向量在物理中的应用

合集下载

向量的应用

向量的应用

向量的应用
向量是几何中重要的概念,也是数学中常常用到的工具,广泛应用于物理、工程、计
算机科学等各个领域。

下面将介绍一些向量的常见应用。

1. 平面几何中的向量应用:
在平面几何中,向量可以表示平面上的点、线段、三角形等。

我们可以用两个向量表
示平面上的一条直线,可以用三个向量表示一个平面,可以用向量的线段来表示一个位移
和距离等。

向量的叉积可以用来判断两个向量是否平行、垂直,以及求解平面上的面积
等。

2. 物理学中的向量应用:
在物理学中,向量被广泛应用于描述力、速度、加速度等物理量的大小和方向。

位移
向量可以用来表示物体的位置变化,速度向量可以用来表示物体的运动速度和方向,加速
度向量可以用来表示物体的速度变化率等。

通过向量的运算,可以方便地计算物体之间的
相对速度、加速度,以及其他相关的物理量。

4. 计算机科学中的向量应用:
在计算机科学中,向量被广泛应用于描述二维和三维图形的坐标和方向。

我们可以用
二维向量表示平面上的一个点的坐标,用三维向量表示空间中的一个点的坐标,用向量的
加法和减法进行坐标的变换和计算。

向量的点乘和叉乘可以用来计算向量之间的夹角、距
离和面积等。

向量是数学中非常重要的概念和工具,被广泛应用于物理、工程、计算机科学等各个
领域。

通过对向量的运算和应用,我们可以更方便地描述和计算各种物理量、几何关系和
图形形状等。

向量的应用不仅仅局限于上述几个领域,还有很多其他的应用,如信号处理、优化问题等,具有非常广泛的应用前景。

向量在物理中的应用举例 课件

向量在物理中的应用举例  课件
向量在物理中的应用举例
知识点归纳
向量在物理中的应用 (1)物理中的力、速度、位移都是向量,它们的分解与合成 与向量的加法与减法相类似,可以用向量来解决. (2)物理中的功是一个标量,它是力f与位移s的数量积,即 W=f·s=|f|·|s|cos θ.
用向量方法解决力学问题
如图,在重300 N的物体 上系两根绳子,这两根绳子在铅垂线的 两侧,与铅垂线的夹角为30°和60°, 求重物平衡时,两根绳子拉力的大小.
【思路分析】力的合成与分解,可用向量的平行四边形法 则解决.
【规范解答】如右图,作平行四边形 OACB, 使∠AOC=30°,∠BOC=60°.在△OAC 中,∠ ACO=∠BOC=60°,∠OAC=90°,|O→A|=|O→C |cos 30°= 150 3 (N) , | A→C | = | O→C |sin 30°= 150(N),|O→B|=|A→C|=150 N.
力所做的功
已知力F与水平方向的夹角为30°(斜向上),F 的大小为50 N,F拉着80 N的木块在摩擦系数为μ=0.02的水平 面上运动了20 m,问F和摩擦力f所做的功分别是多少?
【思路分析】利用向量数量积的物理意义求解.
【规范解答】设木块的位移为 s,则 F·s=|F||s|·cos 30°=
【规范解答】设船速为 v1,水速为 v2, 船的实际速度为 v3.建立如图所示坐标系, 则|v1|=5 m/s,|v3|=250 m/s=4 m/s.
由 v3=v1+v2,得 v2=v3-v1=(0,4)-(-3,4)=(3,0), ∴|v2|=3,即 v2=3 m/s.
用向量解决相关的物理问题,要将相关的 物理量用几何图形正确地表示出来;根据物理意义,将物理问 题转化为数学问题求解.最后将数学结论还原为物理问题.

向量在物理中的关键应用作文

向量在物理中的关键应用作文

向量在物理中的关键应用作文向量在物理中的关键应用在物理学中,向量是一种重要的数学工具,它被广泛地应用于各个领域,从机械力学到电磁学,从热力学到光学。

向量的运算和表示方法可以帮助我们更好地理解和描述物理现象。

本文将探讨向量在物理中的关键应用。

一、力学在力学中,向量的应用尤为突出。

我们可以使用向量来描述物体的运动和作用力。

例如,当我们想要描述一个物体受到的作用力以及它的运动状态时,我们可以使用位移向量、力向量和加速度向量。

位移向量表示物体从一个位置到另一个位置的移动,力向量表示作用在物体上的力,而加速度向量则表示物体在单位时间内的速度变化。

通过对这些向量的运算和研究,我们可以得出关于物体运动和力的有关性质和规律。

例如,根据牛顿第二定律,我们可以得出力等于物体质量乘以加速度的公式,即F = m*a。

这个公式便是基于向量的概念和运算得出的。

二、电磁学向量在电磁学中也扮演着重要的角色。

对于电磁力和电场、磁场的研究和描述,向量起到了至关重要的作用。

在电磁学中,我们可以使用电场强度向量和磁感应强度向量来描述电场和磁场的性质。

电场强度向量表示电场的强度和方向,磁感应强度向量则表示磁场的强度和方向。

通过对电场和磁场的向量运算,我们可以计算出电荷之间的作用力,以及电流在导线上产生的磁场等。

同时,远距离电磁相互作用的描述和计算也离不开向量的运算。

例如,在电磁波的传播过程中,我们可以通过电场和磁场的向量叠加得到电磁波的传播方向和强度。

这些都是基于向量的运算和分析得出的。

三、热力学在热力学中,向量也有着广泛的应用。

温度梯度、热流等热学量的计算和描述都需要运用向量的概念和方法。

例如,当我们想要计算物体内的温度分布时,我们可以使用温度梯度向量来表示温度在空间的变化率。

这样,我们就可以通过对温度梯度向量的运算和分析来得出物体内部的温度分布规律。

另外,热流的描述和计算也依赖于向量的应用。

热流向量表示单位时间内单位面积内热量的流动方向和强度。

向量分析在物理学中的应用

向量分析在物理学中的应用

向量分析在物理学中的应用向量分析是现代数学中非常重要的一个分支,其应用范围涵盖了物理学、工程学、计算机科学等众多领域。

在物理学中,向量分析被广泛应用于研究各种物理现象,包括力学、物理光学、电磁学等领域。

本文将从这些方面介绍向量分析在物理学中的应用,探讨向量分析在实际问题中的重要价值。

一、力学中的向量分析在力学中,向量分析理论被广泛用于描述运动物体的运动状态。

力学中的向量分析包括向量场、矢量微积分、张量分析等方面,这些理论在力学中的应用非常广泛。

例如在运动物体的运动分析中,向量场可以被用来表达速度、加速度、力等物理量的分布情况。

同时,矢量微积分可以用于描述运动物体的位置、速度和加速度等物理量之间的关系。

还有一些高级的向量分析技术,比如张量分析可以用于描述运动物体中介质的流动性质,这对流体力学的研究具有重要的意义。

二、物理光学中的向量分析在物理光学中,向量分析被广泛应用于描述光传播的性质和光场的分布情况。

光波是一种横波,它在传播方向和垂直传播方向的平面上都有电场和磁场的振动。

而向量分析理论提供了一种非常方便的描述电场和磁场的方法,这种方法称作麦克斯韦方程组。

通过这种方法,我们可以方便地描述光波在介质中传播的速度、功率和偏振等特性,这对解决光学现象中的许多问题非常有用。

三、电磁学中的向量分析电磁学是物理学中一个非常重要的领域,它研究的是电荷、电场和磁场的相互作用。

在电磁学中,向量分析理论被广泛应用于描述电场和磁场的分布和强度。

例如,通过向量分析理论,我们可以方便地计算和比较不同情况下的电场和磁场的强度、方向和分布情况,这对解决电磁现象中的许多问题非常有用。

总结向量分析是现代数学中非常重要的一个分支,其应用范围涵盖了各种领域。

在物理学中,向量分析被广泛应用于研究各种物理现象,包括力学、物理光学、电磁学等领域。

在力学中,向量分析可以被用来描述运动物体的运动状态;在物理光学中,向量分析可以被用来描述光传播的性质和光场的分布情况;在电磁学中,向量分析可以被用来描述电场和磁场的分布和强度。

向量的应用

向量的应用

向量的应用向量是数学中的重要概念,它在很多领域中都有着广泛的应用。

在物理学、工程学、计算机科学等领域中,向量被用来描述和求解各种问题。

一、物理学中的向量应用在物理学中,向量被用来描述物体的位置、速度、加速度等物理量。

一个物体在二维平面上的位置可以用一个二维向量表示,其中向量的两个分量分别表示物体在 x 方向和y 方向上的位置,这样可以方便地描述物体的位置关系和运动轨迹。

速度和加速度也是向量,它们的方向和大小可以通过向量的几何性质进行分析和计算。

二、工程学中的向量应用工程学中的向量应用主要集中在力学、电路分析和信号处理等方面。

在力学中,向量被用来描述力的大小和方向,可以方便地求解物体的平衡和运动问题。

在电路分析中,向量被用来描述电压和电流的相位关系,可以通过向量运算方便地分析电路中的功率和效率。

在信号处理中,向量被用来描述信号的幅度和相位,可以方便地进行滤波和频谱分析等操作。

三、计算机科学中的向量应用在计算机科学中,向量被广泛应用于图像处理、机器学习等领域中。

在图像处理中,向量被用来表示图像的像素值,在图像的压缩、增强和分析等操作中起到关键作用。

在机器学习中,向量被用来表示样本的特征向量,通过向量的相似性和距离度量可以进行分类和聚类等操作。

四、其他领域中的向量应用除了上述领域外,向量还在金融学、经济学、生物学等领域中有着广泛的应用。

在金融学中,向量被用来描述资产的收益和风险,可以通过向量运算进行资产组合和风险管理等操作。

在经济学中,向量被用来描述经济指标和变量之间的关系,可以进行经济模型和政策分析等操作。

在生物学中,向量被用来描述基因组的序列,可以进行基因组测序和突变检测等操作。

向量在各个科学和工程领域中都有着广泛的应用。

通过向量的几何性质和运算规律,可以方便地描述和求解各种问题,扩展了数学在实际问题中的应用范围,提高了问题的求解效率和精度。

深入理解和掌握向量的概念和应用是学习数学和科学的重要基础。

平面向量在物理问题中的应用

平面向量在物理问题中的应用

平面向量在物理问题中的应用平面向量是解决物理问题的重要工具之一,它能够描述物体在平面内的位移、速度和加速度等性质,广泛应用于力学、电磁学、动力学等物理学领域。

本文将从力学、电磁学和动力学三个方面介绍平面向量在物理问题中的应用。

一、力学中的平面向量应用力学是研究物体运动和受力情况的学科,平面向量在力学问题中扮演着重要的角色。

1. 位移和速度:位移是物体从一个位置到另一个位置的变化,速度是物体在单位时间内位移的变化率。

在力学问题中,我们可以利用平面向量来表示位移和速度。

假设一个物体位于平面上的点P,其位移向量为r,那么P点的速度向量v就是位移向量r对时间的导数。

2. 力和加速度:力是物体所受的作用,而加速度是物体单位时间内速度的改变量。

根据牛顿第二定律,力的大小等于物体质量乘以加速度的大小。

在力学问题中,我们可以使用平面向量来描述力和加速度。

假设一个物体受力F,质量为m,加速度向量为a,则根据牛顿第二定律可以得到F = ma。

二、电磁学中的平面向量应用电磁学是研究电荷和电流、电场和磁场相互作用的学科,平面向量在电磁学问题中也有重要应用。

1. 电场和电势:电场是由电荷产生的一种力场。

在电磁学问题中,平面向量可以用来描述电场的强弱和方向。

假设一个电荷在空间中的位置为点P,电场向量E就是点P处的电场强度对于位置的导数。

而电势则是描述电场能量的标量量,是电场在单位正电荷上的做功。

在电磁学中,我们可以利用平面向量来计算电势。

2. 磁场和磁感应强度:磁场是由电流产生的一种力场。

在电磁学问题中,平面向量可以用来描述磁场的强弱和方向。

假设一个电流在空间中的位置为点P,磁感应强度向量B就是点P处的磁场强度对于位置的导数。

磁场力的大小可以通过安培力定律来计算,利用平面向量可以方便地进行计算。

三、动力学中的平面向量应用动力学是研究物体运动的原因和规律的学科,平面向量在动力学问题中也有广泛应用。

1. 动量和力矩:动量是物体的运动状态的度量,等于质量乘以速度。

数学(2.5.2向量在物理中的应用举例)

数学(2.5.2向量在物理中的应用举例)

向量的表示方法
总结词
向量可以用箭头表示,箭头的长度代 表大小,箭头的指向代表方向。
详细描述
在数学和物理中,向量通常用箭头表 示,箭头的长度代表向量的模长,箭 头的指向代表向量的方向。在坐标系 中,向量也可以用坐标表示。
向量的运算规则
总结词
向量具有加法、减法、数乘等基本运算规则,这些运算规则遵循平行四边形法 则或三角形法则。
04
向量在物理中的重要性
描述物理现象的数学工具
向量是描述物理现象的重要数 学工具,如力、速度、加速度 等物理量都可以用向量表示。
向量具有大小和方向两个要素, 能够准确地描述物理量的变化 和方向。
向量运算(加法、数乘、向量 的模等)能够描述物理量的合 成与分解。
解决物理问题的有效方法
向量在解决物理问题中具有高效性和准确性,通过向量的运算和变换可以简化问题。
向量在解决力学、电磁学、振动与波动等问题中具有广泛的应用,能够提供简洁明 了的解决方案。
向量方法可以避免复杂的解析过程,提高解题效率。
连接数学与物理的桥梁
向量作为数学和物理之间的桥梁,能 够将数学理论应用于实际物理问题。
向量的引入和发展推动了数学和物理 学的发展,促进了科学技术的进步。
通过向量的应用,能够将抽象的数学 概念与具体的物理现象联系起来,促 进数学与物理的相互理解和应用。
详细描述
在物理中,力的合成与分解是常见的运算。例如,当一个物体受到两个力的作用时,可 以通过向量的合成求出这两个力的合力;同样地,当需要将一个力分解为若干个分力时, 也可以通过向量的分解来实现。力的合成与分解在工程、力学等领域有着广泛的应用。
速度与加速度的实例
总结词
速度和加速度是描述物体运动状态的重要物理量,通 过向量运算可以方便地描述它们的方向和大小。

向量在物理中的应用举例

向量在物理中的应用举例

一、教学分析向量与物理学天然相联.向量概念的原型就是物理中的力、速度、位以及几何中的有向线段等概念;向量是既有大小、又有方向的量;它与物理学中的力学、运动学等有着天然的联系;将向量这一工具应用到物理中;可以使物理题解答更简捷、更清晰.并且向量知识不仅是解决物理许多问题的有利工具;而且用数学的思想方法去审视相关物理现象;研究相关物理问题;可使我们对物理问题的认识更深刻.物理中有许多量;比如力、速度、加速度、位移等都是向量;这些物理现象都可以用向量来研究.用向量研究物理问题的相关知识.1力、速度、加速度、位移等既然都是向量;那么它们的合成与分解就是向量的加、减法;运动的叠加亦用到向量的合成;2动量是数乘向量;3功即是力与所产生位移的数量积.用向量知识研究物理问题的基本思路和方法.①通过抽象、概括;把物理现象转化为与之相关的向量问题;②认真分析物理现象;深刻把握物理量之间的相互关系;③利用向量知识解决这个向量问题;并获得这个向量的解;④利用这个结果;对原物理现象作出合理解释;即用向量知识圆满解决物理问题.教学中要善于引导学生通过对现实原型的观察、分析和比较;得出抽象的数学模型.例如;物理中力的合成与分解是向量的加法运算与向量分解的原型.同时;注重向量模型的运用;引导解决现实中的一些物理和几何问题.这样可以充分发挥现实原型对抽象的数学概念的支撑作用.二、教学目标1.知识与技能:通过力的合成与分解的物理模型;速度的合成与分解的物理模型;掌握利用向量方法研究物理中相关问题的步骤..2.过程与方法:明了向量在物理中应用的基本题型;进一步加深对所学向量的概念和向量运算的认识.3.情感态度与价值观:通过对具体问题的探究解决;进一步培养学生的数学应用意识;提高应用数学的能力.体会数学在现实生活中的重要作用.养成善于发现生活中的数学;善于发现物理及其他科目中的数学及思考领悟各学科之间的内在联系的良好习惯.三、重点难点教学重点:1.运用向量的有关知识对物理中力的作用、速度的分解进行相关分析和计算.2.归纳利用向量方法解决物理问题的基本方法.教学难点:将物理中有关矢量的问题转化为数学中向量的问题.四、教学设想一导入新课思路1.章头图引入章头图中;道路、路标体现了向量与位移、速度、力等物理量之间的密切联系.章引言说明了向量的研究对象及研究方法.那么向量究竟是怎样应用于物理的呢它就像章头图中的高速公路一样;是一条解决物理问题的高速公路.在学生渴望了解的企盼中;教师展示物理模型;由此展开新课.思路2.问题引入你能举出物理中的哪些向量比如力、位移、速度、加速度等;既有大小又有方向;都是向量;学生很容易就举出来.进一步;你能举出应用向量来分析和解决物理问题的例子吗你是怎样解决的教师由此引导:向量是有广泛应用的数学工具;对向量在物理中的研究;有助于进一步加深对这方面问题的认识.我们可以通过对下面若干问题的研究;体会向量在物理中的重要作用.由此自然地引入新课.二应用示例例1在日常生活中;你是否有这样的经验:两个人共提一个旅行包;夹角越大越费力;在单杠上做引体向上运动;两臂的夹角越小越省力.你能从数学的角度解释这种现象吗活动:这个日常生活问题可以抽象为如图1所示的数学模型;引导学生由向量的平行四边形法则;力的平衡及解直角三角形等知识来思考探究这个数学问题.这样物理中力的现象就转化为数学中的向量问题.只要分析清楚F、G、θ三者之间的关系其中F为F 1、F 2的合力;就得到了问题的数学解释.图1在教学中要尽可能地采用多媒体;在信息技术的帮助下让学生来动态地观察|F |、|G |、θ之间在变化过程中所产生的相互影响.由学生独立完成本例后;与学生共同探究归纳出向量在物理中的应用的解题步骤;也可以由学生自己完成;还可以用信息技术来验证. 用向量解决物理问题的一般步骤是:①问题的转化;即把物理问题转化为数学问题;②模型的建立;即建立以向量为主体的数学模型;③参数的获得;即求出数学模型的有关解——理论参数值;④问题的答案;即回到问题的初始状态;解释相关的物理现象.解:不妨设|F 1|=|F 2|;由向量的平行四边形法则、力的平衡以及直角三角形的知识;可以知道通过上面的式子;我们发现:当θ由0°到180°逐渐变大时;2θ由0°到90°逐渐变大;cos 2θ的值由大逐渐变小;因此|F 1|由小逐渐变大;即F 1;F 2之间的夹角越大越费力;夹角越小越省力.点评:本例是日常生活中经常遇到的问题;学生也会有两人共提一个旅行包以及在单杠上做引体向上运动的经验.本例的关键是作出简单的受力分析图;启发学生将物理现象转化成模型;从数学角度进行解释;这就是本例活动中所完成的事情.教学中要充分利用好这个模型;为解决其他物理问题打下基础.得到模型后就可以发现;这是一个很简单的向量问题;这也是向量工具优越性的具体体现.变式训练某人骑摩托车以20km/h 的速度向西行驶;感到风从正南方向吹来;而当其速度变为40km/h 时;他又感到风从西南方向吹来;求实际的风向和风速.图2解:如图2所示.设v 1表示20km/h 的速度;在无风时;此人感到的风速为-v 1;实际的风速为v ;那么此人所感到的风速为v +-v 1=v -v 1. 令AB =-v 1;AC =-2v 1;实际风速为v .∵DA +AB =DB ; ∴DB =v -v 1;这就是骑车人感受到的从正南方向吹来的风的速度.∵DA +AC =DC ;∴DC =v -2v 1;这就是当车的速度为40km/h 时;骑车人感受到的风速.由题意得∠DCA=45°;DB ⊥AB;AB=BC;∴△DCA 为等腰三角形;DA=DC;∠DAC=∠DCA=45°.∴DA=DC=2BC=202.∴|v |=202km/h. 答:实际的风速v 的大小是202km/h;方向是东南方向.例2如图3所示;利用这个装置冲击摆可测定子弹的速度;设有一砂箱悬挂在两线下端;子弹击中砂箱后;陷入箱内;使砂箱摆至某一高度h.设子弹和砂箱的质量分别为m 和M;求子弹的速度v 的大小.图3解:设v 0为子弹和砂箱相对静止后开始一起运动的速度;由于水平方向上动量守恒;所以m|v |=M+m|v 0|.①由于机械能守恒;所以21M+m v 02=M+mgh.②联立①②解得|v |=.2gh m m M 又因为m 相对于M 很小;所以|v |≈gh m M 2;即子弹的速度大小约为gh m M 2. 三知能训练 1.一艘船以4km/h 的速度沿着与水流方向成120°的方向航行;已知河水流速为2km/h;则经过3小时;该船实际航程为A.215kmB.6kmC.84kmD.8km图4 2.如图4;已知两个力的大小和方向;则合力的大小为N;若在图示坐标系中;用坐标表示合力F ;则F =___________. 3.一艘船以5km/h 的速度向垂直于对岸的方向行驶;而该船实际航行的方向与水流方向成30°角;求水流速度与船的实际速度.解答: 1.B点评:由于学生还没有学习正弦定理和余弦定理;所以要通过作高来求.2.415;4图53.如图5所示;设OA 表示水流速度;OB 表示船垂直于对岸的速度;OC 表示船的实际速度;∠AOC=30°;|OB |=5km/h.因为OACB 为矩形;所以|OA |=|AC |·cot30°=|OB |·cot30°=53≈8.66km/h;|OC |= 30cos ||OA =2335=10km/h. 答:水流速度为8.66km/h;船的实际速度为10km/h.点评:转化为数学模型;画出向量图;在直角三角形中解出.四课堂小结1.与学生共同归纳总结利用向量解决物理问题的步骤.①问题的转化;即把物理问题转化为数学问题;②模型的建立;即建立以向量为主体的数学模型;③参数的获得;即求出数学模型的有关解——理论参数值;④问题的答案;即回到问题的初始状态;解释相关的物理现象.2.与学生共同归纳总结向量在物理中应用的基本题型.①力、速度、加速度、位移都是向量;②力、速度、加速度、位移的合成与分解对应相应向量的加减;③动量mv是数乘向量;冲量Δt F也是数乘向量;④功是力F与位移s的数量积;即W=F·s.五作业。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时,对应的
, , t分别是多少?
练习:一只船在静水中的速度为3m/s,它要横渡一条30m 宽的河,水流速度为4m/s,下列说法正确的是( ) A.这只船可能垂直于河岸到达正对岸; B.这只船对地的速度一定是5m/s; C.过河时间可能是6s; D.过河时间可能是12s.
; / 聚星娱乐 bgk162utb 在去往约定的地方之前,钟思的内心是十万分忐忑的,她向来很少动过哪方面的心思,其实,说到底,她自己很少去做多余的计划, 左不过只是一件件的完成父母给的目标任务,想来不免觉着人生开始有点戚戚然了起来。
她想那个叫做陆尘的男士大概也如她这般对于一个未知的陌生人持有着不知名的忐忑心境吧,这样想来的时候便觉着自己应是要从 容些的,至少不应该让初次见面的人感到不适!
钟思到达指定地方之后看到那一家店面的落地窗前坐了一位男士,穿很舒适的着装,很符合他的短信描述,便走进那家店面,保持 着自己得体的笑容,施施然的向他走去,微笑着开口“你好,我是钟思”。 那男子抬头看她随即淡然一笑的开口“你好,陆尘”待她落座又作补充的开口道“钟思、螽斯,多子多孙、很有意思的名字”。 钟思讶然的再次看向他,因为这样的一句话,莫名的对他增添了不少好感,她冲他微微一笑,回了句“是么”。 陆尘也不再做过多解释、只将菜单递向她笑容和煦的开口“你喜欢吃点什么?” 钟思笑了笑“不用了,喝点东西就好,我还不饿,一杯橙汁! ” 陆尘很绅士的顺带给她点了份甜点,给自己点了杯茶。 钟思开口“你的尘,怎么会是灰尘的尘?” 陆尘仍是笑的淡然“世间万物终归回归尘埃,是我自己改的!” 钟思再次不自觉的对他有了几许好感,她笑着看向他“这么巧,我居然也会有这样的想法! ”
2 1 2 2
思考: t
d
ห้องสมุดไป่ตู้
1 sin
是否船垂直到达对岸所用时间
最少?为什么?
C
B
D
v1
A
v
2
1 与 2 的夹角 分别是多少?分别行驶多少时间?
变式1:假设BC=BD=500m,要使船分别到达C处和D处,
1 变式2:当船要到达图中的C和D,且BC,BD分别为 d , d ,2d 2
什么是向量?在物理学中碰到过哪些? 什么是向量的平行四边形法则?
实例:两根等长的绳子挂一个物体 物理问题:分析绳子受到的拉力大小与两绳子间的夹角的关系? 分析:由向量的平行四边形法则,力的平衡及解 直角三角形等知识,得出:

F1
1 G G cos 2 F1 2 F1 2 cos 2
实例:速度与分解问题 一条河的两岸平行,河的宽度d=500m,一艘船从A处出发 航行到河的正对岸B处,船航行的速度 v1 10km / h ,水流 0 速度 v2 4km / h 那么,v1 与 v2 的夹角 (精确到 1 )多 大时,船才能垂直到达对岸B处? 船行驶多少时间(精确到 C B 0.1min)?
G
1 G G cos 2 F1 2 F1 2 cos 讨论: 2 1.当 逐渐增大时,F1 的大小怎样变化?为什么?
2.当 为何值时, F1 最小,最小值是多少?
3.当 为何值时,F1 G ?
4.如果 F1 588N , G 882N , 在什么范围时, 绳子不会断?
10
D
v1
A
v
2
C
B
D
v1

v | v2 | | v2 | 0 0 sin( 90 ) 90 arcsin 114 0 | v1 | | v1 |
A
2
| v | v v | v1 | sin 9.2km / h d t 3.3 min |v|
问题:如图,两根长度相等的绳子,下端悬挂一质量为m的物体, 上端分别固定在水平天花板上的M点和N点,M、N两点间的 距离为S,已知两绳所能经受的最大拉力为T,问:每根绳的长度 不得短于多长? 练习:如图,AB、CD均为轻绳,甲、乙两物体均静止, BD与天花板平行且为水平方向,其他角度值如图,则甲、 乙两物体的质量之比m甲:m乙=————————。
相关文档
最新文档