邻补角的是()【迁移应用】1.下列说法中正确的是()A.一个角的邻补角只有B.一个角的邻补角必定大于这个角C.相等的两个角不可能是邻补角D.一个角的邻补角可能是锐角、钝角或直角2.如图,直线a,b相交.(1)∠1+∠2=_____°;∠3+∠4=____°.(2)∠4的邻补角是_________.(3)图中的邻补角共有_____对.3.已知∠B与∠A互为邻补角,且∠B=2∠A,那么∠A=_____°.考点2:对顶角的定义及性质★★例2.下列图形中,∠1和∠2互为对顶角的是()【迁移应用】1.如图,直线AB,CD相交于点O,则∠1的对顶角是()A.∠2B.∠3C.∠4D.∠3和∠42.如图,直线AB,CD相交于点O,若∠AOD减小30°则∠BOC()A.增大30°B.增大150°C.不变D.减小30°3.如图是一个对顶角量角器,用它测量角的原理是_____________.4.如图是一把剪刀,若∠AOB+∠COD=82°,则∠BOD=________.5.如图,直线AB,CD相交于点O,∠AOC=(2x-10)°,∠BOD=(x+25)°,则x=_______.考点3:运用邻补角、对顶角的性质进行角度的计算★★★例3.【方程思想】如图,直线AB,CD相交于点O,∠AOC=80°,OE把∠BOD分成两部分,且∠BOE:∠DOE=2:3,求∠AOE的度数.解:因为∠AOC=80°,∠AOC=∠BOD(对顶角相等),所以∠BOD=80°.由∠BOE:∠DOE=2∶3,设∠BOE=2x°,∠DOE=3x°.因为∠BOD=∠BOE+∠DOE,所以2x+3x=80,解得x=16.【迁移应用】1.如图,直线AB与CD相交于点O,OA平分∠COE,若∠DOE=70°,则∠BOD的度数是()A.75°B.65°C.55°D.105°2.如图,三条直线相交于一点,则∠1+∠2+∠3=_____°.3.如图直线AB,CD相交于点O,OA平分∠EOC.若∠EOA:∠EOD=1:3,求∠BOD的度数.解:因为∠EOA:∠EOD=1:3,所以设∠EOA=x°,∠EOD=3x°因为OA平分∠EOC所以∠COA=∠EOA=x°,∠EOC=2x°因为∠EOC+∠EOD=180°(邻补角的定义).所以2x+3x=180,解得x=36.所∠COA=36°所以∠BOD=∠COA=36°(对顶角相等)考点4:利用邻补角与对顶角的性质解决实际问题★★★例4.【一题多解】如图是一块弯折的屏风,假设其背面不可到达,要测量其在地面上形成的∠AOB的度数,你有什么方法?解:方法1:如图①,延长AO至点C,测量出∠BOC的度数.因为邻补角互补,所以∠AOB+∠BOC=180°,所以∠AOB=180°-∠BOC,即可得到∠AOB的度数.方法2:如图②,延长AO至点C,延长BO至点D,测量出∠COD的度数.因为对顶角相等,所以∠AOB=∠COD,即可得到∠AOB的度数.【迁移应用】【跨学科】将一根玻璃棒放入盛有水的烧杯中,一头露出水面,一头浸入水中,我们可以发现浸入水中的部分“变弯了”.它真的变弯了吗?其实没有,这只是光的折射现象,即光从空气射入水中,光线的传播方向发生改变如图,一束光AO射入水中,在水中的传播路径为OB,∠1与∠2是对顶角吗?如果不是对顶角,你能比较它们的大小吗?解:∠1与∠2不是对顶角.如图,延长AO,可得∠2>∠1.考点5:邻补角在折叠问题中的应用★★★★例5.【整体思想】如图,将五边形纸片ABCDE折叠,折痕为AF,点D,E分别落在点D′,E′处.已知∠AFC=76°,求∠CFD′的度数.解:因为∠AFC+∠AFD=180°(邻补角的定义),∠AFC=76°,所以∠AFD=180°-∠AFC=104°.由折叠可知∠AFD′=∠AFD=104°,所以∠CFD′=∠AFD′-∠AFC=104°-76°=28°.【迁移应用】1.如图,把一张长方形的纸片按如图所示的方式折叠后,B,D两点分别落在点B′,D′处.若∠AOB′=80°,则∠B′OG的度数为_______.2.如图,将长方形纸片折叠,使点A落在点A′处,BC为折痕,BD为∠A′BE的平分线,则∠CBD的度数为________.考点6:相交线中的探究题★★★★★例6.(1)观察图①,图中共有____对对顶角,_____对邻补角;(2)观察图②,图中共有_____对对顶角,_____对邻补角;(3)观察图③,图中共有_____对对顶角,_____对邻补角;(4)若有n条直线相交于一点,则可形成________对对顶角,________对邻补角.解:(1)图①中,共有对顶角1×2=2(对),邻补角2×1×2=4(对);(2)图②中,共有对顶角2×3=6(对),邻补角2×2×3=12(对);(3)图③中,共有对顶角3×4=12(对),邻补角2×3×4=24(对);(4)由特殊到一般,可找出规律:若有n条直线相交于一点,则可形成n(n-1)对对顶角,2n(n-1)对邻补角.【迁移应用】观察下列图形,阅读下面的相关文字并回答后面的问题:(1)5条直线相交,最多有几个交点?(2)6条直线相交,最多有几个交点?(3)猜想:n条直线相交,最多有几个交点?=10(个).解:(1)5条直线相交,交点最多有5×(5-1)2=15(个).(2)6条直线相交,交点最多有6×(6-1)2(3)n条直线相交,最多有n(n-1)个交点.2。
人教版七下数学教案

人教版七下数学教案相交线教学目标1. 理解相交线的概念,掌握对顶角、邻补角的性质。
2. 能够通过观察、操作,发现相交线中角的关系。
3. 培养学生的空间观念和逻辑推理能力。
教学重点1. 重点对顶角、邻补角的性质及应用。
2. 难点准确辨认对顶角和邻补角,并能进行相关的计算和推理。
教学方法讲授法、讨论法、直观演示法。
教学过程1. 导入同学们,咱们先来看这样一幅图片(展示两条相交的直线),大家想想在咱们的生活中是不是经常能看到这样两条直线相交的情况呀?比如十字路口的两条道路。
那今天咱们就一起来研究研究这种相交的直线。
2. 新课讲授(1)相交线的概念老师在黑板上画出两条相交的直线,然后说:“像这样,两条直线只有一个公共点,就说这两条直线相交,这个公共点叫做交点。
”接着让同学们观察教室中还有哪些地方存在相交线。
(2)对顶角老师指着刚才画的相交线,说:“同学们,看这两条直线相交形成的角,∠1 和∠3,它们的位置有什么特点?”引导同学们观察发现∠1 和∠3 两个角的两边分别互为反向延长线。
然后告诉同学们像这样的两个角就叫做对顶角。
再让同学们找找图中还有哪些对顶角。
(3)邻补角接着,老师又指着图中的∠1 和∠2,问同学们:“那∠1 和∠2 又有什么特点呢?”引导同学们发现∠1 和∠2 有一条公共边,另一边互为反向延长线。
告诉同学们这样的两个角叫做邻补角,并让同学们找找图中还有哪些邻补角。
(4)对顶角、邻补角的性质老师引导同学们通过测量等方法,发现对顶角相等,邻补角互补。
然后进行逻辑推理证明这些性质。
3. 课堂练习老师在黑板上出几道关于对顶角和邻补角的题目,让同学们上台来做,其他同学在下面自己做。
做完后,老师进行讲解和纠错。
4. 小组讨论让同学们分组讨论生活中还有哪些对顶角和邻补角的例子,然后每组派代表发言。
5. 课堂总结老师和同学们一起回顾本节课所学的知识,强调重点和难点。
6. 布置作业让同学们完成课本上的相关练习题。
人教版七年级数学下册教案 5-1-1 相交线

5.1.1相交线一、教学目标【知识与技能】1.借助两直线相交所形成的角初步理解邻补角、对顶角的概念.2.会根据邻补角、对顶角的性质去求一个角的度数.3.掌握邻补角与对顶角的性质,并能运用它们解决简单实际问题.【过程与方法】1.通过动手操作、推断、交流等活动,进一步发展空间观念,培养识图能力、推理能力和表达能力.2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题.【情感态度与价值观】引导学生对图形进行观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,树立学习的信心.二、课型新授课三、课时1课时四、教学重难点【教学重点】对顶角的性质【教学难点】理解对顶角相等的性质的探索.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2-5)同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行钢索,桥的侧面有许多相交钢索组成的图案;围棋棋盘的纵线相互平行,横线相互平行,纵线和横线相交.这些都给我们以相交线、平行线的形象.在我们生活中,蕴涵着大量的相交线和平行线.那么两条直线相交形成哪些角?这些角又有什么特征?(二)探索新知1.出示课件7-12,探究邻补角与对顶角的定义教师问:如图,把两根木条用钉子钉在一起,转动其中一根木条,观察两根木条所形成的角的位置及大小关系.你能动手画出两条相交直线吗?学生答:能,作图如下:教师问:两条直线相交,形成的小于平角的角有几个,是哪几个?学生答:两条直线相交,形成的小于平角的角有四个 .分别是∠1,∠2,∠3,∠4.教师问:将这些角两两相配能得到几对角?教师依次展示学生答案:学生1答:∠1 和∠2.学生2答:∠2 和∠3.学生3答:∠3 和∠4.学生4答:∠4 和∠1.教师问:为何如此分类呢?学生答:有一条边在一条直线上,角的顶点相同.教师问:还有其他分类吗?学生答:分类如下:∠1 和∠3,∠2 和∠4.教师问:这样分的标准是什么?学生答:两边分别在一条直线上,有共同的顶点.总结点拨:(出示课件9)教师问:观察∠1和∠2的顶点和两边,有怎样的位置关系?师生一起解答:如图,∠1与∠2有一条公共边OC,它们的另一边互为反向延长线(∠1与∠2 互补),具有这种位置关系的两个角,互为邻补角.教师问:类比∠1和∠2,看∠1和∠3有怎样的位置关系?学生答:这两个角的两边都在同一条直线上,有相同的顶点.教师总结:如图,∠1与∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.总结点拨:(出示课件12)考点1:对顶角的判断下列各图中,∠1与∠2是对顶角的是()(出示课件13)师生共同讨论解答如下:解析:对顶角是由两条相交直线构成的,只有两条直线相交时,才能构成对顶角.答案:D.出示课件14,学生自主练习后口答,教师订正.答案:D.2.出示课件15-17,探究对顶角、邻补角的性质教师问:在上学期我们已经知道互为补角的两个角的和为180°,因而互为邻补角的两个角的和为180°.如图所示,∠1 与∠3在数量上又有什么关系呢?学生答:猜想:∠1 =∠3.教师问:你能利用学过的有关知识来验证∠1与∠3的数量关系吗?学生答:∵∠1+∠2=180°,∠3+∠2=180°,∴∠1=∠3.教师问:∠1与∠3互为什么角?学生答:互为对顶角.教师问:由此你能猜想对顶角有什么性质?学生答:猜想:对顶角相等.教师问:你能证明你的猜想吗?学生先独立思考,师生共同讨论后解答如下:师生一起解答:已知:直线AB与CD相交于O点(如图),求证:∠1=∠3,∠2=∠4.证明:∵直线AB与CD相交于O点,∴∠1+∠2=180°∠2+∠3=180°,∴∠1=∠3.同理可得∠2=∠4.教师问:您能利用几何语言描述一下对顶角的性质吗?学生答:符号语言:∵直线AB与CD相交于O点,∴∠1=∠3,∠2=∠4.教师总结点拨:(出示课件18)两直线相交分类位置关系名称数量关系∠1 和∠2,∠2 和∠3,∠3 和∠4,∠4 和∠11.有公共顶点2.有一条公共边3.另一边互为反向延长线邻补角邻补角互补∠1 和∠3,∠2 和∠4.1.有公共顶点2.没有公共边对顶角对顶角相等3.两边互为反向延长线考点1:利用对顶角、邻补角的性质求角的度数如图,直线a、b相交,∠1=40°,求∠2、∠3、∠4的度数.(出示课件19)学生独立思考后,师生共同解答.学生1解:由邻补角的定义可知∠2=180°-∠1=180°-40°=140°;学生2解:由对顶角相等可得∠3=∠1=40°,∠4=∠2=140°.教师总结。
七年级数学下《相交线》教学设计

七年级数学下《相交线》教学设计
一、教学目标
1.知识与技能:学生掌握相交线的基本概念,理解相交线的性质,能够应用这些
性质解决一些实际问题。
2.过程与方法:通过观察、实验和推理论证,培养学生的几何思维能力和探究能
力。
3.情感态度与价值观:激发学生对几何的兴趣,培养他们主动探究、合作学习的
精神。
二、教学内容与过程
1.导入:通过实物展示和情境创设,引入相交线的概念,引导学生观察相交线的
特点。
2.知识讲解:详细讲解相交线的性质,包括对顶角相等、邻补角互补等,结合实
例进行解释。
3.探究活动:设计探究活动,让学生自己动手操作,观察相交线的性质,并进行
小组讨论,总结规律。
4.应用实践:设计实际问题,让学生运用所学知识解决,如计算角度、判断线段
的位置关系等。
5.总结与提升:总结相交线的主要知识点,强调重点和难点。
通过综合性题目,
提升学生运用知识解决实际问题的能力。
三、教学方法与手段
1.教学方法:采用启发式、探究式和合作学习的方法,引导学生主动探索和思考。
2.教学手段:利用实物模型、PPT演示、几何画板等辅助教学工具,帮助学生更
好地理解相交线的性质。
四、教学评价与反馈
1.课堂互动:通过课堂提问、小组讨论等方式,及时了解学生的学习情况,调整
教学策略。
2.作业评价:布置相关练习题,要求学生按时完成,并进行批改和反馈,帮助学
生巩固所学知识。
3.测试与反馈:组织阶段性测试,检测学生对相交线知识的掌握程度,及时发现
问题并进行针对性辅导。
人教版 七年级下册数学第五章:相交线与平行线 平行线教案设计

平行线一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论;●掌握平行线的判定方法与平行线的性质,运用所学的知识,判定两条直线是否平行。
用作图工具画平行线,从而学习如何进行简单的推理论证;●理解两条平行线的距离的概念;●什么是命题,知道一个命题是由“题设”和“结论”两部分组成,对于给定的命题,能找出它的题设和结论。
重点难点:●重点:平行线的判定及性质,平移变换。
●难点:平行线的判定和性质的联系与区别;推理能力的培养;平移变换的理解及应用。
学习策略:●通过观察、思考、探究等活动归纳出平行线的概念和性质,借助练习熟悉“说理”和“简单推理”的过程,从而加深理解并熟练掌握本节内容。
二、学习与应用“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
知识回顾---复习学习新知识之前,看看你的知识贮备过关了吗?(一)两条直线被第三条直线截成的八个角中共有对同位角,对内错角,对同旁内角。
(二)同位角特征:截线旁,被截两线的方向。
内错角特征:截线旁,被截两线之间。
同旁内角特征:截线旁,被截两线之间。
知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习,请在虚线部分填写预习内容,在实线部分填写课堂学习内容。
课堂笔记或者其知识点一:平行线的概念及表示方法在同一平面内,不相交的两条直线叫做。
通常用“”表示平行,如图1中,直线AB与CD平行,记作,如果用l,m表示这两条直线,那么直线l与直线m平行,记作。
要点诠释:(1)平行线必须满足两个条件:①,②,但要注意直线的特点是可以向__方无限延长,在平面内只能画出有限长,如下图2中直线a,b看上去不相交,但当把它们看作无限长之后会发现它们其实是相交的,因此直线a,b不平行,从平行线的定义中,我们还可以学习到这样的知识:在同一平面内,不重合的两条直线的位置关系有两种:①,②。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生思考并在小组内交流,全班交流.
学生直观地感知角有“相邻”、“对顶”关系
学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等.
学情分析
学生在七年级(上)中已经学习了有关直线、线段、角的简单内容,积累了初步的观察、操作等活动经验,在此基础上,将直观探究相交线的有关内容,并在其中学习简单的说理;
教学目标
表述对顶角、邻补角的概念、性质,并能利用它进行简思维能力;
通过变式图形的识图训练,提高识图能力。
思考
讨论
交流
思考
口述说理过程
通过多媒体教学辅助手段,引导学生在活动中观察,启发学生用比较直观的语言来叙述邻补角和对顶角的概念,
演示文稿PPT
演示文稿PPT
用现实生活中的例子引出两条直线相交所成的角的问题,自然而贴切
让学生经历从图形到符号的转换过程,使学生加深对对顶角、邻补角概念的理解,积累一些图形研究
多媒体环境下的课堂教学方案设计和反思
方案名称
《相交线》教学设计
课程
名称
《相交线》教学设计
年级
七年级
学科
数学
单元
第一单元
章节
第五章
教材分析
相交线在学生生活中是佷常见的,教科书给出了一些实例,再让学生找出一些身边相交线的例子,通过实例让学生了解相交线等图形是我们生活中经常见到的,在本套教材中,作为“平行与垂直”的第二次“螺旋式上升”,相交线的主要内容在于,进一步探索相交线的有关几何事实,并以直观认识为基础进行简单的说理和初步的推理,同时,借助有关结论解决一些简单的实际问题。
课堂导入
多媒体显示图片 设问:从图片可以找到相交线吗?
学生会容易发现。从而引出了课题:相交线
直观的教具演示和多媒体
课堂讲授
教师出示一块布片和一把剪刀,表演剪刀剪布过程,提出问题:剪布时,用力握紧把手,引发了什么变化?进而使什么也发生了变化?
如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征.
总结与复习
可以采用师生问答的方式或先让学生归纳、补充,然后教师补充的方式进行,主要围绕下列问题:
(1)本节课我们学了什么知识?
(2)你有什么收获?
个别回答
演示文稿PPT
发挥学生的主体意识,培养学生的归纳能力。
本节课是一学期 的 第一节课,学生没有进入状态,教学内 容又是几何内容,因此教的速度应该放慢一点;
的经验和方法。
主要内容是 对顶角与邻补角这两类角的概念与性质,在教之前应该引导 学生复习延长线与反向延长线 的画法,突破概念理解的难点。概念的 教学紧紧扣住图形,是学生能够看得到,理解的 透彻。
学生技能训练与指导
教师引导学生用几何语言准确地表达,
独立完成后,点评。
演示文稿PPT
教师放手让学生通过讨论解决问题,培养了学生的动手能力,提高了合作意识。
认识邻补角和对顶角,探索对顶角性质
取两根木条a、b,将它们钉在一起,并把它们想像成两条直线,就得到一个相交线模型。如图1所示。在七年级上册中我们已经知道∠1与∠2的和等于180°,所以∠1与∠2互补,再仔细观察,这时的∠1与∠2有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角不仅互补,而且互为邻补角。让学生度量每一个角的大小,并判断每一类角的大小关系。
学习目标
结合具体情景,理解邻补角、对顶角的概念,探索并掌握对顶角相等;
重点、难点
重点是对顶角的概念和性质;
难点是对顶角的概念,关键是掌握对顶角的特征,以及对顶角与邻补角的区别与联系。
所用软硬件平台
软件
PPT
硬件
剪刀、三角板、量角器
多媒体应用
演示文稿PPT
教学环节
教师活动
学生活动
多媒体使用
优化对比
课后反思
多媒体准备
教师演示日常生活中以相交线图片为主体的课件.
学生欣赏图片,
演示文稿PPT
让学生借助已有的几何知识从现实生活中发现数学问题,建立直观、形象的数学模型.
本节课我在 教学之后觉得教材应该先引导学生 认知“同一平面内两条直线的位置关系”这个内容,使学生能在位置关系这个角度来理解两线四角之间 的关系;第
1.互补:邻补角
2.相等:对顶角
问题1:变换两条直线的位置,对顶角还相等吗?请写出你的猜想。
猜想:“对顶角相等”
问题2:为什么“对顶角相等”?
说理:因为∠1与∠2互补,∠3与∠2互补又因为“同角的补角相等”所以:∠1=∠3
同样可得:∠2=∠4
性质:对顶角相等
学生观察、思想、回答,得出:
握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.