浅谈连铸控制系统的重要性

合集下载

现代钢铁企业连铸机液面自动控制系统

现代钢铁企业连铸机液面自动控制系统

现代钢铁企业连铸机液面自动控制系统摘要:在连铸生产工艺中,结晶器中钢水液面的波动必须保持在一定范围内,否则将直接影响拉坯质量,造成拉漏事故。

采用钢水液面控制仪,可将结晶器中的钢水稳定在一定的范围内,大大提高拉坯质量,避免拉漏现象的发生。

关键词:连铸机结晶器液面自动控制1、前言在现代冶金企业中,连铸工艺已占主导地位,在连续浇铸工程中,为保证连铸机有稳定的浇铸,必须时刻控制结晶器内的钢水液面,使之保持在一定的高度范围内。

而凭操作工肉眼观察结晶器内钢水液面高度,手动调节拉坯速度,在拉断面小的钢坯时,很容易造成漏钢等事故。

因此采用自动控制是连铸生产的必然方向,在诸多的自动控制设备中,以放射源作为信号源的控制方式具有安装方便、性能可靠、维修方便等特点。

2、放射源型液面自动控制的简介2.1 液面检测的类型液面检测方式有:放射源型、祸流型、红外型、电磁型等,其各自原理及特点如下:1)放射源型 :根据辐射的穿透、衰减、吸收理论,制造出测量射线数量的仪表;根据射线的数量来精确地读取液面高度,从而达到液面控制的目的。

其特点是信号稳定,受干扰少,灵敏度高,使用维修方便。

2)涡流型 :涡流传感器中的电磁信号在钢水表面产生涡电流,强度随钢水与传感器间距的变化,传感器测得此信号并送给主机,主机根据信号强度来读取液面的高度,其特点是灵敏度高,测程长,信号线性度好,适应于板坯。

3)红外型 :红外摄像机感知钢水液面热信号的强度并处理后的电信号送给主机,主机根据热信号的强度来读取液面高度,其特点是抗干扰能力强,安装方便,图形直观,适合于敞开浇铸。

4)电磁型 :传感器安装于结晶器导流水套上感应面于导流水套内表面齐平,传感器发射电信号并接受返回的涡电流,其强度于钢水液面成正比,主机根据涡电流信号强度读取液面高度,其特点为灵敏度高,信号衰减少,系统简单可靠。

根据以上不同特点的液面检测方式,结合连铸机结晶器铜管小,铜管壁薄,拉速快,控制精度要求高(≤3mm),所以选取用放射源型。

连铸钢水温度控制对合金钢连铸的重要性

连铸钢水温度控制对合金钢连铸的重要性

连铸钢水温度控制对合金钢连铸的重要性
钢水的浇注温度是连铸的重要工艺参数。

其重要性主要体现在以下方面:
(1)合适的浇注温度是顺利浇注的前提。

如浇注温度过低,会引起中间包水口冻结、结晶器保护渣融化不良或结壳等,迫使浇注中断;如温度过高,会引起水口失控,同时还会使坯壳减薄和厚度不均,造成漏钢。

(2)合适的浇注温度是获得良好铸坯的基础。

如温度过高,会加剧钢水的二次氧化和对包衬耐火材料的侵蚀,从而使铸坯中非金属夹杂物增多,还会恶化铸坯的质量,产生诸如菱变、鼓肚、内裂、中心疏松、中心裂纹甚至缩孔等;如浇注温度过低,会恶化铸坯的表面质量,产生诸如结疤、结渣等缺陷。

连铸机自动浇铸控制系统应用及问题研究

连铸机自动浇铸控制系统应用及问题研究

连铸机自动浇铸控制系统应用及问题研究摘要:连铸机的使用,是企业生产流程中最重要的设备,使用流铸机有利于把钢水浇铸成所需要的大小,形状。

连铸机的不断更新和发展,体现了工艺的进步,体现了我国科学技术的进步,有利于提高我国产品的质量,使我国在激烈的市场竞争中处于优势。

本文对连铸机自动浇铸控制系统的组成及应用进行了探讨。

关键词:连铸机;自动浇铸;控制;对策连铸机自动浇铸,有利于降低人力成本,提高产品的质量,优化生产流程。

在浇铸的过程中,液位的变化是浇铸过程中最重要的一个部分,液位变化的幅度有可能对浇铸的质量造成巨大的伤害,可能会对产品的质量造成巨大的破坏。

基于自动化时代背景下,“智能化”是连铸机运行升级主要方向,智能调度技术将成为机械工程建设的核心支撑。

1. 连铸机自动化控制系统概述连铸机自动化控制系统主要有液体变动控制系统、实时数据收集、数据预警、实时监控以及连铸机浇铸处理系统等构成。

1.1连铸机自动化控制原理连铸机浇铸自动化控制的原理,主要是使用液位变动来对连铸机浇铸进行合理的控制,将液位变动实时地传递在平台上,连铸机浇铸的人员根据控制平台上所获得的数据进行实时的处理与控制,并设计出最合理的方案进行实时合理的处理,实现连铸机浇铸自动化的合理的运行,有利于企业产品的质量以及标准化。

1.2控制效果(1)控制系统的精度高。

铸坯断面130 mm×130 mm,控制精度<±5 mm;铸坯断面160 mm×160 mm,控制精度≤±3mm;(2)对电动缸采用高精度的处理方式。

在对电动缸安装时,采用比较精密的处理方式进行处理,进行合理的维护;(3)适应性研究。

在评价企业的适应性的时候,应该综合考虑企业钢的适应性。

(4)稳定性研究。

在评价连铸机浇铸的控制效果的时候,综合评价企业的稳定性,使连铸机浇铸产品更加稳定。

1.3冶金效果(1)连铸机浇铸自动化,有利于利用生产流程中的规模化的程序,及时处理在连铸机浇铸的产品中所包含的夹杂物,实现产品质量的提高,以及有利于提高其在市场中的竞争力。

连铸机电气自动化控制系统的设计与应用

连铸机电气自动化控制系统的设计与应用

连铸机电气自动化控制系统的设计与应用发布时间:2022-11-10T05:25:35.403Z 来源:《中国建设信息化》2022年第7月第13期作者:吴明旺[导读] 连铸机电气自动化控制系统的发展和应用不仅能够更好地提升炼钢生产环节的质量控制,吴明旺中天钢铁集团有限公司江苏常州 213000摘要:连铸机电气自动化控制系统的发展和应用不仅能够更好地提升炼钢生产环节的质量控制,同时也能为降低生产过程中的人力资源投入规模起到重要的影响意义。

本文针对连铸机电气自动化控制系统的设计和应用问题进行了研究和讨论,希望能够帮助设计人员在实际的生产和系统设计实践过程中引发更多的思考,从而在整体上为提升连铸机设备的自动化和连续生产质量起到铺垫效果,同时也为实现工业生产的质量控制和可持续发展起到推动作用。

关键词:连铸机;电器自动控制系统;设计应用Design and Application of Electric Automation Control System for Continuous Caster Wu MingwangZhongtian Iron and Steel Group Co., Ltd. Changzhou, Jiangsu 213000 Abstract: The development and application of the electrical automation control system of the continuous casting machine can not only improve the quality control of the steelmaking production process, but also play an important role in reducing the scale of human resources investment in the production process. This paper studies and discusses the design and application of the electrical automation control system of the continuous casting machine, hoping to help designers to trigger more thinking in the actual production and system design practice process, so as to improve the continuous casting machine as a whole. The automation of the equipment and the quality of continuous production play a paving effect, and also play a role in promoting the quality control and sustainable development of industrial production. Key words: continuous casting machine; electrical automatic control system; design application引言:近些年来随着我国工业制造和设计技术的迅猛发展,连铸机电气自动化控制技术得到了长足的进步和发展,虽然在全球化的发展背景下仍然与发达国家存在着一定的差异,但是也促进着设计技术人员能够针对目前存在的设备和生产流程中存在的问题进行深入挖掘和分析,并结合自动化控制系统和技术的创新发展进行全面应用。

连铸机电气自动化控制系统的应用

连铸机电气自动化控制系统的应用

连铸机电气自动化控制系统的应用连铸是通过浇铸、冷凝以及切害等工艺将钢水铸成钢坯。

提升连铸的自动化控制对节约能源,减轻了劳动强度、提高成材率、改善环境具有重要影响。

本文综述连铸自动化系统的构成,以某钢铁企业连铸集散自动化控制系统为例分析连铸自动化控制过程,为钢铁企业提高连铸机自动化控制系统水平提供参考。

标签:连铸机;自动化;控制级;PLC研究连铸机电气自动化控制系统对对企业结构和产品结构的简化和优化、提升经济效益具有重要意义。

一、连铸自动化系统的构成连铸机电气控制系统主要包括现场各种电气元件、智能仪表秘交流传动装置,按功能化分可分为平台控制区域、铸流控制区域、后区控制区域、仪表控制区域四大部分。

1.连铸机平台控制区域自动化控制。

连铸机平台控制区域自动化控制主要是对钢水罐回转台、中间包及中间包车、结晶器吸收风机、二冷水排烟风机以及附属设备电气系统进行控制。

平台控制区域的功能是承接钢水罐,移动中间包与结晶器、排放扇形段二冷区域烟气。

(1)钢水罐回转台在设计上采用变频器传动控制方式,并且在变频器的容量选择上加大了一级。

同时利用变频器的S曲线加减速功能,通过调整S曲线保证加减速曲线的平滑快速,减少对减速机的冲击,然后再通过PLC程序判断变速限位、停止限位等实现旋转过程中高低速的自动切换和到位停车。

(2)中间包的作用是减压、稳流、去杂质、贮存钢水、分流和中间包冶金,为保证中间包车可靠稳定运行,中间包车的走行应该采用变频传动控制方式。

(3)结晶器烟气吸收风机的电气系统的作用是将冷却水与高温的钢水接触产生大的烟气及时排出,结晶器烟气吸收风机的电气系统可用不可逆电机实现。

为使二冷排蒸汽风机不过载,控制的微动开关要设计4个位置检测,即开过转矩、开到位、关到位、关过转矩。

2.连铸机铸流区域的电气控制系统。

铸流区域的电气控制系统是连铸机核心控制部分,主要控制坯连铸机运转方式的选择,结晶器在线调宽,结晶器的振动装置,扇形段压下及压力,扇形段的驱动以及引锭杆和板坯的跟踪等。

短流程连铸连轧成套装备的自动控制系统及其功能和特点

短流程连铸连轧成套装备的自动控制系统及其功能和特点

短流程连铸连轧成套装备的自动控制系统及其功能和特点随着工业化进程的不断发展,铁路、建筑、汽车等行业对高强度钢材的需求逐渐增加。

而短流程连铸连轧工艺由于其高效率、低成本的优势,成为满足这些需求的重要生产方式。

短流程连铸连轧成套装备的自动控制系统作为其中的核心组成部分,具有重要的作用。

本文将详细介绍短流程连铸连轧成套装备的自动控制系统及其功能和特点。

首先,短流程连铸连轧成套装备自动控制系统的主要功能之一是实现整个生产过程的自动化。

传统的连铸连轧工艺中,操作人员需要手动控制铸机、轧机等设备的运行,存在操作不准确、效率低下等问题。

而自动控制系统通过引入先进的控制算法和传感器技术,实现对设备各项参数的自动监测和调节,从而大大提高了生产效率和产品质量。

其次,短流程连铸连轧成套装备自动控制系统还能实现生产过程中的数据采集和分析。

通过传感器对设备运行状态、温度、速度等关键参数进行实时监测,自动控制系统能够将这些数据收集起来,并进行处理和分析。

通过对数据的分析,可以发现生产过程中的潜在问题,并及时采取相应的措施进行调整,从而降低了生产事故的发生率,提高了工作安全性。

与此同时,短流程连铸连轧成套装备自动控制系统还具有良好的系统稳定性和可靠性。

在生产过程中,自动控制系统具有快速响应的特点,能够在毫秒级的时间内对设备进行调节和控制。

同时,自动控制系统还具备良好的抗干扰能力,能够在强电磁干扰、温度变化等复杂环境下稳定工作。

这使得自动控制系统能够适应不同的工作环境和生产要求,实现连铸连轧工艺的高质量生产。

另外,短流程连铸连轧成套装备自动控制系统还具备一定的人机交互功能。

在系统界面设计上,考虑到操作人员的使用习惯和操作需求,自动控制系统采用直观简洁的操作界面,方便操作人员对设备进行监视和调整。

操作面板上的指示灯和图形显示,能够直观地显示设备运行状态和异常情况,方便操作人员进行故障诊断和处理,提高了系统的可操作性。

此外,短流程连铸连轧成套装备自动控制系统还具有良好的灵活性和可扩展性。

炼钢生产中的连铸工艺优化与质量控制

炼钢生产中的连铸工艺优化与质量控制

炼钢生产中的连铸工艺优化与质量控制近年来,随着钢铁行业的快速发展,炼钢生产过程中的连铸工艺优化与质量控制成为了关注焦点。

连铸工艺作为炼钢生产的重要环节,直接关系到钢铁产品的质量和生产效益。

本文从连铸工艺的优化和质量控制两个方面进行探讨,旨在揭示连铸工艺对钢铁生产的重要性,并提出相应的解决方案。

一、连铸工艺的优化连铸工艺是将炼钢过程中的液态钢水直接注入到连续浇铸机模具中,通过快速冷却和凝固形成坯料的过程。

连铸工艺的优化对提高钢铁产品质量、降低能耗和减少生产成本有着重要的影响。

1.流动控制优化在连铸过程中,合理控制钢水的流动速度对保证坯料质量至关重要。

优化连铸工艺中的流动控制,可以通过合理设计浇注室的形状和角度,调整浇注速度,控制冷却水的流量等手段来实现。

同时,配备先进的流动监测设备,实时监测钢水的流动情况,以及时做出调整和干预。

2.结晶器设计优化结晶器是连铸工艺中起着关键作用的部分,其优化设计直接关系到坯料的凝固结晶过程。

合理设计结晶器的出口形状和尺寸,选用合适数量和位置的冷却装置,可以有效控制坯料的凝固过程,避免产生过大的温度梯度和结晶缺陷。

同时,结合数值模拟和实验测试,进一步优化结晶器的设计参数,以提高连铸质量和生产效率。

3.冷却控制优化连铸过程中的冷却控制对坯料的结晶过程起着至关重要的作用。

优化连铸工艺的冷却控制,可以通过合理设置冷却水的流量和温度,调整冷却装置的布置方式,以及根据不同的钢种和规格进行个性化的冷却措施等手段来实现。

同时,结合先进的测温技术和数值模拟方法,对坯料的冷却过程进行实时监控和优化调整,以提高生产效率和坯料质量。

二、质量控制连铸工艺的质量控制是确保钢铁产品质量的关键环节。

通过加强对连铸工艺中关键参数的控制和监测,可以有效提高钢铁产品的一致性和稳定性。

1.温度控制钢水的温度是影响连铸质量的重要因素之一。

通过合理控制铸坯的初始温度和结晶器的冷却控制,可以实现钢水的均匀凝固和避免温度梯度过大造成的结晶缺陷。

板坯连铸机电气系统解析

板坯连铸机电气系统解析

板坯连铸机电气系统解析1. 引言1.1 板坯连铸机的重要性板坯连铸机是铸造行业中的重要设备,主要用于连续铸造板坯。

板坯是钢铁行业的重要产品之一,广泛用于建筑、船舶、汽车、机械等领域。

连铸机的作用是将熔化的金属直接浇注成板坯,通过连续的生产线进行加工,提高生产效率和产品质量。

1. 提高生产效率:连铸机实现了连续生产,避免了传统浇铸中停机和换模的时间,大大缩短了生产周期,提高了生产效率和产量。

2. 保证产品质量:连铸机可以实现精确的控制和监测,保证板坯的尺寸精度和表面质量。

连铸过程中的温度和速度控制也能够提高产品的物理性能。

3. 节约能源资源:连铸机可以根据具体需求进行调整,减少废品率和能源消耗,实现资源的最大化利用。

4. 降低成本:连铸机的自动化程度高,减少了人力成本和操作风险,提高了生产的稳定性和可靠性,从而降低了生产成本。

板坯连铸机在钢铁行业中的地位不可替代,电气系统作为其中重要的一部分,具有至关重要的作用。

1.2 电气系统在连铸机中的作用电气系统在连铸机中起着至关重要的作用。

连铸机是将液态金属连续浇铸成板坯的设备,电气系统则是控制整个连铸过程的关键。

电气系统包括了所有的电气设备和控制系统,如变频器、PLC、传感器等,这些设备协同工作,实现了连铸机的自动化控制。

电气系统可以实现对连铸机各个部分的精确控制,比如温度、速度、流量等参数的调节,确保了板坯的质量和生产效率。

电气系统还能监测和诊断连铸机的运行状态,及时发现故障并自动停机,保障了操作人员和设备的安全。

电气系统在连铸机中的作用是不可替代的。

它不仅提高了生产效率,保障了产品质量,而且还降低了人工成本,提高了生产线的稳定性和安全性。

随着科技的不断进步,电气系统在连铸机中的作用将越来越重要,对整个生产过程的控制和监测将更加精准和智能化。

在连铸机的设计和生产过程中,电气系统的重要性不可忽视,其发展趋势也将更加智能化和高效化。

2. 正文2.1 板坯连铸机电气系统的组成板坯连铸机电气系统是整个连铸机系统中至关重要的组成部分,它承担着控制整个连铸过程的重要任务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈连铸控制系统的重要性
【摘要】铸坯质量和铸机生产率在很大程度上决定于二次冷却强度、冷却水的分配与控制、冷却方式、二冷区设备的水平。

二冷强度的增加可以使得拉速增大,生产率提高;二冷控制直接影响着铸坯的质量,铸坯的内部裂纹、表面裂纹、铸坯鼓肚、铸坯菱变等缺陷均由不合理的二冷造成。

由此可见,二冷对于连铸生产具有重大的意义。

拉坯速度是连铸生产操作中的重要控制参数。

正确控制拉速是保证顺利浇铸、充分发挥连铸机的生产能力、改善铸坯质量的关键因素之一。

【关键词】连铸生产状况;二冷控制;连铸自动化
1.连铸生产状况简介
连铸过程是炼钢车间和高速线材厂之间的处理过程,连铸的物质流向。

连铸车间的主要工艺设备包括:盛钢桶及回转台、中间包及其小车、结晶器及其振动和冷却供水设施、二次冷却段、铸坯切割设备、铸坯输送辊道、循环水系统等。

其简略的工艺流程为:炼钢车间把1560℃左右的钢水装在盛钢桶内运送到连铸车间,放置到钢包回转台上。

盛钢桶回转到中包上方时,打开盛钢桶的滑动水口,钢水注入中间包。

中间包钢液达到一定量后打开中间包塞棒,钢水分5流流入结晶器。

钢水在结晶器内经一次冷却形成坯壳并在引锭杆的拖动下慢慢拉出结晶器,进入二冷区进行二次冷却,使液芯铸坯逐渐完全凝固。

铸坯出二冷段后经过拉矫机矫直,然后经火焰切割成要求的长度,并由输送辊道送至线材厂或外运。

2.二冷控制及拉速调节系统
2.1二冷控制系统
铸坯冷却过程控制系统由一冷控制和二冷控制两部分构成,连铸坯由结晶器“出生”后,即经过一次冷却形成的初生坯壳进入扇形辊道所组成的二冷区,然后进入拉矫机矫直。

电炉厂的连铸机根据拉速和铸坯质量的要求,结合铸机冶金长度和二冷水控制的要求,把二冷区段分为3段。

根据冷却水在二冷区整个长度上的分配要与铸坯凝固相适应的原则,而且铸坯的坯壳厚度δ是随着时间τ的平方根而增加,即δ=K,其中τ=S/V,式中S为结晶液面到二冷区某一点的长度,v 为拉速,从而可得:Q∝,由此可得二冷水。

各段的冷却水量分配为:
Q1、Q2、Q3=::
Q1、Q、2Q3、分别为第一、二、三段的冷却水量,s1、s2、s3分别为结晶器液面到第一、二、三段冷却区中心点的长度。

二冷控制系统的生产现场级主要有如下控制量:各流各段水流量大小的调节和测量;二冷出口处铸坯的表面温度
的测量;拉矫机上用于位移增量的测量;变频器上的速度测量,由变频器直接给出的拉矫机平均速度;中间包钢水温度的测量。

二冷基础级的过程控制部分由PLC进行现场数据采集,由工控机进行监控,两者之间通过工业以太网相连;在工控机上,可以根据现场要求显示二冷每段的流量、压力以及二冷出口处的温度,还可设定配水表的系数K1、K2、K3以及温度反馈控制器的KP、KI等。

二冷过程控制级主要用来管理生产过程中二冷控制所产生的历史数据库和技术数据库,可方便专业技术人员对生产过程进行离线分析和优化。

二冷水控制中水量的大小应该与钢种、断面、钢水温度、拉坯速度等因素有关。

对于钢种、断面已知的浇铸过程,二冷控制可以采用二冷水量与拉坯速度成二次关系进行各段水量的设定,此种方法只是根据拉速设定流量而没考虑钢水温度的影响,所以这种方法无法实现准确有效的铸坯表面温度闭环控制,为此,在对二次冷却进行建模研究的基础上给出了一个温度串级控制系统,其中流量控制为副回路,由控制器、电动调节阀等组成,铸坯表面温度为主回路,由铸坯表面温度模型、水流量设定值、钢水温度前馈量等组成。

2.2拉速控制系统
铸坯的拉矫单元有两个功能:一是把引锭杆输送到结晶器;二是保证连续拉矫从冷却室出来的铸坯。

拉矫机驱动的两个矫直辊位于两个半径不同的弧线上,从而使得铸坯固-液界面产生的拉伸强度很小从而避免内部裂纹的产生。

铸流的拉矫机由变频器控制变速,变频器的控制信号、速度给定信号、速度反馈信号直接连接到各流PLC上。

拉矫机速度调节设计有两种方式:二级控制系统设定、手动设定。

二级系统根据炼钢厂物流的综合情况设定合适的拉矫速度,但是由于现场条件所限,二级系统经常不能正常运行,因此,速度调节只能是人工调节拉速可否根据过热度自动调节取决于结晶器的液位控制方式。

结晶器液位根据设备使用情况采用两种控制方式:速度调节和塞棒液位调节。

在中间包钢水流出采用定径水口的情况下,拉矫机的速度是结晶器液位控制系统的调节对象,它是保证结晶器液位稳定的根本因素;在中间包采用塞棒调节的方式下,拉速只是液位调节的一个干扰量,可通过前馈补偿减弱其对液位的影响,在这种情况下,若中间包温度起伏较大,则可自动调整拉速以保证浇铸的正常进行。

3.连铸自动化的发展状况
随着工业自动化技术的发展和连铸工艺的不断提高,连铸的自动化技术得到了迅速的发展,目前已经由局部的继电器逻辑控制和传统的模拟控制仪表发展到大规模的DCS集散控制系统或PLC控制,电气传动则采用交流调速和矢量控制技术,这种基础自动化是用新的控制策略实现高级综合控制的系统,从而为提高系统的控制的品质提供了很大的便利和灵活性。

在连铸过程检测和控制自动化中,可充分利DCS或PLC系统连续PID控制和顺序逻辑控制及可进行较为复杂的运算等特点,实现复杂的方式切换、连锁、自适应、动态补偿等。

现在又新增加专家控制系统等新技术,即DICS,使现在连铸过程的控制更加完善。

近年来随着网络技术的发展,国外一些先进的连铸生产国更进一步发展了管理级控制系统,统一管理和调度连铸及其相关生产工序,使各工序协调运行,并保存连铸生产的历史数据和提供连铸关键控制环节如中间包和结晶器液位控制、二冷水
控制等的动态控制模型。

由于连铸生产过程的复杂性,传统PID控制系统不能实现满意的控制效果,因此国内外一些控制专家已经将诸如自适应控制、预测控制、H控制、模糊专家系统、神经元网络等智能控制方法用到连铸生产的各个控制环节中,并且较好地解决了各环节之间的耦合控制及整个过程的优化和故障诊断与处理等问题。

这些检测和控制项目充分利用控制理论、计算机技术、网络技术方面的最新技术和成果,对改善铸坯的质量、提高浇铸速度,指导生产,节能和降低运行费用等方面都具有很重要的意义。

[科]
【参考文献】
[1]巫英伟,卢义,索晓娜,王秋旺.板坯连铸二冷区表面传热系数的预测方法[J].西安交通大学学报,2014(01).。

相关文档
最新文档